
Mario StipčevićRuđer Bošković Institute | RBI · Division of Experimental Physics
Mario Stipčević
PhD Physics
Quantum cryptographic protocols. Seeking collaboration in random pulse computation.
About
272
Publications
105,521
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,528
Citations
Introduction
Additional affiliations
December 2005 - present
Education
March 2002 - May 2004
Universide de Savoie, Chambery, France
Field of study
- Particle physics
October 1984 - January 1991
Faculty of Natural Sciences, University of Zagreb, Croatia Zagreb
Field of study
- Physics
Publications
Publications (272)
We report upon the realization of a novel fast nondeterministic random number generator whose randomness relies on the intrinsic randomness of the quantum physical processes of photonic emission in semiconductors and subsequent detection by the photoelectric effect. Timing information of detected photons is used to generate binary random digits-bit...
In this paper we present a novel construction of an active quenching circuit
intended for single photon detection. For purpose of evaluation, we have
combined this circuit with a standard avalanche photodiode C30902S to form a
single photon detector. A series of measurements, presented here, show that
this single photon detector has a dead time of...
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physicsal process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, wich can be des...
In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fu...
We present five novel or modified circuits intended for building a universal computer based on random pulse computing (RPC) paradigm, a biologically-inspired way of computation in which variable is represented by a frequency of a random pulse train (RPT) rather than by a logic state. For the first time we investigate operation of RPC circuits from...
Random pulse computing (RPC), the third paradigm along with digital and quantum computing, draws inspiration from biology, particularly the functioning of neurons. Here, we study information processing in random pulse computing circuits intended for the summation of numbers. Based on the information-theoretic merits of entropy budget and relative K...
True randomness is necessary for the security of any cryptographic protocol, including quantum key distribution (QKD). In QKD transceivers, randomness is supplied by one or more local, private entropy sources of quantum origin which can be either passive (e.g., a beam splitter) or active (e.g., an electronic quantum random number generator). In ord...
Quantum random number generators (QRNGs) are a burgeoning technology used for a variety of applications, including modern security and encryption systems. Typical methods exploit an entropy source combined with an extraction or bit generation circuit in order to produce a random string. In integrated designs, there is often little modeling or analy...
The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization-based entanglement distribution networks are a promising approach due to their scalability...
ESSnuSB is a design study for an experiment to measure the CP violation in the leptonic sector at the second neutrino oscillation maximum using a neutrino beam driven by the uniquely powerful ESS linear accelerator. The reduced impact of systematic errors on sensitivity at the second maximum allows for a very precise measurement of the CP violating...
The retrieval of the phase with single-photon states is a fundamentally and technically challenging endeavor. Here we report an experimental realization of hologram recordings with heralded single-photon illumination and continuous observation of photon statistics. Thereby, we demonstrate the basic principle of holography with single-photon states...
The main source of systematic uncertainty on neutrino cross section measurements at the GeV scale is represented by the poor knowledge of the initial flux. The goal of cutting down this uncertainty to 1% can be achieved through the monitoring of charged leptons produced in association with neutrinos, by properly instrumenting the decay region of a...
ESSnuSB is a design study for an experiment to measure the CP violation in the leptonic sector at the second neutrino oscillation maximum using a neutrino beam driven by the uniquely powerful ESS linear accelerator. The reduced impact of systematic errors on sensitivity at the second maximum allows for a very precise measurement of the CP violating...
Ability to generate random numbers is an important resource for many applications ranging from scientific research to practical cryptography and quantum technologies. However, a widely accepted definition of random numbers, or randomness, has eluded researchers thus far. Without a definition, it is impossible to complete security proofs or make new...
This paper describes a new νe identification method specifically designed to improve the low-energy (<30 GeV) νe identification efficiency attained by enlarging the emulsion film scanning volume with the next generation emulsion readout system. A relative increase of 25-70% in the νe low-energy region is expected, leading to improvements in the OPE...
Quantum networks have been shown to connect users with full-mesh topologies without trusted nodes. We present advancements on our scalable polarisation entanglement-based quantum network testbed, which has the ability to perform protocols beyond simple quantum key distribution. Our approach utilises wavelength multiplexing, which is ideal for quant...
We investigate the performance of a dynamical entanglement-based QKD network with various switching scenarios. The simulation results suggest the optimum scenario for different heralding efficiencies and detectors’ jitter and the experimental results verify the benefit.
Around 40 years have passed since the first pioneering works introduced the possibility of using quantum physics to enhance communications safety. Nowadays, quantum key distribution (QKD) exited the physics laboratories to become a mature technology, triggering the attention of States, military forces, banks, and private corporations. This work tak...
Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. The...
Quantum networks have been shown to connect users with full-mesh topologies without trusted nodes. We present advancements on our scalable polarisation entanglement-based quantum network testbed, which has the ability to perform protocols beyond simple quantum key distribution. Our approach utilises wavelength multiplexing, which is ideal for quant...
This paper describes a new $\nu_e$ identification method specifically designed to improve the low-energy ($< 30\,\mathrm{GeV}$) $\nu_e$ identification efficiency attained by enlarging the emulsion film scanning volume with the next generation emulsion readout system. A relative increase of 25-70% in the $\nu_e$ low-energy region is expected, leadin...
A design study, named ESSνSB for European Spallation Source neutrino Super Beam, has been carried out during the years 2018–2022 of how the 5 MW proton linear accelerator of the European Spallation Source under construction in Lund, Sweden, can be used to produce the world’s most intense long-baseline neutrino beam. The high beam intensity will all...
The ability to know and verifiably demonstrate the origins of messages can often be as important as encrypting the message itself. Here we present an experimental demonstration of an unconditionally secure digital signature (USS) protocol implemented for the first time, to the best of our knowledge, on a fully connected quantum network without trus...
Quantum random number generators are a burgeoning technology used for a variety of applications, including modern security and encryption systems. Typical methods exploit an entropy source combined with an extraction or bit generation circuit in order to produce a random string. In integrated designs there is often little modelling or analytical de...
The retrieval of the phase with single-photon states is a fundamental and technical challenging endeavor. Here we report the first experimental realization of quantum hologram recordings with single-photon illumination and continuous observation of photon statistics before and after a basic interferometer. Thereby, we demonstrate the basic principl...
The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization based entanglement distribution networks are a promising approach due to their scalability...
This conceptual design report provides a detailed account of the European Spallation Source neutrino Super Beam (ESS$\nu$SB) feasibility study. This facility has been proposed after the measurements reported in 2012 of a relatively large value of the neutrino mixing angle $\theta_{13}$, which raised the possibility of observing potential CP violati...
The global interest in quantum networks stems from the security guaranteed by the laws of physics. The deployment of quantum networks means facing the challenges of scaling up the physical hardware and, more importantly, of scaling up all other network layers and optimally utilizing network resources. Here, we consider two related protocols and the...
Around forty years have passed since the first pioneering works have introduced the possibility of using quantum physics to strongly enhance communications safety. Nowadays Quantum Cryptography, and in particular, Quantum Key Distribution (QKD) exited the physics laboratories to become commercial technologies that increasingly trigger the attention...
In this Snowmass 2021 white paper, we summarise the Conceptual Design of the European Spallation Source neutrino Super Beam (ESSvSB) experiment and its synergies with the possible future muon based facilities, e.g. a Low Energy nuSTORM and the Muon Collider. The ESSvSB will benefit from the high power, 5 MW, of the European Spallation Source (ESS)...
Anonymity in networked communication is vital for many privacy-preserving tasks. Secure key distribution alone is insufficient for high-security communications. Often, knowing who transmits a message to whom and when must also be kept hidden from an adversary. Here, we experimentally demonstrate five information-theoretically secure anonymity proto...
The ability to know and verifiably demonstrate the origins of messages can often be as important as encrypting the message itself. Here we present an experimental demonstration of an unconditionally secure digital signature (USS) protocol implemented for the first time, to the best of our knowledge, on a fully connected quantum network without trus...
In the image plane configurations frequently used in digital holographic microscopy (DHM) systems, interference patterns are captured by a photo-sensitive array detector located at the image plane of an input object. The object information in these patterns is localized and thus extremely sensitive to phase errors caused by nonlinear hologram recor...
We present developments in entanglement distribution quantum networks towards a fully connected, scalable, many-user network, which is not limited to simple quantum key distribution protocols.
We implement a six-user quantum communication network utilising a quantum-enabled ROADM for flexible and on-demand allocation of entanglement across different users. This allows dynamic networking for multiple quantum protocols.
In this paper, we present the physics performance of the ESSnuSB experiment in the standard three flavor scenario using the updated neutrino flux calculated specifically for the ESSnuSB configuration and updated migration matrices for the far detector. Taking conservative systematic uncertainties corresponding to a normalization error of \(5\%\) fo...
The ENUBET ERC project, also included in the CERN Neutrino Platform as NP06/ENUBET, is developing a new neutrino beam based on conventional techniques in which the flux and the flavor composition are known with unprecedented precision ( O (1%)). Such a goal is accomplished monitoring the associated charged leptons produced in the decay region of th...
The OPERA experiment was designed to discover the vτ appearance in a vμ beam, due to neutrino oscillations. The detector, located in the underground Gran Sasso Laboratory, consisted of a nuclear photographic emulsion/lead target with a mass of about 1.25 kt, complemented by electronic detectors. It was exposed from 2008 to 2012 to the CNGS beam: an...
In our recent work we have investigated generation of additional degrees of freedom (DOF) in laser locked high Q Fabry–Perot (FP) cavity using both single and double pass experimental setup. In our dichroic cavity setup we showed that beside widely used polarization DOF’s, it is possible to change frequency of the beam using AOM, and observe them r...
In this paper, we present the physics performance of the ESSnuSB experiment in the standard three flavor scenario using the updated neutrino flux calculated specifically for the ESSnuSB configuration and updated migration matrices for the far detector. Taking conservative systematic uncertainties corresponding to a normalization error of $5\%$ for...
For globally connected devices like smart phones, personal computers and Internet-of-things devices, the ability to generate random numbers is essential for execution of cryptographic protocols responsible for information security. Generally, a random number generator should be small, robust, utilize as few hardware and energy resources as possible...
The global interest in quantum networks stems from the security guaranteed by the laws of physics. Deploying quantum networks means facing the challenges of scaling up the physical hardware and, more importantly, of scaling up all other network layers and optimally utilising network resources. Here we consider two related protocols, their experimen...
Quantum networks have been limited to QKD. Here we present an 8 user quantum network running 5 different anonymity protocols, digital signatures, authentication transfer (sharing initial authentication keys) and flooding (optimally utilization of resources).
The knowledge of the initial flux, energy and flavor of current neutrino beams is the main limitation for a precise measurement of neutrino cross-sections. The ENUBET ERC project is studying a facility based on a narrow-band neutrino beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged lept...
Anonymity in networked communication is vital for many privacy-preserving tasks. Secure key distribution alone is insufficient for high-security communications, often knowing who transmits a message to whom and when must also be kept hidden from an adversary. Here we experimentally demonstrate 5 information-theoretically secure anonymity protocols...
Quantum communication is rapidly gaining popularity due to its high security and technological maturity. However, most implementations are limited to just two communicating parties (users). Quantum communication networks aim to connect a multitude of users. Here, we present a fully connected quantum communication network on a city-wide scale withou...
A prototype for the instrumented decay tunnel of ENUBET was tested in 2018 at the CERN East Area facility with charged particles up to 5 GeV . This detector is a longitudinal sampling calorimeter with lateral scintillation light readout. The calorimeter was equipped by an additional “ t 0 -layer” for timing and photon discrimination. The performanc...
An event topology with two secondary vertices compatible with the decay of short-lived particles was found in the analysis of neutrino interactions in the OPERA target. The observed topology is compatible with tau neutrino charged current (CC) interactions with charm production and neutrino neutral current (NC) interactions with \(c\overline{c}\) p...
The goal of the ENUBET project is to demonstrate that a precision of ∼1% on measurement of the absolute neutrino cross section at GeV scale can be achieved by monitoring the positron production in the decay tunnel coming from the three-body semileptonic decays of kaons. The baseline option for the tunnel instrumentation employs a fine-grained shash...
A prototype for the instrumented decay tunnel of ENUBET was tested in 2018 at the CERN East Area facility with charged particles up to 5 GeV. This detector is a longitudinal sampling calorimeter with lateral scintillation light readout. The calorimeter was equipped by an additional "$t_0$-layer" for timing and photon discrimination. The performance...