
Availability Analysis of IP Multimedia Subsystem
in Cloud Environments

Mario Di Mauro, Giovanni Galatro, Maurizio Longo, Fabio Postiglione
Dept. of Information and Elect. Eng. and Applied Maths (DIEM)

University of Salerno (Italy)
{mdimauro,longo,fpostiglione}@unisa.it, galatrogiovanni@gmail.com

Marco Tambasco
Research Consortium on Telecommunications

CoRiTeL, Fisciano (SA), Italy
marco.tambasco@coritel.it

Abstract—As of today, telecommunication providers are ex-
ploiting the possibilities offered by the cloud paradigm to
efficiently decouple physical network resources, like hardware
equipment, optical interfaces and cables, from offered services,
for instance multimedia content delivery and data storage.
Among technologies conceived to implement this paradigm, con-
tainerization stands out. It can be considered as an evolution of
classic virtualization, where software instances called containers
are designed to offer specific network functionalities by relying
on a separate infrastructure composed of virtual machines and
hardware. In line with this new trend, we characterize, from
an availability viewpoint, an IP Multimedia Subsystem (IMS)
architecture deployed in a containerized environment (dubbed
cIMS), which represents a pivotal part of novel network archi-
tectures such as 5G. Firstly, we model the availability of cIMS
by employing both Reliability Block Diagram (RBD), to capture
logical dependencies among cIMS nodes, and Stochastic Reward
Networks (SRN), to characterize individually the probabilistic
behavior of each node. Then, also supported by an ad-hoc
automated procedure, we carry out an experimental assessment
of a typical telecommunication network service satisfying a
desired availability constraint, whose results are some feasible
cIMS configurations that can be deployed.

Index Terms—IP Multimedia Subsystem, Containers, Avail-
ability Analysis, Stochastic Reward Nets, Redundancy Optimiza-
tion.

I. INTRODUCTION AND RELATED WORK

Cloud concepts are conquering the telecommunication
world since they promise appealing advantages such as flex-
ibility and adaptability in deploying network infrastructures,
ease in systems management, significant cost saving. Tech-
niques such as virtualization and containerization provide
the grounds to deploy cloud-based networks. The latter, in
particular, is based on the concept of container, a lightweight
software instance [1] that can embed a specific network func-
tionality to provide (e.g. routing, firewalling, switching, etc.).
In this way, service layer (implemented via containers) and
physical layer (realized through virtual machines and shared
hardware) are decoupled so to guarantee a quick time-to-
market. Among network architectures which benefit from this
approach there is IP Multimedia Subsystem (IMS), designed
to handle multimedia content across new generation networks.
Starting from availability concepts applied also in other con-
texts ([2], [3], [4]), we consider a containerized version of IMS
(called cIMS) which we characterize in terms of availability.
Precisely, we present a two-layer hierarchical model where:

the upper layer, descriptive of logical interconnections among
cIMS subsystems, benefits from Reliability Block Diagram
(RBD) representation, whereas the lower layer, capturing the
stochastic behavior of single cIMS subsystems that undergo
failure and repair events, benefits from Stochastic Reward
Networks (SRN) methodology.

We describe an experimental evaluation (with the support
of a designed-from-scratch routine and of a cIMS testbed
deployed in lab) designed to pinpoint a set of cIMS config-
urations satisfying specific availability criteria such as “four
nines” (maximum tolerated cIMS downtime of 26 minutes and
30 seconds per year) or “five nines” (maximum tolerated cIMS
downtime of 5 minutes and 26 seconds per year).

In the last years, an increasing interest on the availability
and reliability issues of novel network infrastructures is no-
ticed. In [5] an availability assessment of cloud-based LTE
(Long Term Evolution) nodes is proposed, by relying on
Stochastic Activity Networks formalism. In [6], Stochastic
Petri Networks are exploited to characterize redundancy in
virtualized settings; the same formalism is adopted in [7] to
characterize availability of a cloud environment which realizes
a Disaster-Recovery-as-a-Service framework. The problem of
minimum virtual elements to deploy in order to avoid failures
in virtualized environments is faced in [8], while [9] and [10]
identify the optimal distribution of virtualized functions to
minimize failure events. Other works are aimed at designing
frameworks to deal with the availability issues: it is the case of
[11], proposing a restoration method for Openstack, a cloud-
based operating system, or [12], presenting a platform for fault
management of virtualized environments.

In our work, branching from some recent contributes such
as [13], [14], [15], we offer an availability characterization of
a cIMS, considered the state-of-the-art in terms of network
softwarization.

The paper adheres to the following organization. In Section
II we detail the functionalities of the IMS architecture de-
ployed in a containerized environment; Section III introduces
the availability model of cIMS along with details about RBD
and SRN formalisms; in Section IV, we propose an availabil-
ity assessment by comparing some cIMS configurations (or
settings) which differ in terms of availability outcomes and
deployment costs. Finally, Section V summarizes the results
and envisages some hints for future analyses.



II. IMS IN CLOUD: THE CASE OF CONTAINERIZED
ENVIRONMENT

IP Multimedia Subsystem [16] is undoubtedly a crucial
part in the scenario of novel network deployments, including
5G. It has been introduced to handle multimedia sessions
(e.g. HD Voice/Video) by means of SIP protocol and some
specific nodes such as i) Proxy CSCF (P-CSCF) providing
SIP proxy functionalities, ii) Serving CSCF (S-CSCF) devoted
at handling crucial functions such as session management
and control, iii) Interrogating CSCF (I-CSCF) responsible to
forward SIP requests/responses across the IMS domain, iv)
Home Subscriber Server (HSS) in charge of managing users
profiles by means of a set of databases (possibly distributed).

IMS well fits to be deployed in cloud environments involv-
ing virtualization or containerization paradigms, granting the
possibility to “softwarize” network nodes. Precisely, the latter
paradigm offers a winning solution with respect to the one
provided by virtual machines, due to the more flexible and
cost-saving deployment without sacrificing performance.

It is useful to remark some differences between virtual-
ization and containerization paradigms. Actually, the final
purpose of both is the softwarization of services, namely, the
abstraction at a software level of network functionalities pro-
vided by hardware nodes (e.g. routers, switches, firewalls, etc).
Such an abstraction is realized through an interface between
hardware equipment and software layer called hypervisor.
In case of virtualization, hypervisor hosts virtual machines
each one equipped with its own operating system. In case
of containerization (a.k.a. lightweight virtualization), software
entities called containers do not need an operating system since
they are managed by a container manager (Docker is the most
popular and used example), thus, the softwarization process
is more comfortable and easy. By contrast, if not designed
well, container architectures might suffer from the lack of a
fully isolated environment which makes them less secure than
virtualized infrastructures.

We consider a containerized deployment of an IMS frame-
work (cIMS) where, for each node, we distinguish two layers:
the Containerized Network Function (CNF) layer which em-
bodies a logical abstraction of a specific IMS functionality
(e.g. I-CSCF, HSS, etc.); the Containerized Network Replica
(CNR) layer which represents a physical deployment of a CNF.
Figure 1 clarifies the mapping between these two layers; it also
shows that CNFs can be implemented by means of more than
one CNR.

The forthcoming availability characterization assumes a
five-level structure of a CNR including (from the bottom to
the top):

• an infrastructure level (HW) which comprises hardware
supplies such as CPU, RAM, etc.

• a hypervisor (HPV) level providing a separation interface
between hardware (upper) and software-based (lower)
levels;

• a virtual machine (VM) level hosting the containerized
environment (Docker in our case);

!"#$%&'()

!"*$%&'()

!

!"#$#%
&"#$#% '$$

$"#$#%

#()*+

#()*,

#()*!
! !

! !

$ $

'-

'-

'-

'!.

./

0#1

'!.

./

0#1

'!.

./

0#1

!

$

#()*2

' '

'-

'!.

./

0#1

'

#()*3

& &

'-

'!.

./

0#1

&

Fig. 1: Two-layer model: CNF (logical abstraction) and CRN
(physical deployment).

!"#$#% &"#$#% '$$ $"#$#%

Fig. 2: Reliability Block Diagram characterizing logical
interconnections among (containerized) IMS nodes.

• a Docker level (DCK) which provides a runtime environ-
ment to manage containers;

• a Container (CNT) level concentrating the specific soft-
ware functionality (Proxy, Serving, HSS).

According to such representation, redundancy can be ob-
tained in two ways: at CNT level, by increasing the number
of containers (up to a load threshold) on top of a CNR, and
at CNR level by replicating the whole CNR structure.

III. AVAILABILITY CHARACTERIZATION

Our aim is to determine the steady-state availability A of
the cIMS, namely the fraction of time wherein the system is
fully working. By virtue of ergodicity, it can be expressed as

A = lim
t→+∞

A(t), (1)

where A(t) is the so called instantaneous availability, namely
the probability that system is working at time t. In turn, A(t)
is usually expressed in terms of another random process Z(t),
called reward function, having the following meaning: Z(t) =
1 if the system is working (“up” condition) at time t, and
Z(t) = 0 if it is not working (“down” condition) at time t, so
that:

A(t) = Pr{Z(t) = 1} = E[Z(t)]. (2)

Our availability analysis relies on a hierarchical decompo-
sition based on two complementary system models: i) RBD to
model the IMS service logic by cIMS nodes that interwork;
ii) SRN to characterize single CNRs availability, by modeling
all its layers and their interactions.

The SRN model representative of a single CNR is depicted
in Fig. 3, where the following graphical elements are present:
• Places: drawn by circles, denote a system working con-

dition (e.g. a layer up or down), where, inside each place,
one or more tokens (indicated by numbers or symbols)
denote an holding condition. In Fig. 3 one can recog-
nize the following places: PupCNT [PdnCNT ], PupDCK



[PdnDCK], PupVM [PdnVM ], PupHPV [PdnHPV ], and
PupHW [PdnHW ] which accounts for the working [fail-
ure] conditions of container, docker, virtual machine,
hypervisor, and hardware, respectively.

• Timed Transitions: drawn by unfilled and thick rectangles,
are representative of actions that might occur, such as
failures and consequent repairs, and are characterized
by exponentially distributed times1. In Fig. 3 it is also
possible to pinpoint the following transitions: TfCNT

[TrCNT ], TfDCK [TrDCK], TfVM [TrVM ], TfHPV

[TrHPV ], and TfHW [TrHW ] which take into account
failure [repair] actions involving containers, docker, vir-
tual machine, hypervisor, and hardware, respectively.

• Immediate Transitions: drawn by filled and thin rect-
angles, denote actions occurring in a (nearly) zero-
length time interval. In Fig. 3, the following immediate
transitions are recognizable: tCNT , tDCK , tVM , and
tHPV , which account for instantaneous events pertaining
to container, docker, virtual machine, hypervisor levels,
respectively.

When analyzing the dynamics of an SRN, a failure/repair
event results in firing a timed transition with the consequence
that a token is moved from its source place to the destination
place. It is worth noting that, in our case, the only place
containing more than one token is the CNT level, due to the
fact that more containers can be hosted on a single CNR.

Letting S be the set of markings, namely distributions of
tokens in the given SRN, E[Z(t)], and hence A(t), can be
expressed as

E[Z(t)] =
∑
i∈S

ri(t) · pi(t), (3)

where, ri(t) is the reward rate associated to marking i, that is
equal to 1 if marking corresponds to an up condition at time
t and 0 otherwise, whereas pi(t) is the occurrence probability
of marking i at time t (see [17] for further discussion). Finally,

A = lim
t→+∞

E[Z(t)] =
∑
i∈S

ri · pi, (4)

where ri = limt→+∞ ri(t) is the steady-state reward rate, and
pi = limt→+∞ pi(t) is the steady-state probability of marking
i.

Let us now virtually follow the evolution of SRN depicted
in Fig. 3. Supposing a single container failure (caused, for
example, by an unpredictable container reboot) transition
TfCNT is fired and one token in PupCNT moves to PdnCNT .
As a consequence, nk − 1 tokens lie in PupCNT , where nk
is the initial number of tokes in PupCNT . By contrast, once
the container is rebooted, TrCNT is fired and the token comes
back to place PupCNT , and the counter of tokens is increased
by 1. If we consider a docker level failure, once TfDCK

is fired, the (only one) available token is transferred from
PupDCK to PdnDCK . Now, due to the DCK level failure, no

1This represents a well accepted assumption when dealing with availability
assessments of network deployments - see [7], [23], [24].

! "!"#$%

"&'#$%

#!"#
$(#$% $)#$%

!"#$

%&'&(

! "!"*+

!

"!",-*

$($./
%

%

!! "!"$./

"&'$./

#"$%

$)$./

"&',-*

"!",0

"&',0

$(,-* $),-*

$),0

#&'(

!

"&'*+

#()
$(*+ $)*+

$(,0

)*$

%&'&(

+,)$

%&'&(

+-$

%&'&(

"./$

%&'&(

Fig. 3: CNR modeled in terms of an SRN.

container would be active, thus, an inhibitory arc (depicted
as a little segment between PupDCK and tCNT with a little
circle at the far end) drives tCNT to be fired. As docker level
gets repaired, TrDCK is fired, thus: i) the token comes back
from PdnDCK to PupDCK , and ii) the inhibitory arc between
PdnDCK and TrCNT is deactivated, so that nk tokens can be
moved again from PdnCNT to PupCNT . Similar considerations
hold when describing failure/repair events occurring at the
remaining levels.

It is useful to introduce:
• demand W : required system performance, in terms of

simultaneous IMS sessions to manage;
• capacity cj : maximum number of simultaneous IMS

sessions to be handled by a single container on CNF j.
A generic node is working at time t when the number of

manageable IMS sessions cj ·
∑k

h=1 #P
(h)
upCNT (t) is greater

than demand W , where h represents the number of CNRs
(ranging from 1 CNR per node to k CNRs per node), whereas
“#” denotes the number of tokens.

By denoting the normalized performance level as γj =
W/cj , one can express the reward rate of node j in marking
i at time t as

rij(t) =

 1 if
∑k

h=1 #P
(h)
upCNT (t) ≥ γj ,

0 otherwise.
(5)

Through an obvious adaptation of (4), the steady-state avail-
ability of CNF j can be calculated as:

Aj =
∑
i∈S

rij · pij . (6)

Finally, it is possible to derive the steady-state availability
of the whole cIMS system, viz.

AcIMS =

L∏
j=1

Aj , (7)



where L is number of subsytems to be connected to offer the
given cIMS service. The product in (7) is a consequence of the
series structure of cIMS system described by the RBD scheme
in Fig. 2 (with L = 4), since the node chain works when each
node works.

IV. AVAILABILITY ASSESSMENT

The following assessment is aimed at identifying the cIMS
configurations satisfying required availability constraints, and
benefits from the interaction with TimeNET [18], a tool
designed to build SRN models that we automatically recall by
means of a designed-from-scratch routine written in Python.

Before going forward, it is useful to clarify the concept
of CNR “cost” that we use across such analysis. As often
occurs for layered services offered by top-players such as
Amazon AWS and Microsoft Azure, we assign to a CNR a cost
composed of the following (dimensionless and customizable)
contributions all amounting to 1: i) cost per container; ii)
cost per docker/VM; iii) cost per hardware/hypervisor. Our
approach can be immediately extended to cope with different
costs, according to specific needs.

A. The experimental Testbed

In our analysis, we refer to a fixed performance demand
W = 3000 and c = 1000 by assuming cj = c. Such
a hypothesis is supported by load tests carried out through
Clearwater platform [19], a containerized deployment of IMS.
More precisely, on a laptop based on an Intel Core CPU
i7−3630QM@2.40GHz and with a RAM of 8 GB, we deploy
two virtual machines (1 virtual Core and 2 GB of RAM per
VM): the first one serves as a containerized deployment of
the whole cIMS architecture including P-CSCF (Bono), S/I-
CSCF (Sprout), and HSS (Homestead). The second VM is
a stress node that embeds some routines useful to perform
a load stress against the containerized platform. The test
scenario envisages 1000 IMS sessions with a BHCA (Busy
Hour Call Attempts) equal to 2.6 per user (in line with values
provided for VoLTE - see [20]), and where the resulting
average call setup delay is 80 msec. Such a value is reasonable
by considering that the architecture is deployed on the same
node, thus, interconnection delays are negligible.

B. Numerical Analysis

The presented numerical analysis relies on the assumption
that CSCF nodes are equally treated. The only exception is the
HSS node that, hosting a database of customers, is considered
the most crucial element. To take into account such a level of
criticality, we admit slightly different values for γCSCF and
γHSS , namely γCSCF = γ =W/c = 3, and γHSS = γ+1 =
4. In short, it means that we are considering an extra CNR for
the HSS representation, recalling classic hot/standby database
configurations. As regards mean-time-to-failure (MTTF) and
mean-time-to-repair (MTTR) parameters of some container-
based structures, we refer to the only (at now) available dataset
released by Google already processed by [21]. For remaining

TABLE I: Parameters values.

Parameter Description Value
1/λCNT mean time for container failure 500 hours
1/λDCK mean time for docker daemon failure 1000 hours
1/λV M mean time for virtual machine failure 2880 hours
1/λHPV mean time for hypervisor failure 2880 hours
1/λHW mean time for hardware failure 60000 hours
1/µCNT mean time for container repair 2 secs
1/µDCK mean time for docker daemon repair 5 secs
1/µV M mean time for virtual machine repair 1 hours
1/µHPV mean time for hypervisor repair 2 hours
1/µHW mean time for hardware repair 8 hours
W performance demand 3000
c performance capacity 1000 IMS sessions
A0 steady-state availability requirement 0.9999 / 0.99999

Fig. 4: Steady-state unavailability analysis considering (S1,
. . . ,S4) settings satisfying “four nines” requirement,

and (S5, . . . ,S8) settings satisfying “five nines”.

parameters, we refer to classic technical literature (see e.g.
[22]) with values reported in Table I.

The proposed analysis exploits a procedure allowing to: i)
automatically build SRN/RBD models for the availability char-
acterization of cIMS, ii) extract a selection of settings (namely,
feasible cIMS configurations) satisfying availability conditions
(e.g. AcIMS = 0.9999 (“four nines”)) or AcIMS = 0.99999
(“five nines”)) along with indication of costs E (expenditure).

In Fig. 4 we report the unavailability (1 − AcIMS) results
for 8 exemplary settings. Precisely, settings (S1, . . . ,S4), in
light blue, are chosen among ones satisfying the “four nines”
requirement, whereas settings (S5, . . . ,S8), in orange, are
selected among ones satisfying “five nines”. The horizontal
dashed line at 10−5 delimits the separation between the two
classes of settings. Inside the bar graph we include a table,
where, the first column indicates the number of setting, and
the remaining columns indicate how many containers/CNRs
are deployed. For instance, in case of S1 the second column
indicates that 5 P-CSCF containers are deployed across 3
CNRs (5/3). Inside each bar we also report the cost (E)
associated with each setting. According to the costs assignment
criterion explained at the beginning of Sect. IV , the total cost
for setting e.g. S1 can be built as follows:
• EP (cost for P-CSCF) = 1 · 5 (CNT) +1 · 3 (DCK+VM)



+1 · 3 (HPV+HW)= 11;
• ES (cost for S-CSCF) = 1 · 6 (CNT) +1 · 2 (DCK+VM)

+1 · 2 (HPV+HW)= 10;
• EI (cost for I-CSCF) = 1 · 5 (CNT) +1 · 3 (DCK+VM)

+1 · 3 (HPV+HW)= 11;
• EH (cost for HSS) = 1 · 6 (CNT) +1 · 3 (DCK+VM)

+1 · 3 (HPV+HW)= 12.
Consequently, the final cost for setting S1 amounts to: E =
EP + ES + EI + EH = 44.

Some interesting considerations can be made about the
obtained results. Usually, higher costs reflect more redundant
settings that, in turn, correspond to configurations of higher
availability. This general rule can be violated by choosing
different distributions of containers and CNRs. In fact, let
us compare S4 and S5. The former allows to satisfy the
“four nines” at a cost of 48, whereas, the latter guarantees
“five nines” condition at the lower cost of (42). This is due
to an unfavourable container/CNR distribution for S4, since
more CNRs are used for P-CSCF and for S-CSCF nodes
w.r.t. the same nodes in S5. In fact, as a CNR embodies
two cost contributions ((DCK+VM) and (HPV+HW)), this
explains the cost differences between S4 and S5. For the same
reason, some settings can exhibit different availability values
being costs the same. It is the case of S7 and S8 settings,
where AcIMS = 0.99999007 and AcIMS = 0.99999251,
respectively. Obviously, a designer would choose the latter
setting since it is more robust to failures (higher availability).

V. CONCLUSIONS

Among cloud-based enabling technologies, containers rep-
resent the state-of-the-art, since, unlike usual virtual machines,
they do not need an operating system to work, being directly
hosted on virtualized environments. In particular, containers
can embody network functionalities which a telecom provider
can tune and manage in a very ductile way. A framework
such as the IP Multimedia Subsystem (IMS), born to handle
advanced services (e.g. HD Voice/Video) across 5G arrange-
ments, is well suited to be deployed in containerized environ-
ments (cIMS). We have provided an availability assessment of
a cIMS that passes through two steps. The first one is aimed at
modeling a cIMS infrastructure by considering two techniques:
Reliability Block Diagram (RBD) and Stochastic Reward Nets
(SRN), helpful to capture macroscopic interconnections among
nodes and stochastic behaviors, respectively. The second step
has consisted in carrying out an experimental evaluation with
the aim of selecting a subset of cIMS configurations (or
settings) satisfying availability criteria such as “four nines”
or “five nines”. This latter step has exploited a Python-
based procedure, realized to automate the process of building
and selecting feasible settings, and a realistic testbed helpful
to validate some assumptions on cIMS load. In the future,
such work can be extended to characterize more sophisticated
scenarios, coping, for instance, with the presence of time-
varying load constraints, or with multi-tenant deployments in
which several providers share a single cIMS node, as it occurs
in modern slice-based networks.

REFERENCES

[1] Y. Zhang. Network Function Virtualization:Concepts and Applicability
in 5G Networks. Wiley-IEEE Press, Inc., 1st ed., 2018.

[2] M.A. Mellal, E. Zio. Availability Optimization of Parallel-Series System
by Evolutionary Computation. In 2018 IEEE International Conference
on System Reliability and Safety (ICSRS), pages 198–202, 2018.

[3] S. Du, E. Zio, R. Kang, “A New Analytical Approach for Interval
Availability Analysis of Markov Repairable Systems,” IEEE Trans. Rel.,
vol. 67, no. 1, pp. 118–128, 2017.

[4] W. Wang, F. Di Maio, E. Zio, “Adversarial Risk Analysis to Allocate
Optimal Defense Resources for Protecting Cyber-Physical Systems from
Cyber Attacks,” Risk analysis : an official publication of the Society for
Risk Analysis, DOI:10.1111/risa.13382, 2019.

[5] A. Gonzalez, P. Gronsund, K. Mahmood, B. Helvik, P. Heegaard, and
G. Nencioni. Service availability in the NFV virtualized evolved packet
core. In 2015 IEEE GLOBECOM, pages 1–6, 2015.

[6] S. Fernandes, E. Tavares, M. Santos, V. Lira, and P. Maciel. Depend-
ability assessment of virtualized networks. In Proc. IEEE ICC 2012,
pages 2711–2716, 2012.

[7] E. Andrade, B. Nogueira, R. Matos, G. Callou, and P. Maciel, “Availabil-
ity modeling and analysis of a disaster-recovery-as-a-service solution,”
Computing, vol. 99, no. 10, pp. 929–954, 2017.

[8] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliability
evaluation for NFV deployment of future mobile broadband networks,”
IEEE Wireless Commun., vol. 23, no. 3, pp. 90–96, 2016.

[9] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping of
service function chains,” in IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, pp. 1–9, 2017.

[10] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T. Ikeuchi,
and J. P. Jue, “Guaranteed-availability Network Function Virtualization
with Network Protection and VNF replication,” in GLOBECOM 2017 -
2017 IEEE Global Communications Conference, pp. 1–6, 2017.

[11] Y. Yamato, Y. Nishizawa, S. Nagao, and K. Sato. Fast and reliable
restoration method of virtual resources on OpenStack. IEEE Transac-
tions on Cloud Computing (In Press), 6(2):572–583, 2015.

[12] H. B. Lee, S. I. Kim, and H. S. Kim. A fault management system
for NFV. In 2018 International Conference on Information Networking
(ICOIN), pages 640–645, 2018.

[13] M. Di Mauro, M. Longo, and F. Postiglione, “Availability Evaluation
of Multi-tenant Service Function Chaining Infrastructures by Multidi-
mensional Universal Generating Function,” IEEE Trans. Serv. Comput.,
DOI: 10.1109/TSC.2018.2885748, 2018.

[14] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tambasco,
“Availability evaluation of a virtualized IP multimedia subsystem for 5G
network architectures”, in ESREL 2017, (Portorose, Slovenia, pp. 2203–
2210, Jun. 2017).

[15] M. Di Mauro, G. Galatro, M. Longo, F. Postiglione, and M. Tambasco,
“Availability modeling of a virtualized IP multimedia subsystem using
non-Markovian stochastic reward nets”, in ESREL 2018, (Trondheim,
Norway, pp. 2427–2435, Jun. 2018).

[16] G. Camarillo, and M.A. Garcia-Martin The 3G IP Multimedia Subsys-
tem. New York, John Wiley and Sons, Inc., 3rd ed., 2008.

[17] J.K. Muppala, G. Ciardo, and K.S. Trivedi, “Stochastic Reward Nets for
Reliability Prediction,” in Communications in Reliability, Maintainabil-
ity and Serviceability, pp. 9–20, 1994.

[18] R. German, C. Kelling, A. Zimmermann, and G. Hommel, “TimeNET: a
toolkit for evaluating non-Markovian stochastic Petri nets,” Performance
Evaluation, vol. 24, no. 1-2, pp. 69–87, 1995.

[19] The Clearwater Project. Available: http://www.projectclearwater.org.
[20] Tonse Telecom, “The LTE Data Storm in the Core of Your Network”,

White Paper, Jan. 2013.
[21] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analysis

approach for deployment configurations of containers,” IEEE Trans.
Serv. Comput., vol. PP, no. 99, pp. 1–1, 2018.

[22] R. Matos, P. Maciel, F. Machida, D. S. Kim, K.S. Trivedi, “Sensitivity
analysis of server virtualized system availability,” IEEE Trans. Rel.,
vol. 4, no. 61, pp. 994–1006, 2012.

[23] D. Bruneo, “A Stochastic Model to Investigate Data Center Performance
and QoS in IaaS Cloud Computing Systems ,” IEEE Trans. Parallel
Distrib. Syst, vol. 25, no. 3, pp. 560–569, 2014.

[24] G. Nencioni, B. E. Helvik, P. E. Heegaard, “Including Failure Correlation
in Availability Modeling of a Software-Defined Backbone Network,”

IEEE Trans. Netw. Serv. Man., vol. 14, no. 4, pp. 1032–1045, 2017.


