Marina Papadopoulou

Marina Papadopoulou
Swansea University | SWAN · Department of Biosciences

PhD

About

9
Publications
2,591
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
84
Citations
Introduction
Marina Papadopoulou is a computational biologist with expertise in animal collective behavior. She currently works as a postdoctoral researcher leading the 2G-SWARM project ('Animals are not particles: a framework for second generation hetero-swarm robotics'). She has a PhD on self-organization for which she developed agent-based models to study the collective escape of bird flocks. Her research interests are in animal behavior, theoretical biology, collective intelligence and complex systems.

Publications

Publications (9)
Article
Full-text available
Moving in groups offers animals protection against predation. When under attack, grouped individuals often turn collectively to evade a predator, which sometimes makes them rapidly change their relative positions in the group. In bird flocks in particular, the quick reshuffling of flock members confuses the predator, challenging its targeting of a...
Article
Full-text available
Most studies of collective animal behaviour rely on short-term observations, and comparisons of collective behaviour across different species and contexts are rare. We therefore have a limited understanding of intra- and interspecific variation in collective behaviour over time, which is crucial if we are to understand the ecological and evolutiona...
Article
Full-text available
A single sheepdog can bring together and manoeuvre hundreds of sheep from one location to another. Engineers and ecologists are fascinated by this sheepdog herding because of the potential it provides for ‘bio‐herding’: a biologically inspired herding of animal groups by robots. Although many herding algorithms have been proposed, most are studied...
Article
Full-text available
Complex patterns of collective behaviour may emerge through self-organization, from local interactions among individuals in a group. To understand what behavioural rules underlie these patterns, computational models are often necessary. These rules have not yet been systematically studied for bird flocks under predation. Here, we study airborne flo...
Article
Full-text available
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our kno...
Preprint
Full-text available
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from simple interactions among group-members. Computational models have been shown to be valuable for identifying the behavioral rules that may govern these interactions among individuals during collective motion. However, o...
Article
Full-text available
Sometimes the normal course of events is disrupted by a particularly swift and profound change. Historians have often referred to such changes as “revolutions”, and, though they have identified many of them, they have rarely supported their claims with statistical evidence. Here, we present a method to identify revolutions based on a measure of mul...
Article
Full-text available
Conservation biology was founded on the idea that efforts to save nature depend on a scientific understanding of how it works. It sought to apply ecological principles to conservation problems. We investigated whether the relationship between these fields has changed over time through machine reading the full texts of 32,000 research articles publi...

Network

Cited By