Marina DacalFreie Universität Berlin | FUB · Department of Biology, Chemistry, and Pharmacy
Marina Dacal
Doctor of Philosophy
About
14
Publications
8,341
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
691
Citations
Introduction
Publications
Publications (14)
Ongoing global warming is expected to augment soil respiration by increasing microbial activity, driving self-reinforcing feedback to climate change. However, the compensatory thermal adaptation of soil microorganisms and substrate depletion may weaken the effects of rising temperature on soil respiration. To test this hypothesis, we collected soil...
Soil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Her...
Soil carbon losses to the atmosphere, via soil heterotrophic respiration, are expected to increase in response to global warming, resulting in a positive carbon-climate feedback. Despite the well-known suite of abiotic and biotic factors controlling soil respiration, much less is known about how the magnitude of soil respiration responses to temper...
Soil microbial communities largely determine the ability of soils to provide multiple functions simultaneously (i.e. soil multifunctionality; multifunctionality hereafter). However, a major research challenge is understanding how soil microbial communities and associated multifunctionality resist and recover from extreme climate events such as drou...
Anthropogenic warming is expected to accelerate global soil organic carbon (SOC) losses via microbial decomposition, yet, there is still no consensus on the loss magnitude. In this Perspective, we argue that, despite the mechanistic uncertainty underlying these losses, there is confidence that a strong, positive land carbon–climate feedback can be...
Significance
Identifying species assemblages that boost the provision of multiple ecosystem functions simultaneously (multifunctionality) is crucial to undertake effective restoration actions aiming at simultaneously promoting biodiversity and high multifunctionality in a changing world. By disentangling the effect of multiple traits on multifuncti...
Soil carbon losses to the atmosphere, via soil heterotrophic respiration, are expected to increase in response to global warming, resulting in a positive carbon-climate feedback. Despite the well-known suite of abiotic and biotic factors controlling soil respiration, much less is known about how the magnitude of soil respiration responses to temper...
Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for...
Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and of...
The degree to which climate warming will stimulate soil organic carbon (SOC) losses via heterotrophic respiration remains uncertain, in part because different or even opposite microbial physiology and temperature relationships have been proposed in SOC models. We incorporated competing microbial carbon use efficiency (CUE)−mean annual temperature (...
Heterotrophic soil microbial respiration—one of the main processes of carbon loss from the soil to the atmosphere—is sensitive to temperature in the short term. However, how this sensitivity is affected by long-term thermal regimes is uncertain. There is an expectation that soil microbial respiration rates adapt to the ambient thermal regime, but w...
A positive soil carbon (C)−climate feedback is embedded into the climatic models of the IPCC. However, recent global syntheses indicate that the temperature sensitivity of soil respiration (RS) in drylands, the largest biome on Earth, is actually lower in warmed than in control plots. Consequently, soil C losses with future warming are expected to...
Extracellular enzymes catalyze rate‐limiting steps in soil organic matter decomposition, and their activities (EEAs) play a key role in determining soil respiration (SR). Both EEAs and SR are highly sensitive to temperature, but their responses to climate warming remain poorly understood. Here, we present a meta‐analysis on the response of soil cel...