• Home
  • ETH Zurich
  • Department of Environmental Systems Science
  • Marijn Van de Broek
Marijn Van de Broek

Marijn Van de Broek
ETH Zurich | ETH Zürich · Department of Environmental Systems Science

Doctor of Science in Geography

About

40
Publications
18,171
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
621
Citations
Additional affiliations
May 2018 - present
ETH Zurich
Position
  • PostDoc Position
Description
  • Biogeochemical modelling
May 2014 - April 2018
KU Leuven
Position
  • PhD Student
Description
  • Long-term dynamics of organic carbon and silica in environments of natural sediment accumulation
May 2013 - May 2014
KU Leuven
Position
  • Researcher
Description
  • Development of an integrated erosion model for the Flanders region
Education
September 2007 - July 2012
KU Leuven
Field of study
  • Geography

Publications

Publications (40)
Article
Full-text available
Understanding factors influencing carbon effluxes from soils to the atmosphere is important in a world experiencing climatic change. Two important uncertainties related to soil organic carbon (SOC) stock responses to a changing climate are (a) whether soil microbial communities acclimate or adapt to changes in soil temperature and (b) how to repres...
Article
Full-text available
Tidal marshes are threatened coastal ecosystems known for their capacity to store large amounts of carbon in their water-logged soils. Accurate quantification and mapping of global tidal marshes soil organic carbon (SOC) stocks is of considerable value to conservation efforts. Here, we used training data from 3710 unique locations, landscape-level...
Preprint
Full-text available
In arable soils, a substantial portion of soil organic carbon (SOC) is stored below the plough layer. To develop sustainable soil management strategies, it is important to assess how they affect the quantity of SOC stored in the subsoil. Therefore, we investigated the impact of organic and inorganic nutrient inputs on SOC stocks down to 70 cm depth...
Article
Full-text available
Sustainable intensification schemes such as integrated soil fertility management (ISFM) are a proposed strategy to close yield gaps, increase soil fertility, and achieve food security in sub-Saharan Africa. Biogeochemical models such as DayCent can assess their potential at larger scales, but these models need to be calibrated to new environments a...
Preprint
Full-text available
Over the past years, microbially-driven models have been developed to improve simulations of soil organic carbon (SOC), and have been put forward as an improvement to assess of the fate of SOC stocks under environmental change. While these models do include a better mechanistic representation of SOC cycling in comparison to cascading reservoir-base...
Article
Full-text available
Predicting the quantity of soil organic carbon (SOC) requires understanding how different factors control the amount of SOC. Land use has a major influence on the function of the soil as a carbon sink, as shown by substantial organic carbon (OC) losses from the soil upon deforestation. However, predicting the degree to which land use change affects...
Preprint
Full-text available
Tidal marshes are threatened coastal ecosystems known for their capacity to store large amounts of carbon in their water-logged soils. Accurate quantification and mapping of global tidal marshes soil organic carbon (SOC) stocks is of considerable value to conservation efforts. Here, we used training data from 3,710 unique locations, landscape-level...
Article
Full-text available
The concept of soil organic carbon (SOC) saturation emerged a bit more than 2 decades ago as our mechanistic understanding of SOC stabilization increased. Recently, the further testing of the concept across a wide range of soil types and environments has led some people to challenge the fundamentals of soil C saturation. Here, we argue that, to tes...
Article
Full-text available
Maintaining soil organic matter (SOM) is crucial for healthy and productive agricultural soils and requires understanding at the process level, including the role of SOM protection by soil aggregates and the connection between microbial growth and aggregate formation. We developed the Soil Aggregation through Microbial Mediation (SAMM) model, to re...
Article
Full-text available
Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organ...
Preprint
Full-text available
The concept of soil organic carbon (SOC) saturation emerged a bit more than 2 decades ago as our mechanistic understanding of SOC stabilization increased. Recently, the further testing of the concept across a wide range of soil types and environments has led some people to challenge the fundamentals of soil C saturation. Here, we argue that to test...
Preprint
Full-text available
Predicting the quantity of soil organic carbon (SOC) requires understanding about how different factors control the amount of SOC. Land use has a major influence on the function of the soil as a carbon sink, as shown by substantial organic carbon (OC) losses from the soil upon deforestation. Yet, predicting the degree to which land use change affec...
Preprint
Full-text available
Sustainable intensification schemes that increase crop production and soil fertility, such as integrated soil fertility management (ISFM), are a proposed strategy to close yield gaps and achieve food security in sub-Saharan Africa while maintaining soil fertility. However, field trials are insufficient to estimate the potential impact of such techn...
Preprint
Full-text available
In light of the large role that soil organic matter (SOM) plays in maintaining healthy and productive agricultural soils, it is crucial to understand the processes of SOM protection including the role of soil aggregate protection. Yet, few numerical process models include aggregate formation and even fewer represent the important connection between...
Article
Full-text available
In sub-Saharan Africa, maize is one of the most important staple crops, but long-term maize cropping with low external inputs has been associated with the loss of soil fertility. While adding high-quality organic resources combined with mineral fertilizer has been proposed to counteract this fertility loss, the long-term effectiveness and interacti...
Article
Full-text available
Context Crop productivity in sub-Saharan Africa cannot be substantially improved without simultaneously addressing short-term crop nutrient demand and long-term soil fertility. Integrated soil fertility management tackles both by the combined application of mineral fertilizers and organic resource inputs but few studies examined its‘ long-term effe...
Preprint
Full-text available
In sub-Saharan Africa, long-term maize cropping with low external inputs has been associated with the loss of soil fertility. While adding high-quality organic resources combined with mineral fertilizer has been proposed to counteract this fertility loss, the long-term effectiveness and interactions with site properties still require more understan...
Chapter
This chapter focuses on the effects of biotic and abiotic factors controlling soil organic carbon dynamics at continental to global scales. On the side of natural effects, it highlights processes that can control carbon inputs, turnover and stabilization in soils. On the side of anthropogenic effects, the chapter focuses on the role of climate chan...
Article
Full-text available
Mangroves are widely recognised as key ecosystems for climate change mitigation as they capture and store significant amounts of sediment organic carbon (SOC). Yet, there is incomplete knowledge on how sources of SOC and their differential preservation vary between mangrove sites in relation to environmental gradients. To address this, sediment dep...
Article
Full-text available
Elevated phosphate (PO4) concentrations can harm the ecological status in water by eutrophication. In the majority of surface waters in lowland regions such as Flanders (Belgium), the local PO4 levels exceed the limits defined by environmental policy and fail to decrease, despite decreasing total phosphorus (P) emissions. In order to underpin the d...
Article
Full-text available
Take-Home Message: Climate warming is transforming the Arctic at an unprecedented rate with previously barren and sparsely vegetated landscapes undergoing “greening”. We postulate that the observed vegetation changes throughout the Arctic are not only tied to warming, but to changes in soil properties and their impacts on plants and soil microbia...
Preprint
Full-text available
Mangroves are widely recognised as key ecosystems for climate change mitigation as they capture and store significant amounts of sediment organic carbon (SOC). Yet, there is incomplete knowledge on how sources of SOC and their differential preservation vary between mangrove sites in relation to environmental gradients. To address this, sediment dep...
Preprint
Full-text available
Elevated phosphate (PO4) concentrations can harm the ecological status in water by eutrophication. In the majority of surface waters in lowland regions such as Flanders (Belgium), the local PO4 levels exceed the limits defined by environmental policy and fail to decrease, despite decreasing total phosphorus (P) emissions. In order to underpin the d...
Article
Full-text available
With increasing societal demands for food security and environmental sustainability on land, the question arises: to what extent do synergies and trade-offs exist between soil functions and how can they be measured across Europe? To address this challenge, we followed the functional land management approach and assessed five soil functions: primary...
Article
Full-text available
Over the past decades, average global wheat yields have increased by about 250 %, mainly due to the cultivation of high-yielding wheat cultivars. This selection process not only affected aboveground parts of plants, but in some cases also reduced root biomass, with potentially large consequences for the amount of organic carbon (OC) transferred to...
Preprint
Full-text available
Abstract. Over the past decades, average global wheat yields have increased by about 250 %, mainly due to the cultivation of high-yielding wheat cultivars. This selection process not only affected aboveground parts of plants, but in some cases also reduced the root biomass, with potentially large consequences for the amount of organic carbon (OC) t...
Article
Full-text available
Soils perform many functions that are vital to societies, among which their capability to regulate global climate has received much attention over the past decades. An assessment of the extent to which soils perform a specific function is not only important to appropriately value their current capacity, but also to make well-informed decisions abou...
Article
Full-text available
Agricultural decision support systems (DSSs) are mostly focused on increasing the supply of individual soil functions such as, e.g., primary productivity or nutrient cycling, while neglecting other important soil functions, such as, e.g., water purification and regulation, climate regulation and carbon sequestration, soil biodiversity, and habitat...
Article
Topography is one of the key factors controlling soil erosion and redistribution of pedogenic material along slope. Land cover change can have an accelerating or retarding impact on topographically-controlled soil erosion rates, depending on the type and intensity of land use and management. In this study, we investigated the combined effect of hil...
Article
Tidal marshes are coastal and estuarine ecosystems that store large amounts of sedimentary organic carbon (OC). Despite the valuable ecosystem services they deliver, tidal marshes have been converted to other land use types over the past centuries. Although previous studies have reported large decreases in soil organic carbon (SOC) stocks after tid...
Article
Tidal marshes are coastal ecosystems that store large amounts of sedimentary organic carbon (OC). Reducing the current uncertainty on the amount of OC stored these sediments requires the analysis of a large number of sediment samples. Soil sensing techniques, using mid infrared (MIR) spectroscopy combined with partial least squares regression (PLSR...
Technical Report
Full-text available
Since the onset of agriculture, human-induced land use changes have resulted in a loss of the amount of organic carbon (OC) in soils as a consequence of e.g. deforestation. This soil organic carbon (SOC) is generally transformed to CO2 and subsequently lost to the atmosphere, where it acts as a greenhouse gas. Because of the importance of soils to...
Article
Tidal marshes are vegetated coastal ecosystems that are often considered as hotspots of atmospheric CO2 sequestration. Although large amounts of organic carbon (OC) are indeed being deposited on tidal marshes, there is no direct link between high OC deposition rates and high OC sequestration rates due to two main reasons. First, the deposited OC ma...
Article
Full-text available
Purpose This study illustrates the applicability of a framework to conduct a spatially distributed inventory of suspended solids (SS) delivery to freshwater streams combined with a method to derive site-specific characterisation factors for endpoint damage on aquatic ecosystem diversity. A case study on Eucalyptus globulus stands located in Portuga...
Article
Full-text available
Tidal marshes are sedimentary environments and are among the most productive ecosystems on Earth. As a consequence they have the potential to reduce atmospheric greenhouse gas concentrations by sequestering organic carbon (OC). In the past decades, most research on soil organic carbon (SOC) storage in marsh environments has focused on salt marshes,...
Data
This is the supplementary information that supports Van de Broek et al. 2016, Controls on soil organic carbon stocks in tidal marshes along and estuarine salinity gradient, Biogeosciences
Article
Full-text available
Antea Group and KULeuven were awarded a project in Flanders to identify the regions exporting high sediment loads to unnavigable watercourses and the sedimentation zones within them. Two types of models are applied: hydrological sediment export models (SEM) and hydraulic sediment transport models (STM). The influence of erosion control measures on...

Network

Cited By