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Many studies have reported associations between daily particles less than 2.5 µm in aerodynamic diameter

(PM2.5) and deaths, but they have been associational studies that did not use formal causal modeling approaches.

On the basis of a potential outcome approach, we used 2 causal modeling methods with different assumptions and

strengths to address whether there was a causal association between daily PM2.5 and deaths in Boston, Massa-

chusetts (2004–2009). We used an instrumental variable approach, including back trajectories as instruments for

variations in PM2.5 uncorrelated with other predictors of death. We also used propensity score as an alternative

causal modeling analysis. The former protects against confounding by measured and unmeasured confounders

and is based on the assumption of a valid instrument. The latter protects against confounding by all measured

covariates, provides valid estimates in the case of effect modification, and is based on the assumption of no unmea-

sured confounders. We found a causal association of PM2.5 with mortality, with a 0.53% (95% confidence interval:

0.09, 0.97) anda0.50%(95%confidence interval: 0.20, 0.80) increase in daily deathsusing the instrumental variable

and the propensity score, respectively. We failed to reject the null association with exposure after the deaths (P =

0.93). Given these results, prior studies, and extensive toxicological support, the association between PM2.5 and

deaths is almost certainly causal.

causal model; instrumental variables; mortality; particulate pollution; propensity score

Abbreviation: PM2.5, particles less than 2.5 µm in aerodynamic diameter.

Hundreds of time-series studies reporting on associations of
daily changes in air pollution and subsequent daily changes in
deaths have been published worldwide (1–15). Many of these
have been large multicity studies (2, 5, 16, 17). Their most
consistent finding was an association of ambient particles
and daily deaths. For example, a study of 5,609,349 deaths
in 112 US cities over the years 1999–2005 reported strong as-
sociations with particles less than 2.5 µm in aerodynamic di-
ameter (PM2.5) (5).

As in most observational epidemiology investigations,
these have been associational studies, and arguments for cau-
sality of the association have followed in the path of Hill’s
criteria (18). The studies were relatively consistent, exposure
preceded outcome, and they were biologically plausible. Ar-
guments for biological plausibility have focused on animal
studies, showing that particle exposure can induce lung and
systemic inflammation (19, 20), produce autonomic changes
(21), accelerate atherosclerosis (22–27), and destabilized

atherosclerotic plaque (28). In addition, human studies have
reported changes in biomarkers of risk, such as increased risk
of ventricular arrhythmia, thrombotic processes, increased
system inflammation, oxidative stress, increased blood pres-
sure, and decreased plaque stability (28–41).

What has mostly been missing from this wealth of air
pollution epidemiology studies is the use of causal modeling.
Although the time-series design is itself quasiexperimental,
more formal approaches would provide increased assurance
that the observed associations are indeed causal. In this paper,
we use 2 different approaches to causal modeling to examine
the association between daily PM2.5 and daily deaths in the
Boston, Massachusetts, metropolitan area.

METHODOLOGICAL BACKGROUND

To establish causality, one requires a causal modeling
framework, which in turn requiresmodeling in terms of potential
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outcomes. Briefly, let YA¼a
i be the outcome of an exposure

A = a for the unit i, and Yi
A=a ′ be the outcome if the unit

i were instead exposed to an alternative exposure, A = a′.
Causal modeling seeks to estimate the difference (or ratio)
in the expected value of outcome in the population under the
exposure they received versus what it would have been had
they received an alternative exposure, that is, EðYA¼a

i Þ=
EðYA¼a0

i Þ:Because only 1 potential outcome is observed, var-
ious methods seek legitimate surrogates for the unobserved
potential outcome. Randomized trials fit this rubric because
randomization means we can take the outcome in the group
with the alternative exposure as a valid substitute for the out-
come that would have occurred had the treated group received
that alternative exposure. Causal methods in observational
epidemiology seek alternative ways to estimate a substitute
for the second potential outcome (42). One approach relies
on natural experiments, or other sources of exposure variation
believed to be independent of outcome except through expo-
sure, as a surrogate variable for exposure that is independent
from measured and unmeasured confounders and relies on
the untestable assumption that the surrogate is randomly as-
signed with respect to confounders. Another approach uses
formal modeling to make the exposure independent of all
measured predictors and relies on the untestable assumption
of no unmeasured confounding (43, 44). In this paper, we
will apply both approaches, which we introduce below.

Time series as quasiexperimental

First, consider the nature of time-series studies of daily
deaths. Imagine instead that we followed the Boston popula-
tion individually. We apply the Cox proportional hazard
model for each person i and follow-up day t, as shown below:

LogðλitÞ ¼ logðλ0ðtÞÞ þ Xitβ;

where Xit represents the usual suspects—blood pressure, lip-
ids, smoking, alcohol, diet, and so on. λit is the hazard for
person i at time t, and λ0(t) is the baseline hazard in the pop-
ulation for unit i at time t. Let us divide the X’s into 2 groups.
The first, Sit, represents variables such as body mass index
and pack-years that change slowly over time, that is, on time-
scales of months to years. The second, Fit, represents the
more rapidly changing predictors, such as daily smoking,
alcohol consumption, acute triggers of plaque rupture or
arrhythmias, acute exposures that might impair pulmonary
defenses, and so on. Because λ0(t) represents the baseline
risk independent of key risk factors included in Sit and Fit,
we assume it to vary slowly over timescales of months to
years. Now, suppose we fit log(λit) to a flexible function of
time with sufficient degrees of freedom in order to capture
fluctuations in log(λit) over timescales of months or longer.
Then, the above equation can be transformed as follows:

LogðλitÞ ¼ gðtÞ þ Fitδ;

where g(t) is the flexible function of timewith, for example, 4
df per year of study, and Fitδ represents the effects of the rap-
idly varying exposures. That is, g(t) captures both the time
variation of λ0t and of Sit. The mean effects of λ0(t) and Sit

are captured by the intercept, so the only potential confound-
ing remaining is due to Fit. The rapidly changing covariates
can be divided into 2 general types. The first type is environ-
mental exposures, such as temperature and air pollution. The
second type is day-to-day variability in cigarette smoking or
engaging in other risky behaviors. Day-to-day fluctuations in
air pollution in North America are mostly unapparent to the
general population, except in a few cities, making it unlikely
that people modify other behavioral risk factors in response to
them. If short-term fluctuations in air pollution are unappar-
ent and generally unrelated to other risky behaviors, then we
have a quasiexperimental setting in which exposure is ran-
domly assigned, suggesting causality.

Instrumental variables

Let YA¼a
t be the potential outcome (aggregated number of

deaths) in the population exposed to A = a on day t, and let
YA¼a0
t be the potential outcome under the alternative exposure

a′. We would like to estimate EðYA¼a
t Þ=EðYA¼a0

t Þ: As men-
tioned earlier, only YA¼a

t is observed. Suppose the potential
outcome depends on predictors in the following manner:

LogðEðYtaÞÞ ¼ θ0 þ aθ1 þ Φt; ð1Þ
where Ya

t represents the potential outcome at time t under ex-
posure a, θ0 and θ1 are the intercept and the slope of expo-
sure, and Φt represents the impact of all other variables on
the outcome. Usually, E(AtΦt) ≠ E(At)E(Φt), hence E(ΦtjA =
a) ≠ E(ΦtjA = a′), and we have confounding. If all of the
confounders are not measured, standard methods including
standard approaches to causal modeling will give biased es-
timates of θ. However, many exposures including air pollu-
tion have multiple sources of variation. Now suppose that
we can find a variable Z that is one such source of variation in
exposure, such that Z is associated with Y only through A. Z is
called an instrumental variable or an instrument for A. Then,
At can be expressed as follows:

At ¼ Ztδþ ηt; ð2Þ
where ηt represents the other sources of variations in exposure
and, in particular, all of the exposure variations that are asso-
ciated with other measured or unmeasured predictors of out-
come. This follows from Z’s being related to Y only through
A. Formally,

EðηtΦtÞ ≠ EðηtÞEðΦtÞ and thus EðηtΦtÞ ≠ 0;

but EðZtΦtÞ ¼ 0 because of the instrument assumption:

ð3Þ
Then, let Z1 and Z2 be equal to Z, so that the following rela-
tionships are satisfied: E(AjZ1) = a, and E(AjZ2) = a′. Then,

EðYZ¼Z1
t Þ ¼ expðθ0 þ θ1aþ ΦtÞ

and

EðYZ¼Z2
t Þ ¼ expðθ0 þ θ1a

0 þ ΦtÞ ð4Þ
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Then,

EðYZ¼Z1
t Þ=EðYZ¼Z2

t Þ ¼ expðθ1ða� a0ÞÞ: ð5Þ

Consequently, if we use Z as an instrument for A, we can re-
cover a causal estimate for θ1, which is the log rate ratio.

Nothing is for free. We have traded the untestable common
assumption made in most causal analyses (that there are no
omitted confounders) for a different untestable assumption
(that the instrument is not associated with any of the confound-
ers). In addition, we must assume that the instrument is not a
modifier of the exposure. In different cases, one or the other of
these assumptions (no omitted confounders vs. no association
of the instrument with confounders) will seem more plausible.
In addition, if Z explains little of the variation in A, it may be a
valid instrument but lack power to detect an association.

In our case, we believe that we can identify a valid instru-
ment, which is implausibly associated with other predictors
of mortality, and which explains enough of the day-to-day var-
iation in particulate air pollution to have reasonable power.

Particulate matter is a complex mixture of chemical com-
pounds in the solid and/or liquid phase. It is composed of pri-
mary particles directly emitted from sources and secondary
particles that are formed in the atmosphere by a series of re-
actions. If dry deposition is the predominant removal mech-
anism of PM2.5, then the residence time of PM2.5 in the
atmosphere is on the order of days to weeks. Wet deposition
can accelerate particle removal, but it occurs only during pre-
cipitation events. Therefore, at a given location and time, a
considerable fraction of PM2.5 in the air is transported from
elsewhere. Boston and the Northeastern Region are mostly
impacted by pollution transported from different regions of
the United States and Canada. On average, transported PM2.5

could represent from ½ to ⅔ of total PM2.5. In a previous
study in Boston, we have shown that, when air masses orig-
inate from less polluted regions, the PM2.5 concentration lev-
els are lower compared with those originating from polluted
ones (45). More recently, we used National Oceanic and At-
mospheric Administration data and their Hybrid Single-
Particle Lagrangian Integrated Trajectory model to track the
back trajectories of air masses over Boston for a 6-year pe-
riod, for up to 96 hours previously (46). We believe these
back trajectories are good instruments for PM2.5, because
1) they represent emissions transported from elsewhere and,
thus, they are not influenced by the behavior of people in
Boston; 2) people in Boston are unaware of the origin of
transported pollutants and, hence, do not modify their behav-
ior in response to changes in air mass trajectories; 3) there is
no plausible connection between them and changes in other
behavior that influences short-term mortality rates such as
number of cigarettes smoked, daily changes in diet, alcohol
consumption, and so on.

Propensity score

Propensity score, which is the conditional probability of
exposure assignment given a vector of observed covariates,
has been advised in observational studies to remove bias
due to all observed covariates (47). The idea is to group sub-
jects that have comparable chances of being assigned to the

treatment (exposure) group versus the control (unexposed)
group on the basis of their measured characteristics. That
is, we compare exposed people who had a 10% chance of
being exposed with unexposed peoplewho had a 10% chance
of being exposed. Since in both cases the covariates predict
the same exposure risk, the differences in outcomes by actual
exposure should not be due to confounders and, hence,
should be causal. This can be extended to continuous expo-
sures by modeling the exposure in a linear rather than logistic
regression. This produces a propensity score that is the pre-
dicted values of the exposure given all of the measured con-
founders. Although one can control for this score directly, it
is more usual to divide the data into quintiles or deciles of the
propensity score and to perform the analysis of association
between exposure and outcome only within these quantiles,
since that does not require correctly specifying the relation-
ship between outcome and propensity score. Because the
comparison is among subjects with comparable association
of covariates with exposure, exposure is effectively random
with respect to covariates in these deciles. Importantly, this
approach still provides valid estimates of the average causal
association of exposure if the set of covariates includes effect
measure modifiers.

METHODS

Mortality data

We analyzed data from the Boston, Massachusetts, metro-
politan area, which we defined as Middlesex, Norfolk, and
Suffolk counties. Mortality data were obtained from the Mas-
sachusetts Department of Public Health for the years 2004–
2009. The mortality files provided information on the exact
date of death and the underlying cause of death. Our outcome
was all-cause nonaccidental daily mortality (International
Classification of Diseases, Ninth Revision, codes 0–799)
chosen to have sufficient statistical power.

Air quality data

PM2.5 measurements were conducted at the Harvard
Supersite located on the roof of the Countway Library of
the Harvard Medical School near downtown Boston.

Back-trajectory paths were calculated by using the Hybrid
Single-Particle Lagrangian Integrated Trajectory model (ver-
sion 4.9) developed by the National Oceanic and Atmo-
spheric Administration. The meteorological archive used
was the Eta Data Assimilation System with 40-km resolution.
For every hour of every day from 2004 to 2009, a 96-hour
back-trajectory was computed from the starting coordinates
of the Countway Library site and a vertical height of 750 m.
The vertical movement of air parcels within the system was
modeled by using an isentropic assumption (48, 49).

Instrumental variable approach. We created an instru-
ment for PM2.5 as follows. We excluded the first 8 hours of
back-trajectory locations as possibly being related to activity
in Boston. For the remaining 88 hours, we used their latitude,
longitude, and the elevation of the air mass that ended up at
750 m in Boston as inputs to predict daily PM2.5 in Boston.
To this we added 2 other variables, wind speed and sea level
pressure. As noted above, it is difficult to see how where the
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air mass was 42 hours ago or, outside of extreme weather
events, what the wind speed or pressure was could be related
to almost any other predictor of mortality besides air pollu-
tion, with 1 exception (temperature), and possibly season.
Clearly, where the air mass comes from also influences to-
day’s temperature and may vary by season.
To address this, we adopted a 2-stage approach. First, we fit

penalized splines predicting PM2.5 as a nonlinear function of
both today’s and yesterday’s temperatures and a 24-df spline
of date. We saved the residuals of this model, which are the
variations in PM2.5 that were independent of variations in
temperature, season, and time trend, for use in the next stage.
We did the same for the 1-day lag of PM2.5.
In the second stage, we reduced the dimensions of our in-

struments from the hundreds of measurements at different
hours to a single instrument to predict the variations in PM2.5

(independent of temperature) identified above. We used a
support vector machine to perform the predictions. We re-
gressed those predictions against the residuals of the mea-
sured PM2.5 (controlling for temperature and time as above)
to ensure that they explained enough of the variation to avoid
the problems of weak instruments. These back-trajectory–
based temperature independent predictions were used as our
instrument. These predictions are on the same scale as PM2.5,
allowing a direct interpretation of the coefficient in terms of
PM2.5 changes.
For our final analysis, we fit a log-linear quasi-Poisson re-

gression to the daily deaths in Boston. We used the mean of
the instrument on the day of and the day before death as our
exposure, because studies of the acute associations of PM2.5

on daily deaths usually use a similar 2-daymean.Although the
instrumental variable should be independent of confounders,
the mean of daily deaths in Boston varies over time, which
would result in substantial overdispersion if not addressed.
We therefore included natural splines of time with 30 df and
the 2-day mean of the instrument in the model. This model
was not overdispersed.

Propensity score. We conducted an alternative analysis
using the propensity score approach. We modeled PM2.5 in a
linear regression with natural splines of time (24 df), temper-
ature (3 df), yesterday’s temperature (3 df ), dummy variables
for day of the week, and linear terms for the co-pollutants
ozone, nitrogen dioxide, sulfur dioxide, and carbon monox-
ide. The predicted PM2.5 from this model is the propensity
score. We trimmed the days with the highest and lowest 5%
of the propensity scores, divided the remainder into deciles,
and analyzed the association within deciles. Because our
analysis is performed within sets of observations matched
on the same propensity score, we have effectively eliminated
confounding by those measured covariates. Specifically, we
again fit a quasi-Poisson model with dummy variables for the
deciles of propensity score and the 2-day mean PM2.5.
Finally, we performed a sensitivity analysis to further test

the causality of the association. It follows on the ideas in
Granger causality and, more recently, the work of Flanders
et al. (50). Suppose that some omitted variable is, contrary
to assumption, associated with both our instrument and our
outcome. Unless the omitted variable is a direct cause of
the back-trajectories, which we think is implausible, the cor-
relation is an accident of similar temporal variations. In that

case, it is likely that the correlation of the omitted variable
with our instrument 2 days after the date of death is nearly
as high as it is for the day of death. In that case, we would
find an association between future values of our instrument
and today’s value of daily deaths. We tested this assumption.

RESULTS

Table 1 presents descriptive statistics of the data. During
the study period, PM2.5 never exceeded the current daily Na-
tional Ambient Air Quality Standard of 35 µg/m3. We first
applied the instrumental variable approach. The model re-
moving season and weather from PM2.5 prior to creating
the instrument used splines for current day’s and prior day’s
temperatures and a spline for date, as described in Methods,
and explained 38% of the variation in PM2.5. The support vec-
tor machine prediction model based on the back-trajectories
explained 56% of the remaining variation in PM2.5, or 34%
of the total variation. We note that the support vector machine
prediction puts the instrument on the same scale as PM2.5 (i.e.,
μg/m3), so the coefficient can be interpreted as the marginal
impact of a unit change in PM2.5. When that prediction was
used as an instrument in the Poisson regression for all natural
cause mortality, we found a significant association, with a
1-µg/m3 increase in PM2.5 associated with a 0.53% (95% con-
fidence interval: 0.09, 0.97) increase in daily deaths. When in-
stead, we used the exposure 2 days after the date of death, we
failed to reject the null hypothesis (P = 0.93; 95% confidence
interval: −0.43, 0.47).
In the propensity score analysis, the propensity score ex-

plained 63% of the variation in PM2.5. Controlling for deciles
of propensity score, we found that each 1-µg/m3 increase in
PM2.5 was associated with a 0.50% (95% confidence interval:
0.20, 0.80) increase in daily deaths.

DISCUSSION

We have used 2 complementary approaches to causal
modeling—instrumental variables and propensity scores. The
first provides protection against unmeasured as well as mea-
sured confounding, based on certain assumptions. The second
provides protection against confounding by measured covar-
iates and interactions, based on a different set of assumptions.

Table 1. Descriptive Statistics of the Data From Boston,

Massachusetts, 2004–2009

Percentile
No. of
Daily
Deaths

PM2.5,
µg/m3

Temperature,
°C

Ozone,
ppb

Wind
Speed,
knotsa

Minimum 30 1 −16.9 1 2.5

25 47 6 4.2 17 7.0

50 53 7.8 11.9 24 8.7

75 59 11.1 19.4 31 11.1

100 82 33.9 31.5 73 26

Abbreviation: PM2.5, particles less than 2.5 µm in aerodynamic

diameter.
a One knot = 1.852 km/hour.
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These 2 approaches yielded essentially identical results, provid-
ing key evidence of the causality of the observed association.

The key question in an instrumental variable analysis is
whether or not the instrument is indeed independent of all
other predictors of mortality. This can only be addressed on
the basis of prior knowledge of those predictors and the in-
strument. In our case, we were looking at predictors of mor-
tality rates in the next few days, not long-term mortality. The
major deaths elevated in studies of particulate air pollution
are cardiovascular and respiratory. Acute triggers of myo-
cardial infarction include consumption of alcohol, tobacco
products, marijuana and cocaine, episodes of anger, sexual
activity, and so on. However, it is not expected that changes
in these triggerswould be related to the origins and trajectories
of air masses reaching Boston. Similarly, although respira-
tory epidemics are airborne, they are not generally windborne.
Hence, pneumonia deaths seem implausibly associated with
the origins and trajectories of air masses impacting Boston
air quality. The only disadvantage of using back-trajectories
as an instrument is the association between their characteristics
and temperature, which is independently a predictor of short-
term mortality rates. We have addressed this potential limita-
tion by removing nonlinear associations with temperature,
humidity, time trends, and season from the PM2.5 variable
and fitting instruments for the remaining variation in PM2.5

that is independent of weather, season, and time. Under these
conditions, we believe that we have used a valid instrument.

Assuming that our instrument is valid, we have demon-
strated a causal association between PM2.5 and daily deaths.
This finding is also confirmed by using the entirely different
approach of propensity score analysis, which yielded an ef-
fect measure size that is essentially identical. Assuming that
there are no unmeasured variables that are correlated with
both exposure and mortality rates within strata of propensity
score, this analysis also provides a causal estimate. We have
argued in the introduction that there are actually few con-
founders, primarily weather and other pollutants, both of
which are included in the propensity score. Although vari-
ables such as smoking and diet also vary from day to day,
there is no reason to believe that variation is correlated with
PM2.5, particularly within strata of time trend, season, tem-
perature, and other pollutants. Because the first approach pro-
vides more protection against unmeasured confounders and
the second greater protection against measured potential con-
founders, these approaches can be considered complementary.

Further, assuming that exposure 2 days subsequent to the
day of death is a valid surrogate for omitted time-varying co-
variates, failing to reject the null association with 2 days’ sub-
sequent value of the instrument suggests that the instrumental
variable is indeed independent of covariates that vary over
time on the timescale of days to weeks. Taken together, we
believe that this provides strong evidence that we have iden-
tified a causal association.

Our findings are supported by an extensive toxicological
literature. For example, studies have shown associations of
PM2.5 exposure with accelerated development and destabili-
zation of atherosclerotic plaque, more severe ischemia under
experimental protocol, lung inflammation and remodeling,
increased reactive oxygen species in the lung and heart,
increased blood pressure, decreased phagocytosis by lung

macrophages, and so on (19, 23, 27, 51–70). In controlled
human exposure studies, a randomized study of air filtration
in the elderly has shown improvements in microvascular
function following a 48-hour exposure to filtered air versus
sham filtration (unfiltered air) (71). Furthermore, volunteers
walking an urban route had lower blood pressure when
using a particle filter mask than without a mask (72). Finally,
participants exposed to diesel exhaust versus filtered air had
higher blood pressure and more arterial stiffness when ex-
posed to the diesel exhaust exposure (69). The plentiful tox-
icological data on acute responses to PM2.5 leave little doubt
that the associations reported between PM2.5 and acute
changes in mortality rates are causal.

Another key result is that these causal associations oc-
curred during a period in Boston when particle concentra-
tions never exceeded the current 24-hour National Ambient
Air Quality Standard of 35 µg/m3. Hence, all of the excess
deaths from these exposures occurred at currently permissible
levels of pollution.
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