Fractal economy functions: Cognitive and participation

1st conference of the economic development network
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[f_{\tilde{c}}[i] = f_{\tilde{a}}[i] = \text{absolute}(f_4[i] - F_4[i]) \]

\[\frac{1}{n} \sum_{p} J_{\theta_p} \leq \varepsilon \]

\[
\begin{align*}
x &= bx + cyz + u_1 \\
y &= dy + exz + u_2 \\
z &= fz + gxy \\
 u_1 &= ay,
\end{align*}
\]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[u_2 = -z, \]
\[x = ay + bx + cyz \]
\[y = dy - z + exz \]
\[z = fz + gxy \]
\[ay + bx + cyz = 0 \]
\[dy - z + exz = 0 \]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[f_z + gxy = 0 \]

\[J = \begin{pmatrix} b & a + cz & cy \\ ez & d & ex - 1 \\ gy & gx & f \end{pmatrix} \]

\[\begin{pmatrix} -3 & 2.4 & 0 \\ 0 & -11 & -1 \\ 0 & 0 & 5.85 \end{pmatrix} \]

\[\nabla \cdot \mathbf{V} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = b + d + f \]

\[D_L = j + \frac{1}{|L_{j+1}|} \sum_{i=1}^{j} L_i = 2 + \frac{L_1 + L_2}{|L_3|} \]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[\dot{x} = ay + bx + cyz \]
\[\dot{y} = dy - z + exz \]
\[\dot{z} = fz + gxy + u \]

\[X(i) = \sum_{t=1}^{i} (x(t) - \bar{x}), Y(i) \]

\[= \sum_{t=1}^{i} (y(t) - \bar{y}), \quad \text{i = 1, 2, ..., N, where } \bar{x} = \frac{1}{N} \sum_{t=1}^{N} x(t) \text{ and } \bar{y} \]

\[= \frac{1}{N} \sum_{t=1}^{N} y(t) \]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[
F^2(s, v) = \frac{1}{s} \sum_{i=1}^{s} \left| X((v-1)s + i) - X^v(i) \right| \cdot \left| Y((v-1)s + i) - Y^v(i) \right|
\]

\[
F^2(s, v) = \frac{1}{s} \sum_{i=1}^{s} \left| X(N - (v - N_d)s + i) - X^v(i) \right| \cdot \left| Y(N - (v - N_d) + i) - Y^v(i) \right|
\]

\[
F_q(s) = \left\{ \frac{1}{2N_d} \sum_{v=1}^{2N_d} [F^2(s, v)]^{q/2} \right\}^{1/q}
\]

\[
F_0(s) \exp \left\{ \frac{1}{4N_d} \sum_{v=1}^{2N_d} \ln[F^2(s, v)] \right\}
\]

\[
H_{xy}(q) = \left[H_{xx}(q) + H_{yy}(q) \right]/2
\]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[H_{x,y}(q) \leq \left[H_{x,x}(q) + H_{y,y}(q) \right]/2 \]

\[D = \frac{\ln r(r+1)}{\ln r} = 1 + \frac{\ln r + 1}{2 \ln r}. \]

\[\bar{P}_{v_{project}} = \langle P_{v_{project}} \rangle + \bar{P}_{v_{project}}. \]

\[\bar{P}_v = \langle F_i \rangle + \bar{F}_v, i = 1, \ldots, N. \]

\[\frac{\Delta \bar{F}_i}{\langle F_i \rangle} = \sum_{j=1}^{M} K_{c_{i,j}} \frac{\Delta \bar{C}_{i,j}}{\langle C_{i,j} \rangle}, \quad i = 1, \ldots, N. \]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[
\begin{align*}
\hat{d}_{\text{ovh}} &= \frac{1}{\langle P_{\text{project}} \rangle} \sqrt{\sum_{i,j} Kf^d_i \times Kf^d_j \times \text{cov}(\hat{F}_i, \hat{F}_j)} \\
TSc_i &= Kf_i \frac{\Delta \hat{F}_i}{\langle F_i \rangle}, i = 1, \ldots, N. \\
\frac{\Delta \hat{P}_{\text{project}}}{\langle P_{\text{project}} \rangle} &= \sum_{i=1}^{N} Kf_i \sum_{j=1}^{K} Kc_{i,j} \frac{\Delta \hat{C}_{i,j}}{\langle C_{i,j} \rangle}. \\
c_1(t) + c_1(t + 1) &= \max\{n_1(t) - n_1(t - 1), 0\} \\
&\quad + \max\{n_1(t + 1) - n_1(t), 0\} \\
&= \max\{n_1(t + 1) - n_1(t - 1), n_1(t) - n_1(t - 1), n_1(t) - n_1(t - 1), 0\}.
\end{align*}
\]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[
\begin{align*}
0 & \leq c_1 + c_1(t + 1) \leq 1, \\
0 & \leq c_2 + c_2(t + 1) \leq 2, \\
0 & \leq c_3 + c_3(t + 1) \leq 1.
\end{align*}
\]

\[
D = \frac{\ln \frac{r(r + 1)}{2}}{\ln r} = 1 + \frac{\ln \frac{r + 1}{2}}{\ln r}.
\]

\[
\begin{align*}
\hat{0} &= (0,0,0), & \hat{1} &= (0,0,1), & \hat{2} &= (0,1,0), & \hat{3} &= (0,1,1), \\
\hat{4} &= (0,2,0), & \hat{5} &= (0,2,1), & \hat{6} &= (1,0,0), & \hat{7} &= (1,0,1), \\
\hat{8} &= (1,1,0), & \hat{9} &= (1,1,1), & \hat{10} &= (1,2,0), & \hat{11} &= (1,2,1).
\end{align*}
\]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[
\begin{aligned}
0 &\leq c_1(t) + c_1(t + 1) \leq 1, \\
0 &\leq c_2(t) + c_2(t + 1) \leq 1, \\
&\vdots \\
0 &\leq c_n(t) + n(t + 1) \leq 1.
\end{aligned}
\]

\[
P_i = \{P_{i-\tau}, P_{i+1}, L, P_{i+(m-1) - \tau}\}, i = 1, L, \quad n_i = (m - 1) - \tau
\]

\[
c_m(r) = \frac{1}{N(N-1)} \sum H(r - \|P_i - P_j\|).
\]

\[
H(x) = \begin{cases}
1, & x > 0 \\
0, & x \leq 0 \end{cases}
\]
Fractal economy functions: Cognitive and participation

1st conference of the economic development network

\[R_{xx}(\tau) = \frac{1}{N} \sum_{i=1}^{N-1} (p_i - \bar{p})(p_{i+\tau} - \bar{p}) \]

\[D_2 = \lim_{r \to 0} \frac{\ln C_m(r)}{\ln \frac{r}{r}} \]

\[K_2 = \frac{1}{t} \ln \frac{C_m(r)}{C_{m+1}(r)} \]

\[I = \frac{1}{n} \sum_{k=1}^{n} \| x_k - y_k \|^2 \]

\[x_1 = f(x_1, x_2, x_3, x_4) = -a(x_1 + x_2) + x_4 \]

Fractal economy functions: Cognitive and participation

1st conference of the economic development network

M.R. Escamilla, PhD
CEO-ECORFAN-Mèxico
E-mail: ramos@ecorfan.org
Skype: maria.ramos4229