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Abstract. Prediction of the secondary structure of a protein from its aminoacid
sequence remains an important and difficult task. Up to this moment, three gen-
erations of Protein Secondary Structure Algorithms have been defined: The first
generation is based on statistical information over single aminoacids, the second
generation is based on windows of aminoacids —typically 11-21 aminoacids— and
the third generation is based on the usage of evolutionary information. In this
paper we propose the usage ofvgaBayes and Interval Estimation WVa Bayes
(IENB) —a new semi ride Bayes approach— as suitable third generation meth-
ods for Protein Secondary Structure Prediction (PSSP). One of the main stages
of IENB is based on a heuristic optimization, carried out by estimation of distri-
bution algorithms (EDAs). EDAs are non-deterministic, stochastic and heuristic
search strategies that belong to the evolutionary computation approaches. These
algorithms under complex problems, like Protein Secondary Structure Predic-
tion, require intensive calculation. This paper also introduces a parallel variant of
IENB called PIENB (Parallel Interval Estimation Na Bayes).

1 Introduction and Related Work

Stochastic search algorithms are founded on the idea of selective and heuristic explo-
ration over the complete space of possible solutions. These algorithms evaluate only
a sample of this space and, using some heuristics, select future candidates in terms of
their possibilities to improve current solutions. This is a very important issue for the
cases in which the evaluation of each candidate is expensive in terms of computation.
Although only a (relatively) small set of candidates is evaluated, the number of eval-
uations for a very complex problem could be very high. There are different efforts to
make this kind of techniques to perform faster. The parallel nature of these algorithms
sets a clear strategy to deal with this problem.

One of the best known stochastic algorithms are Genetic Algorithms (GAs) [8].
GAs have also been designed as parallel algorithms in three different ways [1, 2, 15]:
(i) as master-slave problem with a single population, the master node computes all the
genetic operators and the evaluation of the fitness of the individuals is calculated by
slave processors, (ii) multiple-population algorithms, independent problems are exe-
cuted with its own population, these populations exchange best individual according to



some migration rules (this model has been caiéahd mode[26, 17]) and (iii) fine-
grain parallel GAs, consistent in a spatially-structure population with a single individual
per node and neighborhood restrictions for genetic crossover.

The most interesting, both in terms of practical application and theoretical contribu-
tion, is the island model. The performance gained using this approach comes twofold.
First, the global population is split into smaller sub-populations and the offspring of
new individuals is also divided by the number of nodes of the computation. Although
the computation performance is probably better, as the size of the population decreases
the quality of the solution could also be reduced due to the lack of diversity in each of
the subpopulations. This is solved by the migration of individuals between populations.
Second, there are researchers who claim the possibility to reach superlineal speedups
in this kind of algorithms, achieving better result with less number of total individual
evaluated. Although there are many controversial discussions [21] some studies about
the increment of the selection pressure [2] provide an appropriate answer.

Our contribution deals with the extension of the ideas already developed for parallel
GAs towards another stochastic paradigm (EDAs [14]) and apply them to the optimiza-
tion of the Interval Estimation Niee Bayes performance. Afterwards IENB will be used
to deal with the PSSP problem.

The outline of this paper is as follows. Section 2 is an introduction to the séw@ na
Bayes approach IENB. Section 3 describes our parallel version of this approach. Section
4 analyzes rige Bayes and IENB as suitable methods for PSSP. Section 5 shows the
results of the evaluation of these methods in PSSP. Finally, section 6 enumerates the
conclusions and outlines further future work.

2 Interval Estimation Naive Bayes

The ndve Bayes classifier [5, 7] is a probabilistic method for classification. It can be
used to determine the probability that an example belongs to a class given the values of
the predictor variables. The'ive Bayes classifier guarantees optimal induction given a

set of explicit assumptions [4]. However, it is known that some of these assumptions are
not compliant in many induction scenarios, for instance, the condition of variable inde-
pendence respecting to the class variable. Improvements of accuracy has been demon-
strated by a number of approaches, collectively named seive iBayes classifiers,

which try to adjust the rige Bayes to deal with a-priori unattended assumptions.

Previous semi rige Bayes classifiers may be divided into three groups, depending
on different pre/post-processing issues: (i) to manipulate the variables to be employed
prior to application of nive Bayes induction [11, 13, 18], (ii) to select subsets of the
training examples prior to the application ofiva Bayes classification [10, 12] and
(i) to correct the probabilities produced by the standary@®ayes [25, 6].



In this work, to deal with the problem of Protein Secondary Structure Prediction,
we have used a new semiima Bayes approach nambderval Estimation N&ve Bayes
(IENB) [22] that belongs to approaches that correct the probabilities produced by the
standard rize Bayes. In this approach, instead of calculating the point estimation of
the conditional probabilities from data, as simpléweaBayes does, confidence inter-
vals are calculated. After that, by searching for the best combination of values into these
intervals, it is aimed to break the assumption of independence among variables the sim-
ple ndve Bayes does. This search is carried out by a heuristic search algorithm and is
guided by the accuracy of the classifiers.

To deal with the heuristic search EDAs —estimation of distribution algorithms— have
been selected. EDAs [14] are non-deterministic, stochastic and heuristic search strate-
gies that belong to the evolutionary computation approaches. In EDAs, a number of
solutions or individuals are created every generation, evolving once and again until
a satisfactory solution is achieved. In brief, the characteristic that most differentiates
EDAs from other evolutionary search strategies, such as GAs, is that the evolution from
a generation to the next one is done by estimating the probability distribution of the
fittest individuals, and afterwards, by sampling the induced model. This avoids the use
of crossing or mutation operators, and, therefore, the number of parameters that EDAs
requires is reduced considerably.

While IENB improves néive Bayes accuracy, its biggest problem is the running
time. This problem is worst in the case of the protein dataset due to its size (about
70000 instances). Thus, we have decided the development of a parallel version of this
algorithm in order to improve its performance. This parallelization is described in the
next section.

3 Parallel IENB

With the aim of increasing the performance and accuracy of IENB, we have developed
a parallel version of IENB, named PIENB. This approach is based on the simultaneous
execution of the IENB code on different nodes of a cluster, exchanging the best individ-
uals achieved in the nodes ea¥lgenerations. PIENB uses the island model, described
in the first section. The algorithm takes into account the following aspects:

1. Every node generates and improves an independent population, butegeh-
erations, the best/ individuals of this population are migrated in a round-robin
fashion. The algorithm checks if a concrete individual has been already sent to the
target node. Nodes only send individuals that are not included in the destination.
This migration implies a faster convergence to the solution, because of the feedback
process between the nodééand M are configuration parameters, which depends
on the population size and the number of nodes. The migrated individuals replace
the worst individuals in the destination population.

2. PIENB takes advantage of the higher processor capacity of a cluster of several
nodes. Therefore, PIENB may achieve better results in a shorter time. Typically,
for a cluster ofn nodes, the speedup is neamto



while (convergence) {
Improve solution;
if (!/(generations%N))
Migrate individuals;

Best M
individuals

Best M

individuals individuals

Fig. 1. PIENB flow control

Figure 1 shows the PIENB flow control. The pseudocode implemented in every
node is also shown. The arrows represent the messages sent and received by every
node, describing the relationship between the nodes. Nevertheless, it is possible to use
different network topologies.

When one node has converged, it does not finish, because it has links with other
nodes. In this case, this node takes the role of “bridge”, receiving and sending messages
from and to the corresponding nodes in the topology. Only when all the nodes have
converged, the application finishes, belonging the solution to the last node.

To implement PIENB, MPI [16] has been used, mainly because of the following
reasons:

1. It is an standard message-passing interface, which allows different processes to
communicate among them through the usage of messages.

2. ltis widely used in cluster of workstations.

3. It enhances the solution performance, because of its capacity for parallel program-
ming.

4. It provides primitives for changing the network topology.

MPI is used as communication framework in the migration and bridge process.

4 Protein Secondary Structure Prediction with IENB

Prediction of a secondary structure of a protein from its aminoacid sequence remains
an important and difficult task. Successful predictions provide a starting point for direct
tertiary structure modelling, and also can significantly improve sequence analysis and
sequence-structure threading for aiding in structure and function determination [24].



Since early attempts to predict secondary structure, most effort have focused on de-
velopment of mappings from a local window of residues in the sequence to the structural
state of the central residue in the window, and a large number of methods for estimating
such mappings have been developed.

Methods predicting protein secondary structure have improved substantially in the
90’'s through the use of machine learning methods and evolutionary information [23]. At
the alignment level, the increasingly size of databases and the ability to produce profiles
that include remote homologs using PSI-BLAST have also contributed to performance
improvement [9, 19, 20].

In this section we present a novel approach to protein secondary structure prediction
(PSSP) based on the usage dfedBayes, IENB and its parallel version (PIENB). Most
of the state-of-the-art PSSP methods are based on a three layer fashion: a first layer that
maps from sequence to structure, a second layer from structure to structure and a third
layer that corrects the obtained structure [23, 9]. In this case, we have developed only
the first layer with really promising results (see next section).

In order to make the predictions, we have used a window of 13 aminoacids. To be
able to use the evolutionary information (profiles) ifiveaBayes, IENB and PIENB we
have adjusted the hae Bayes formula:

Example of protein: A,R,N,S,T,V, ...
Example of protein profile: A80 S20, R50 S45 T5, N75 D5 C5 Q10, ...

Naive Bayes classification formula (window efaminoacids):

P(C=cXi=m1,.... Xp=2,) x P(C=0) [[ P(Xp =a2x|C=0¢) (1)
k=1

Naive Bayes classification formula for proteins profiles (window: @minoacids):

n 20

P(C=dXy=21,...,Xp =2,) x P(C =c¢) H (ZprjP(Xk = z;|C = ¢))

k=1 j=1
2
wherepr; is the probability that the aminoacid in positibrwould be mutated into
valuex;.

5 Experimental Results

For the experimentation with PSSP the datasets CB513 [3] has been used. For all the
proteins in the dataset the evolutionary information has been included using the pro-
gram PSI-BLAST from the database PIR-NREF. This database has been filtered to take
out low complexity, coiled-coil and transmembrane regions. To generate the learning



cases we used a window of 13 aminoacids, obtaining a total of approximately 70000 in-
stances. For obtaining the accuracy predictid@eae-one-ouvalidation is performed.

The experimentation has been donehwdt8 nodes cluster with Intel Xeon 2MHz,
1GB of RAM and connected by a Gygaethernet.

Several classification mechanism have been performed with this dataset. Table 1
shows the results of all of these executions. FirstyBl8ayes algorithm with no evolu-
tionary information and, second, using this information. An important improvement is
achieved as well as an increment in the execution time. This increment is due to (i) the
larger number of attributes the algorithm has to estimate, (i) the more expensive train-
ing and evaluation calculation and (iii) the bigger size of the input data (with vs. without
profile information).

Table 1. Experimental Results for Protein Secondary Structure Prediction

Algorithm Accuracy Time
Naive Bayes without evolutionary information61.22 3 seconds
Naive Bayes 67.58 80 seconds
IENB 70.16 40 days
PIENB 70.33 5 days

The last two rows of the table retrieve the results for both the sequential and parallel
versions of the Interval Estimation N& Bayes (this last execution has been done 5
times, the showed value is the average). As it is shown a better classification accuracy
is achieved but with a difference in execution time of several orders of magnitude. A
further analysis of these two cases follows.

The parameters used to performs these experiments have been:

1. IENB:
— Population size1000 individuals per generation
— Offspring:2000
— Other options: elitism
2. PIENB:
— Population size1000 individuals per generatiori 25 for each of the subpopu-
lations)
— Offspring: 2000
Migration rate:10 individuals everys generations
Migration topology: Unidirectional ring (round-robin)
Other options: elitism
Migration replacement: Best migrated individuals replace worst

The better performance reached by the parallel version can be possible because of
two reasons, first the speedup factor is clos& because of the ratio between commu-
nication and processing is very low. Second, the exploration of solutions using quasi-
independent populations provided by the island model improves the quality of the solu-
tion and skips sub-optimal maximums. In order to analyze this bias a representation of
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Fig. 2. Fitness value for IENB and PIENB depending on the number of generations

the best fitness (in the case of the sequential version) and the best and averaged fithess
of each of the subpopulations (for the parallel one) is pictured in graph 2.

6 Conclusions and Further Work

On this contribution a new parallel semi-Na Bayes classifier has been presented.
This new algorithm is based on stochastic search of the best combination of conditional
probabilities. This approach has been designed as a very complex optimization prob-
lem, thus a parallel version of the algorithm has been implemented. This parallel version
both reduces the execution time and improves the overall fithess of the algorithm. Our
method is a single-layer classification approach that is very competitive with state-of-
the-art classifiers [9]. And our future interests are addressed to design a second/third
layer to perform structure-structure prediction.

The parallel algorithm presented here is a first experiment in the application of
multi-population schemas for EDAs algorithms, different topologies [2], different poli-
cies and a combination of migration parameters are open to continue researching here.
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