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 

Abstract—A recurrent neural network for both convex and 

nonconvex equality constrained optimization problems is 

proposed, which makes use of a cost gradient projection onto the 

tangent space of the constraints. The proposed neural network 

constructs a generically non-feasible trajectory, satisfying the 

constraints only as t . Local convergence results are given 

which do not assume convexity of the optimization problem to be 

solved. Global convergence results are established for convex 

optimization problems. An exponential convergence rate is shown 

to hold both for the convex and the nonconvex case. Numerical 

results indicate that the proposed method is efficient and 

accurate.  

 

Index Terms—Recurrent neural networks, constrained 

optimization, convergence, convex and non-convex problems.  

 

I. INTRODUCTION 

large number of recurrent neural networks have been 

proposed in the literature for solving constrained 

optimization problems. Historically, the first approach 

towards designing such networks employed penalty functions 

which were used to convert the original constrained 

optimization problem to an (approximately or exactly) 

equivalent unconstrained optimization problem; the latter was 

usually solved by gradient descent, thus yielding the neural 

network. Although this is not immediately apparent, both the 

Tank and Hopfield network [1] and the Chua and Lin 

nonlinear programming circuit [2], [3] can be demonstrated to 

be, [4], gradient dynamical systems based on the L2 penalty 

function. Other gradient-based architectures related to penalty 

functions include the switched capacitor neural networks 
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proposed in [5], the neural network proposed in [6] which is 

based on the L1 exact penalty function, and a multitude of 

network architectures given in [7] for solving constrained 

optimization problems. Also, in [8], various combinations of 

the L1, L2 and L penalty functions are used to obtain a class 

of neural networks which are rigorously analyzed in [9]. More 

recently, the nonlinear programming circuit [3] has been 

generalized for solving nonsmooth optimization problems, 

[10], and applied to quadratic and linear programming 

problems, [11], with strong convergence results. Apart from 

penalty functions, the logarithmic barrier function has also 

been used, together with Newton-type descent, to produce an 

interior point recurrent neural network, [12]. 

A second class of recurrent neural networks, proposed in 

[13], [14], makes direct use of the Lagrangian function and of 

Lagrangian optimality conditions in order to solve equality 

constrained optimization problems. These Lagrangian neural 

networks are capable of solving general non-convex problems; 

local convergence results are given for such problems in [13], 

[14]. For convex problems, global convergence is obtained in 

[15] for the neural network of [13].  

More recently, a general methodology has been developed, 

[18] – [31], for solving constrained optimization problems 

over convex feasible sets defined by simple bounds on the 

variables and, in some cases, (linear or nonlinear) convex 

inequality constraints and/or linear equality constraints. 

According to this approach, optimality conditions for such 

optimization problems are written in the form of a variational 

inequality which is then equivalently transformed into a 

projection equation. Neural networks are designed to solve the 

projection equation and thus provide a solution to the 

associated optimization problem. The work described in [16] 

(and in the related paper [17]) for solving positive definite 

quadratic programs with bound constraints makes use of 

piecewise linear neuron outputs in order to satisfy exactly 

Kuhn–Tucker conditions, and thus it may be considered as an 

early form of this approach, though it does not use explicitly a 

variational inequality or projection equation. The same can be 

said about the convex quadratic programming neural network 

proposed in [18], for which global convergence is proven. In 

[19], a recurrent neural network for solving piecewise linear 

projection equations with asymmetric connection matrices is 

proposed and applied to semidefinite quadratic programming 

problems; global convergence is proven and an exponential 

convergence rate is obtained for the positive definite case. 
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Globally exponentially convergent neural networks for 

positive definite quadratic programming are proposed in [20] 

and [21] based on piecewise linear projection equations; the 

proposed dynamical equations make use of matrix inversion. 

Also based on a piecewise linear projection equation, the 

neural network of [22] solves a minimax problem with a 

convex–concave quadratic cost function and bound 

constraints. 

More general problems over convex feasible sets can be 

tackled within this approach, by employing nonlinear 

projection equations. Thus, in [23], convex and non-convex 

optimization problems with convex constraints are considered, 

a projection equation and/or penalty functions are used to 

define a number of existing neural networks and LaSalle’s 

theorem is employed to prove global convergence for convex 

problems and local convergence in the absence of convexity. 

Also a new neural network is proposed which is proven to be 

locally convergent, for convex problems. A neural network is 

proposed in [24] for minimizing a not necessarily convex 

function f (x) with bound constraints, based on a nonlinear 

projection equation. For feasible starting points, global 

convergence is proven if  f (x) is convex. In [25], a single-layer 

neural network for solving a nonlinear projection equation is 

proposed and applied to minimization problems with a not 

necessarily convex cost function and simple bound constraints 

or a single hypersphere constraint on the variables. Neural 

networks for minimizing convex functions subject to convex 

inequality and linear equality constraints are proposed in [26] 

– [28], based on nonlinear projection equations. Global 

convergence to the set of optimal solutions is proven in [26], 

[27] and global convergence to the unique optimal solution is 

proven in [28] under a strict convexity assumption. In [29] – 

[33] neural networks for solving variational inequalities are 

analysed; when applied to convex optimization problems, 

these networks are shown to be globally convergent. 

Other neural networks which are not based on a projection 

equation or on a variational inequality include [34] and [35] 

for solving linear and quadratic programming problems and 

[36] for solving convex nonlinear programming problems. In 

[34], global convergence is proven for positive definite cost 

functions, and [36] is a globally convergent feedback network 

which sequentially updates a lower bound for the optimal 

solution. 

Apart from recurrent neural networks, several other 

methods have been proposed, mainly in the optimization 

literature, which make use of dynamical systems for solving 

optimization (see e.g. [37], [38]) and other related problems, 

[39]. Following [40], we consider such methods as constituting 

the “dynamical systems” approach. Although both approaches 

make use of differential equations to construct trajectories 

convergent to the desired solutions, they do so from quite 

different perspectives. The “dynamical systems” approach, 

being more mathematically oriented, relies on numerical 

integration of the differential equations on a digital computer; 

indeed, within this approach, well known optimization 

algorithms are often obtained as discrete integration schemes 

of the underlying differential equations. The neural network 

approach, on the other hand, gives emphasis on hardware 

implementation of the underlying dynamical system, either as 

an electrical circuit or as an interconnection of hardware 

integrators and function blocks; thus hardware integration of 

the underlying differential equations is obtained in real time. 

Surprisingly, cross-referencing between the two approaches 

seems rather scarce; however see [40] for a review of both. 

Within the “dynamical systems” framework, the main 

contribution of this paper is a practical one: we propose 

hardware implementations of the dynamical systems involved. 

In Section II both an electrical circuit and a function block 

diagram implementing the proposed neural network are given. 

A detailed comparison of our results to the dynamical systems 

of [37], [38] is also given in Section II. 

Within the recurrent neural network framework, a novel 

neural network is proposed in this paper for the solution of the 

following, not necessarily convex equality constrained 

optimization problem  (P), 

(P)       mixhxf i
Rx n

,,1   ,0)(  :)(min 


             (1) 

where the functions  f : R
n
 R, and  h i : R

n
 R,  i  1,,m 

are assumed to be continuously differentiable. Let  F denote 

the set of feasible points for problem  (P), i.e. 

 mixhRx i

n ,,1  ,0)(  :F      (2) 

      The proposed neural network, first presented in [41], is 

capable of minimizing nonconvex cost functions over 

nonconvex feasible sets. It does not make use of a penalty 

function or of a projection equation; instead, it solves problem 

(P) directly, based on the well known gradient projection 

method of nonlinear optimization [42], in the sense that it 

makes use of the orthogonal projection of the cost gradient 

onto the nullspace of the constraint gradients. The proposed 

neural network does not require feasibility of the initial point 

xo  and, if xoF it defines a non-feasible solution x(t) which, in 

normal operation, approaches the feasible set F only as 

t . It may be considered as a continuous time version of a 

first order recursive quadratic programming method, [43], for 

nonlinear optimization. In case a feasible starting point xoF 

is given, the proposed neural network defines a feasible 

solution x(t)F, 0t  which is a descent trajectory for the 

cost function  f . In this case the network may be considered as 

a continuous time version of Rosen’s gradient projection 

method, [42], for nonlinear optimization. From another 

viewpoint, since our network aims at satisfying Lagrangian 

conditions of optimality for problem (P), it may be considered 

as a Lagrangian network; differences from existing Lagrangian 

networks are detailed in the next section. 

 The following convergence results are established for the 

proposed neural network. First, local convergence results are 

given for the general case: without assuming convexity of 

either the cost function or of the constraints we prove that 

strict local minimizers of problem (P) are exponentially stable 

equilibrium points of the proposed neural network. Next, 

assuming convexity of the problem to be solved, we prove that 

solutions emanating from arbitrary initial points are bounded 

and converge globally to the set of points satisfying first order 

Lagrangian conditions for problem (P). Finally, an exponential 

convergence rate is established for both convex and non-

convex problems.  
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The paper is organized as follows. In Section II the 

proposed neural network is derived and in Section III 

convergence results are given. Section IV contains numerical 

results and the paper is concluded in Section V. 

 

II.  DERIVATION OF THE NEURAL NETWORK 

In this section the proposed non-feasible gradient 

projection neural network (NFGPNN) is derived in implicit 

and explicit forms, block diagram and analog circuit 

realizations are given, its relationship to Lagrangian neural 

networks and to the dynamical systems of [37], [38] is 

explored, and its ability to tackle inequality constrained 

optimization problems is considered.  

We define the set D of desirable points for problem (P) 

to be the set of all points in R
n
 which satisfy first order 

necessary conditions of optimality (Lagrangian conditions) for 

(P), i.e. FDD  , where 

 mn RxhxfRx     somefor  ,0)()( :D .  (3)  

Here h (x)  [ h 1(x), h 2(x),…, h m(x)] T, R
m
 is a 

vector of Lagrange multipliers, and h(x)  [h1(x), h2(x),…, 

hm(x)] T. Apart from local minima, the set  D also contains local 

maxima and saddle points of problem (P). 

In order to obtain our non-feasible gradient projection 

neural network (NFGPNN) for problem (P), we set out to 

define a dynamical system with solutions x(t) which start at 

any initial point xoR
n
 and, if possible, converge to a local 

minimum of (P). Hence, the following two requirements on the 

solutions x(t) of NFGPNN are made: in normal operation (i.e. 

when x(t) extends to infinite time), (i)  x(t) should converge to 

the set D , and (ii)  x(t) should converge to the feasible set  F. 

In a first instance, the desired solution x(t) is determined as 

part of the solution (x(t), (t)) of the following system of 

implicit ordinary differential equations (implicit ODE’s): 

    )()()()( ttxhtxftx   ,    ),0[ t   (4)  

  ))(()()( txhtxtxh 
  ,     ),0[ t     (5) 

where  and  are positive constants, xo R
n
  is an initial 

condition for x(t), and  (t)R
m
 are additional variables 

(multipliers). Later in this section, the multipliers  (t) are 

eliminated from (4), (5) and a set of ordinary differential 

equations (eq. (13)) is obtained for x(t).  

Let (x(t), (t)) be a solution of (4), (5) with initial condition 

(xo, o) and let [0,) be its maximum interval of existence. 

Equation (4) aims at satisfying the first requirement on x(t). 

Indeed, let (x*,*) be an equilibrium point of (4), (5). It then 

follows from (3) and (4) that x* D , therefore in normal 

operation (i.e. when  , and (x(t), (t)) (x*,*) as 

t ),  the solution )(tx  will approach the set D .  

In order to satisfy the second requirement on x(t), i.e. to 

ensure that x(t) will eventually approach the feasible set F, we 

use the continuous Newton-Raphson method for solving the 

constraint equations h(x) 0. This method, introduced by 

Branin [44], when applied to the equations h(x) 0 yields 

immediately the differential equation (5). The relationship of 

(5) to the classical (iterative) Newton-Raphson method can be 

appreciated by applying an Euler numerical integration scheme 

to equations (5); then h (xk)
T (xk+1 x k)  t h(xk) is 

obtained. If t 1, this is indeed the Newton-Raphson 

iteration for solving the equations h(x)  0.  

Put together, equations (4) and (5) ensure that, in normal 

operation, any solution x(t) will eventually approach the set D 

of desirable points. These equations define, in implicit form, 

the dynamics of the proposed neural network NFGPNN. The 

fact that the variables  (t) do not appear explicitly in equation 

(5) should not confuse the reader: equations (4) and (5) may be 

written as 

 






























 ))((

)())(())((

)(

)(

0))((

0I
T txh

ttxhtxf

t

tx

txh 






.   (6) 

This is indeed a system of implicit ordinary differential 

equations (see e.g. [45]) with state vector  z (t)  [x(t)T, (t)T]
T
. 

Next, two equivalent versions of the dynamical system (4), 

(5) are obtained. Since 
dt

txdh
txtxh

))((
)())((    , integration 

of equation (5) gives 

),()exp())(( oxhttxh    ),0[ t .   (7) 

Also by replacing )(tx  form (4) into (5) we get, t [0,), 

  0))(()())(())(())((   txhttxhtxftxh



 .     (8) 

 The dynamics of the proposed neural network are defined, 

in implicit form, by equations (4) and (5) or, equivalently, by 

equations (4) and (7) or, equivalently, by equations (4) and 

(8). Since (7) and (8) are algebraic equations, definition of 

NFGPNN by equations (4) and (7) or (4) and (8) leads to its 

description as a system of differential-algebraic equations 

(DAE’s). If, on the other hand, equations (4) and (5) are used 

to define NFGPNN, then the description (6), i.e. a system of 

implicit ordinary differential equations (implicit ODE’s), is 

obtained. Obviously, these definitions are equivalent. Such 

dynamical systems arise naturally as descriptions of analog 

electronic circuits; when writing circuit equations, based on 

Kirchoff’s laws, one usually obtains a system of implicit 

ODE’s or a system of DAE’s. Recurrent neural networks 

described by implicit dynamical systems have been proposed 

in [46] and [47]. 

Two ways of realizing the proposed neural network are 

given next, based on equations (4) and (5). The first realization  

of NFGPNN, shown in Fig. 1, is a block diagram of the type 

introduced in [46] and [47]. The second realization, depicted 

in Fig. 2, is an ideal nonlinear analog circuit which makes use 

of ideal ap amps, nonlinear voltage controled current sources 

and nonlinear voltage controlled conductances. The values of 

conductances )(xGi  and )(ˆ xG j  are taken to be: 










m

j i

j

i ni
x

xh
xG

1

,...,1       ,
)(

)( ,       

and      








n

i i

j

j mj
x

xh
xG

1

,...,1       ,
)(

)(ˆ .    

Then, writing nodal equations for the circuit of Fig. 2 we 

obtain, 


































))((

))((

)(

)(

0))((

))((I 1

T txh

txf

t

tx

txh

txh









.    
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 

 )( f




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



  )( h











x

ox


x

 )( h
x

x

x



x

)(xh

)(xh
T)(xh

)(xh

)(xf



 

 )( f











  )( h











x

ox


x

 )( h
x

x

x



x

)(xh

)(xh
T)(xh

)(xh

)(xf



      

Fig. 1.  Block diagram realization of NFGPNN. 

 

These are indeed equations (4) and (5) (or, equivalently, 

equations (6)) of NFGPNN. It should be stressed that the ideal 

circuit of Fig. 2 is given here simply in order to illustrate that, 

in principle, a circuit realization of the proposed neural 

network is feasible. Practical implementation of the circuit 

would require investigations beyond the scope of this paper. 

Note however that, for the special case of linearly constrained 

optimization problems, ordinary linear conductors are only 

required in Fig. 2. 

 Next, we compare NFGPNN to existing Lagrangian neural 

networks and to other dynamical systems proposed in the 

literature for solving problem (P). The Lagrangian networks of 

[13] and [14] are defined by the following differential 

equations 

    )()()()( ttxhtxftx       (9.1) 

))(()( txht                (9.2) 

and 

    )()()(

)())(()(
))(),((

2

2

ttxhtxf

ttxhtx
x

ttxL











 
  (10.1) 

  ))(()()( txhtxtxh 
             (10.2) 

respectively. Partial similarities may be observed among 

equations (4), (5), (9) and (10). More specifically, for 

  , equation (4) reduces to equation (9.1) of [13], and 

equation (5) reduces to equation (10.2) of [14]. However, in 

contrast to (9) and (10), the variables  (t) of the proposed 

dynamical system (4), (5) are non-dynamic variables. Indeed, 

(4), (5) is a dynamical system described by implicit ordinary 

differential equations (ODE’s), therefore it is substantially 

different to both (9) and (10) which are dynamical systems 

described by explicit ODE’s. In essence, equations (9.1), (9.2) 

are gradient flows aiming to approach the sets D  and F 

respectively, and equations (10.1), (10.2) are Newton flows 

with the same respective aims. On the other hand, NFGPNN 

makes use of a gradient flow (equation (4)) in order to 

approach the set D  and of a Newton flow (equation (5)) in 

order to satisfy the constraints. Thus the use of second 

derivatives is avoided and fast convergence to the feasible set 

is obtained. Therefore, if viewed as a Lagrangian system, the 

proposed neural network differs substantially compared to 

existing Lagrangian networks.  
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Fig. 2: Ideal nonlinear circuit realization of NFGPNN. 

 

 NFGPNN is more similar to the dynamical systems of [37], 

[38]. The dynamical system analysed in [37] is the same as 

equations (4), (5) with    . The dynamical system of 

[38] also makes use of equation (5) with   , however  it 

employs curvature terms of  f (.) and h(.) in equation (4), by 

multiplying its left hand side by a positive definite matrix. 

Local convergence results are proven in [37] and [38] for the 

corresponding dynamical systems. Global convergence results 

are obtained in [37] by assuming boundedness of the solutions. 

We provide better local convergence results for NFGPNN, by 

proving exponential stability of strict local minima of (P); in 

comparison only asymptotic stability is proven in [37] and 

[38]. In addition, we obtain strong global convergence results 

for the case of convex problems in Section III-B, where both 

boundedness and global convergence of the solutions is 

proven; no such results are given in [37] or [38]. Finally, 

NFGPNN is hardware impementable both as a circuit and as 

an interconnection of function blocks, i.e. it is a neural 

network and not a dynamical system integrated on a digital 

computer. 

In order to facilitate analysis of the proposed neural 

network, we obtain next an explicit expression for the 

differential-algebraic dynamical system which defines 

NFGPNN. Let xoR
n
 be an arbitrary initial point and let 

 oR
m
 be such that (xo o)R

n+m
  satisfies equation (8). We 

define the set 

 

 ]1,0[any  for     ),()(  :   

   )()(  :Y

o

o
]1,0[






axahxhRx

xahxhRx

n

n




   (11) 

and we make the following assumption. 

Assumption 1: (a) The functions f : R
n
 R, h i : R

n
 R,  

i  1,…,m are continuously differentiable in R
n
.  (b) 

 
For any 

xY the matrix h (x)  [ h 1(x), h 2(x),…, h m(x)] T has 

full rank. 

Remark 1:  Part (b) of Assumption 1 may appear to be too 

strong. In fact this is a standard regularity assumption, which 

corresponds to causality of the system, made in order to obtain 

dynamical systems described by explicit ODE’s from DAE 

descriptions (see e.g. [45]). Moreover, in the literature of 

optimization algorithms, this is a standard assumption 
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associated with gradient projection methods (see e.g. [42, p. 

331], [48, p. 190]). 

 If (x(t), (t)) is a solution of the dynamical system (4), (8) 

with initial point (x(0), (0))  (xo o) and if [0,) is its 

maximal interval of existence, then equations (5) and (7) will 

hold for every t [0,) (see also proof of Theorem 1). Hence 

from (7), x(t)Y will hold t [0,). It then follows from 

Assumption 1 that equation (8) can be solved for  (t) to give, 

  







  ))(())(())(())(())(()(

1
txhtxftxhtxhtxht






  (12) 

Replacement of  (t) from (12) into (4) yields the dynamical 

system which determines NFGPNN in explicit form: 

  ))(())(())(())((

))(())(()(
1T txhtxhtxhtxh

txftxPtx









 (13) 

with initial condition 
nRxx  o)0(          (14) 

In equation (13), P(x(t)) is the well known projection matrix, 

[42], which orthogonally projects an R
n
 vector onto the 

nullspace of ))(( txh , i.e. 

    )()()()()(
1

xhxhxhxhIxP           (15) 

Thus the right hand side of (13) consists of two components: 

the first is an orthogonal projection of the cost gradient onto 

the tangent plane of the constraints, and the second is a 

Newton step aiming to establish feasibility of the constraints. It 

is also noted that if the initial point xo is feasible, i.e. if 

h(xo) 0, then it follows from (7) that h(x(t))  0, t [0,) 

hence (13) and (14) reduce to )(tx P(x(t)) ))(( txf , 

x(0)  xoF. It can be seen that these equations define a 

continuous time version of Rosen’s gradient projection 

algorithm, [42]. If, on the other hand, the initial point xo is not 

feasible, then (13) can be considered as a continuous time 

version of the algorithm proposed in [43]. 

 We close this section by considering inequality constrained 

optimization problems (PI) of the following general form, 

(PI)   ljxgmixhxf ji
Rx n

,...,1   ,0)(    ,,...,1   ,0)(  :)(min 


  

where f , h i , i 1,…,m and g j , j 1,…,l are continuously 

differentiable (not necessarily convex) functions. A simple 

way to extend applicability of the proposed neural network in 

order to solve problem (PI) is to transform the latter into the 

following equality constrained optimization problem (PE), 

(PE)   












 ljyxg

mixhxf

jj

i

RyRx ln ,...,1   ,0)()(

,,...,1   ,0)(  :)(
min 2

 ,

   

where y  [y1, y2, …, yl]
T
 is a vector of additional variables. It is 

well known, [49, p. 286], that problems (PI) and (PE) are 

equivalent in the following sense: x* is a local minimum of 

(PI) if and only if (x*,y*) is a local minimum of (PE), where 

2
1

*))((* xgy jj  ,  j 1,…,l. Thus local minima of (PI) may 

be obtained by straightforward application of NFGPNN to 

(PE) (see also Example 1 in Section V). 

 

III. CONVERGENCE RESULTS 

This section contains convergence results for the proposed 

non-feasible gradient projection neural network (NFGPNN) 

defined, in explicit form, by equations (13). First, local 

convergence results are given in Section III-A where 

exponential stability of strict local minimizers of problem (P) 

is proven. In Section III-B global convergence results are 

given for the case of convex optimization problems. Finally, in 

Section III-C, the rate of convergence of NFGPNN is 

examined. 

A. Local Convergence Results 

In this subsection we do not assume convexity of problem 

(P). Our main result shows that strict local minimizers of 

problem (P) are exponentially stable equilibrium points of 

NFGPNN. 

Theorem 1:  Let the functions f : R
n
 R, h i : R

n
 R,  

i  1,…,m be twice  continuously differentiable in R
n
. Let 

x*R
n
  be a local minimizer of problem (P) which satisfies 

the sufficient conditions of optimality for (P) and assume that 

x* is a regular point of the constraints (i.e. assume that 

h 1(x), h 2(x),…, h m(x) are linearly independent). Then x* 

is an exponentially stable equilibrium point of  NFGPNN 

described by equations (13) with initial condition (14). 

Proof:  The proof is given in the Appendix.        

B. Global Convergence Results for the Convex Case 

We turn now to the convex version of problem (P), i.e. we 

consider the following problem, denoted in the sequel as 

problem (CP), 

(CP)         0 : )(min 



bxAxf
nRx

       (16) 

where f : R
n
 R is assumed to be a convex continuously 

differentiable function, A  an n m full rank matrix with m < n 

and b an m vector. For such problems it is well known, [42] 

that the set of desirable points D, the set of local minimizers 

LM and the set of global minimizers G are identical, i.e. 

D LM G. The following assumption is made for the convex 

problem (CP). 

Assumption 2:  (a) The function f : R
n
 R is continuously 

differentiable and convex in R
n
. (b) The n m  matrix A (with 

m < n) has full rank.  (c) The set D of minimizers of problem 

(CP) is nonempty. 

Remark 2: This is a mild assumption. Part (b) is simply a 

constraint qualification which excludes redundant constraints 

from being present in the description of the feasible set F. 

Furthermore, for a large part of the neural network literature 

(see e.g. [14], [27], [31], [34], [36]), assumption 2(b) is a 

standard assumption made when solving problems with linear 

equality constraints.  

When applied to problem (CP), the proposed dynamical 

system (13) becomes: 

))(()( ))(()( 1T btxAAAAtxfPtx     (17) 

where the projection matrix P  I A(A
T
A)

-1
A

T
 is now 

independent of  t. 
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The main objective of this section is to show that, under 

mild assumptions, every solution of (17) with initial conditions 

(14) is bounded and converges to a global minimum of (CP).  

Theorem 2: Let Assumption 2 hold. Then every solution of 

(17) with initial conditions (14) is bounded, extends to infinite 

time and has limit points, each of which is a global minimizer 

of problem (CP). 

Proof :  The proof is given in the Appendix.         

If  f  is assumed to be strictly convex and if  D is nonempty, 

then (CP) has a unique desirable point which is also a strict 

local and global minimizer. Under these circumstances, the 

following, stronger result is obtained as a direct consequence 

of Theorem 2. 

Corollary 2.1: If f is continuously differentiable and 

strictly convex, if rank{A} m and if D is nonempty, then 

every solution x(t) of (22) with initial conditions (14) is 

bounded, extends to infinite time and converges to the unique 

global minimizer  x* of problem (CP), i.e.   *)(lim xtx
t




. 

C. Rate of Convergence 

In this subsection we show that, under mild assumptions, 

the proposed neural network exhibits an exponential 

convergence rate when applied to both the general problem (P) 

and to the convex problem (CP).  

In order to examine the rate of convergence of NFGPNN 

for the general (not necessarily convex) problem (P), it is 

assumed that NFGPNN generates a solution x(t) which extends 

to infinite time and which converges to a strict local minimizer 

x* of problem (P). In practice, these assumptions are almost 

always satisfied when NFGPNN is applied to specific 

examples of problem (P); in this sense they express the usual 

operating conditions of the neural network. It is noted that 

similar assumptions are made when examining the 

convergence rate of discrete optimization algorithms (see [42], 

[48] – [49]). Under these circumstances, Theorem 1 provides a 

local exponential convergence rate. In the next Theorem we 

extend this result to the entire solution  x(t). 

Theorem 3: Let Assumption 1 hold and let the functions 

f : R
n
 R, h i : R

n
 R,  i 1,…,m be twice  continuously 

differentiable in R
n
. Let x*R

n
 be a local minimizer of 

problem (P) which satisfies the sufficient conditions of 

optimality for (P). Let x(t) be a solution of (13) with initial 

conditions (14) and assume that x(t) extends to infinite time 

and converges to x*. Then the rate of convergence of x(t) is 

exponential, i.e. there exist real numbers    and    such 

that:        )exp(*)( txtx   ,         0t .   (18) 

Proof:  Clearly the assumptions of Theorem 1 are satisfied, 

therefore there exist T  0,     and    such that  

 *)( xtx   exp )( t , t   . For the finite time interval 

[0, we have:  


],0[:)exp(*)(max Tttxtx
Rt

       

where    exists and is finite from Weierstrass' theorem. 

Hence  *)( xtx   exp )( t  holds t [0,. Now (18) 

follows immediately by taking   max{  ,  }.       

Similar results are obtained when NFGPNN is applied to 

the convex problem (CP). However, in this case some of the 

assumptions on the solution x(t) are redundant. Indeed, if 

Assumption 2 holds, it follows from Theorem 2 that x(t) will 

extend to infinite time. Furthermore, if f (x) is strictly convex 

then any minimizer x* of (CP)  is isolated, therefore the set D 

contains a single point, D  {x*}, hence Theorem 2 yields that 

x(t) will converge to x*. Thus we have proven the following: 

Corollary 3.1: Let Assumption 2 hold, let the function 

f : R
n
 R be twice continuously differentiable in R

n
, and let 

x(t) be a solution of (17), (14). Assume either that f (x) is 

strictly convex, or that x(t) converges to a minimizer x* of 

(CP). Then the rate of convergence of x(t) is exponential, i.e. 

there exist real numbers    and    such that  

)exp(*)( txtx   , 0t .              

Numerical results given in the next section confirm the 

exponential convergence rate of NFGPNN on both convex and 

non-convex problems. 

 

IV. SIMULATION RESULTS 

Performance of the proposed neural network is evaluated by 

using MATLAB to simulate its response for several test 

problems. The simulation is based on the block diagram of 

Fig. 1, i.e. on equations (4) and (5).  

Example 1: This was originally, [24], a non-convex two 

dimensional bound-constrained optimization problem, which 

we converted to an equality constrained problem by adding the 

variables x3 and x4. Thus a problem with n  4 variables and 

m  2 constraints was obtained. 

 













 01

,01  :)sin()cos(
min

2

4

2

2

2

3

2

1

2

1221

4 xx

xxxxxx

Rx

  (19) 

This problem has an infinite number of global minimizers 

including the set  X * {xR
4
:  x1  0, x3

2
 1, x2

2
 x4

2
1 0}.    

In Fig.3a the solution x(t) obtained from the non-feasible 

initial point xo  [-2 -2  1  1] T
 is shown. The final point 

obtained at the end of the simulation time was [0  -0.99666138  

1.00008951  0.08273509]

 which is close to the global 

minimizer x* [0  -0.99657218  1  0.08271768] T
. In this 

example, the solution x(t) converges to a particular global 

minimizer x*X *, although the set X * is a continuum of 

global minimizers. Figure 3b shows cost function convergence 

to zero; since the initial point xo is not feasible, f (x(t)) is non-

monotonic. In Fig. 3c, log10(dist(x(t), X *)) is plotted as a 

function of time, where dist(x(t), X *) 


ytx
Xy

)(min
*

 

   
2

1
2

3

2
2

4

2

2

2

1 1)(1)()()(




  txtxtxtx  is the distance 

of  x(t) from the set  X *. An exponential decrease is clearly 

observable, although one of the assumptions of Theorem 3 is 

not satisfied ( x* does not satisfy sufficient conditions of 

optimality). The values     were used for compatibility 

with [24].  

Trajectories obtained by NFGPNN from 1000 random 

initial points with elements xoi [-1, 1], i   are plotted (in 

the (x1, x2) plane) in Fig. 3d. As in [24], convergence is 

observed to various minimizers which belong to the continuum 

of global minimizers of the problem. An additional random 

experiment was conducted with 10000 random initial points in  
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Fig. 3.  Simulation results for Example 1: (a) Solution x(t), (b) Convergence of the cost function, (c) log10(dist(x(t), X *)) as a function of time, (d) Trajectories 

obtained from 1000 random initial points. 

 

the same intervals as above. As in [24], for each trajectory, a 

final cost value not greater than 10
-6

 was considered to be a 

criterion of successful solution of the problem. Only 14 

failures were recorded with NFGPNN. This corresponds to a 

success rate of  99.86% and compares favorably with the 

published results for the neural network of [24] (65 failures, 

i.e. a success rate of  99.35%).  

Example 2: This example is a nonconvex problem with 

n 3 variables and m 1 nonlinear constraint: 

 0   : )(min 3

2

2

2

13




xxxxf
Ry

,         

 where  

 




















































1    ,0

0    1   

,
1

1
sin

21

1
cos

2
11

)(

3

33

33

1

33

24

3

xif

xandxif

xx

x

xx

x
x

xf  

The origin of this problem can be traced in a two dimensional 

unconstrained example from [49]. The cost function  f :  R   

 

is continuously differentiable in its domain   {xR
3
:  

x 3 > 0}. Minimizers of this problem contain the set 

X * {xR
3
:   x3  1,  x1

2
 x2

2
1 0}. 

Starting from the non-feasible initial point xo  [ 222 ] T
, 

the solution x(t) depicted in Fig. 4a is obtained. Figure 4b 

shows the corresponding trajectory, in the (x1, x2) plane. It can 

be observed both from Fig. 4a and from Fig. 4b that the 

solution x(t) does not appear to converge to any particular 

point in X *; instead x(t) seems to contain subsequences which 

converge to every point in X *. Thus it appears that, for this 

example, the set 

 of limit points of x(t) satisfies 


X *, i.e. 

the solution x(t) seems to converge to the entire set X *. In Fig. 

4c, the distance of  x(t) from the set X *:  *))),((dist(log10 Xtx  

     
2

1
2

3

2
2

2

2

110
*

10 1)(1)()(log)(minlog




 


txtxtxytx

Xy

is plotted as a function of time; the rate of decrease does not 

appear to be exponential. However this does not contradict the 

results of Section IV since in this example, at least one of the 

assumptions (i.e. that x* satisfies sufficient conditions of  
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Fig. 4.  Simulation results for Example 2: (a) Solution x(t), (b) Trajectory of 

x(t) in the (x1,x2) plane, (c) log10(dist(x(t), X *)) as a function of time. 

 

optimality) of Theorem 3 is not satisfied. The values 

   were used. 

 

I. CONCLUSIONS 

In this paper a recurrent neural network is proposed for 

equality constrained nonlinear optimization problems. When 

started from a feasible initial point, the proposed neural 

network (NFGPNN) constructs a feasible trajectory, satisfying 

the constraints at all times. In the usual case however, when 

the initial point is non-feasible, NFGPNN constructs a non-

feasible trajectory, which satisfies the constraints only in the 

limit as t . To reduce the cost function, a projection of the 

cost gradient onto the tangent space of the constraints is used.  

Local convergence results are given for the general case 

(i.e. without assuming convexity of the problem to be solved) 

which show that strict local minimizers of the optimization 

problem (P) are exponentially stable equilibrium points of 

NFGPNN. Global convergence results are given for convex 

optimization problems: solutions of NFGPNN emanating from 

arbitrary initial points are shown to convergence to the set of 

global minimizers of the optimization problem. The rate of 

convergence of the proposed neural network is shown to be 

exponential, both for convex and non-convex problems. 

Numerical results confirm these findings and indicate that 

NFGPNN is both efficient and accurate. 

APPENDIX 

Proof of Theorem 1: We first note that since x* is a regular 

point and )(xhi , i  1,…,m are continuous, there exists a 

neighborhood N(x*, )  {xR
n

 *: xx } of x*, such that 

the gradients )(xhi , i  1,…,m are linearly independent  

xN(x*, ). Thus Assumption 1 holds for every xN(x*, ) 

therefore, within N(x*, ), NFGPNN is well defined (in explicit 

form) by equations (13). In this proof, xN(x*, ) will be 

assumed, unless otherwise stated. Also, the Euclidean norm of 

a vector y  is denoted simply as y . 

We shall obtain some useful bounds and, based on these, we 

shall define a Lyapunov function which satisfies the 

assumptions of a well known theorem, [50, Theorem 4.10, p. 

154], on exponential stability. 

Let L(x,   f(x)+
T
h ( x )  be the Lagrangian function for 

problem (P) and let * R
m
 be the Lagrange multipliers 

corresponding to x*, so that we have 

0**)(*)(*)*,(   xhxfxL       (20) 

Since 0)()(  xhxP  we obtain 

  *),()(*)()()()()(  xLxPxhxfxPxfxP    (21) 

Taylor expansion of *),()( xLxP   around x* yields 

  )*(*)(*),()(

*)*,(*)(*),()(
T

*
xxoxxxLxP

xLxPxLxP

xx








    (22) 

Let p
i
(x)

T
R

n
, i  1,…,n denote the i

th
 row of the n n matrix 

P(x). Differentiation of p
i
(x)

T
*),( xL  with respect to x 

gives, in view of (20),  

 
*

2

2

*

T )(
*),(

*),()(*),()(
xx

iixxi xp
x

xL
xLxpxLxp


 















   

 *)(
*)*,(

2

2

xp
x

xL
i







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Hence  

 

    

*)(
*)*,(

*),()(,,*),()(

*),()(

*),()(

*),()(

T

2

2
*

TT

1

*

T

T

1

*

xP
x

xL

xLxpxLxp

xLxp

xLxp

xLxP

xxn

xx
n

xx















































 (23) 

From (20) – (23) it follows that 

 **)(
*)*,(

*)()()(
2

2

xxoxx
x

xL
xPxfxP 







  (24) 

Let F be a )( mnn   full rank matrix such that  h (x*)
T
F 0 

and F
T
F  In-m. Such a matrix F can be easily obtained as part 

of the QR decomposition of the matrix  h (x*)
T
. It is easy to 

show that: 
Τ*)( FFxP            

 
(25) 

Let the n n symmetric matrix B (x) be defined as follows,  

  Τ1Τ )()()()()( xhxhxhxhxB 


      (26) 

From the definition (15) of P (x), (25) and (26) we obtain, 

 
*)(

*)(*)(*)(*)(
T

Τ1ΤT

xBFF

xhxhxhxhFFIn






   (27) 

Then  (27) yields 

*)*)((*)(**)( Τ22Τ xxxBxxxxxxF      (28) 

Now, from (13), (24) and (25) we get (where x stands for x(t) 

in the right hand sides of the equations that follow),  

   *)()()()(

*)(
*)*,(*))((

1Τ

2

2
T

xxoxhxhxhxh

xx
x

xL
FF

dt

xtxd

















  (29) 

Premultiplication by  ( xx *)
T
 and replacement of In from 

(27) into the right-hand-side yields 

 

   

 

     ***)(
*)*,(

*

)()()()(*)(

*
*)*,(

*

*))((
*)(

*)(

2

1

2

2
ΤΤ

1ΤT

Τ

2

2
ΤΤ

Τ

2

xxoxxxB
x

xL
FFxx

xhxhxhxhxx

xxFF
x

xL
FFxx

dt

xtxd
xtx

dt

xtxd































(30) 

Let  be the minimum eigenvalue of the matrix 

F
x

xL
F

2

2
T *)*,(



 
. Since x* satisfies the sufficient conditions of 

optimality for problem (P), it follows that  > 0  therefore we 

have    

     
2

2

2

*    *
*)*,(

* xxFxxFF
x

xL
FFxx 




 




  (31) 

Making use of (30), (31) and (28) we obtain, after simple 

algebra, 

   

  )*()()()()(*)(

**)( **   
*)(

2

1

21ΤT

TΤ2
2

xxoxhxhxhxhxx

xxxhWxxxx
dt

xtxd










  (32) 

where, 

   1

2

2

*)(*)(*)(
*)*,(  











 xhxhxh

x

xL
FFIW n


 . 

 Next, we seek bounds for the terms on the right hand side of 

(32). Taylor expansion of h (x) around x gives h (x*)  h (x)+ 

   **)( xxoxxxh   , and, since h (x*)  0, 

      *)(*)( xxoxhxxxh        (33) 

Similarly, Taylor expansion of h (x) around x* gives h (x)   

   ***)(*)( xxoxxxhxh   , hence, since h (x*)  0, 

   *)(**)( xxoxhxxxh        (34) 

Since the matrix B (x) is positive semidefinite xN(x*, ), it 

follows from (33) that, 

 

)*(

)*(*))((*)(

)()()()(*)(

2

2T

1ΤT

xxo

xxoxxxBxx

xhxhxhxhxx












  (35) 

If  
F

W , it follows from (34) that, 

     
)*()(*

)*()( ***)( *
2

2ΤTΤ

xxoxhxx

xxoxhWxxxxxhWxx






  (36) 

Then, from (32), (35) and (36) we obtain, 

)*()(**   
*)(

2

1 22
2

xxoxhxxxx
dt

xtxd



   (37) 

Also, from the definition of o(.), it follows that given any 

 (0,), there exists ),0(ˆ    such that )*(
2

xxo    

2
*xx    holds )ˆ*,( xNx . Hence we obtain from (37), 

)ˆ*,(

,)(**)(   
*)(

2

1 2
2





xNx

xhxxxx
dt

xtxd






 (38) 

 We shall now define a suitable Lyapunov function  

V : R
n
 R  as follows 

22
)(

2
*

2

1
)( xh

c
xxxV          

where the parameter c  0 will be determined in the sequel. It 

follows from (34) and the definition of o(.) that there exist 

01 k  and )ˆ,0(~    such that 

2

1

2
*)(*

2

1
xxkxVxx  ,    )~*,( xNx   (39) 

It follows from (5) that     )()( txhtxh  , 0t ; hence 

(38) yields,  

22
)()(**)(

))((
xhcxhxxxxa

dt

txdV
  , 

 )~*,( xNx     (40) 

Then, by choosing ),0(    and 0
4

2





c , we 

obtain from (40), 

2

2

*)()(
2

*
))((

xxaxhxx
dt

txdV














 






2
*)( xxa   ,  )~*,( xNx    (41) 

Conditions (39) and (41) ensure that the function V (x) defined 

above satisfies the assumptions of [50, Theorem 4.10, p. 154]. 
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This implies exponential stability of x* and completes our 

proof.                         

 

Proof of Theorem 2:  (a) Boundedness of the solutions. We 

shall first show that any solution x(t) of (22) is bounded. Let 

x* R
n
  be any minimizer of problem (CP). Then we have 

A
T

x* 0b  and (17) may be written as, 

     *)( )()(
1

xtxAAAAtxfPtx       (42) 

Let the function V : R
n
 R (with 0c ) be defined as, 

 
1

2

2
**

2
)()( xxAcxxxfxV  




   (43) 

First we prove that x(t) is a descent solution for the function 

)(xV , i.e. that 0))(( txV , 0t . Premultiplication of  (17) 

by A
T

 gives A
T

)(tx (A
T
x(t) )b  which upon integration 

yields (7) with  h (x) A
T
x(t) b A

T
( x x*), i.e. 

   *)exp(*)( o

TT xxAtxtxA        (44) 

It then follows from (43) and (44), 

     
1o

2

2
*)exp(*)(

2
)()( xxAtcxtxtxftxV  




 

hence 

     

 
1o

TT

*)exp(

)(*)()()()(

xxAtc

txxtxtxtxftxV












    (45) 

Let B A(A
T

A)
-1

A
T

 and let x stand for x(t). From (45), (42) 

and (44) we obtain, 

 

1

Τ

T
2

T

TT

*)(

*)(*)()(*)(

*)()()()()(

xxAc

xxBxxxfPxx

xxBxfxfPxftxV
















   

and, since P + B  I, P P
T

P, B B
T

B, we get 

 

1

2

2

2

2

2

*)(*)(

*)()()()(

xxAcxxB

xxxfxfPtxV
















   (46) 

As f (x) is convex it follows that   0*)()(*)(   xfxfxx ,  

xR
n
  (see e.g. [49]). Hence, since 0*)(  xfP , we have 

*)(*)(

*)()(*)()(*)(

xfBxx

xfBPxxxfxx








    (47) 

An upper bound is obtained for the expressions in (47) by 

using norm properties: 

22

T

F

1T

22

*)(*)(

)(*)(*)(*)(*)(

xfxxA

AAAxfxxBxfBxx



 

 

 therefore there exists  0  such that 

21

T *)(*)( *)(*)( xfxxAxfBxx      (48) 

It now follows from (46), (47), (48) that, for 
2

*)(xfc  , 

    0*)(*)()()(
21

2

2
  cxfxxAxfPtxV  . 

Thus it holds 

  )()( oxVtxV  ,    0t     (49) 

i.e. the solution x(t), t  0 is contained in the V (xo) level set 

of the function V (x). We next show that this level set is 

bounded. A lower bound for f (x) is obtained by using a 

property of convex functions, [49], and the facts P + B  I and 

0*)(  xfP : 

*)(*)(*)(

*)()(*)(*)(

*)(*)(*)()(

xfBxxxf

xfBPxxxf

xfxxxfxf













      

It then follows from the above bound and equations (49), (48), 

(43) that, for 
2

*)(xfc  , and 0t : 

   

 
2

2

12

1

2

2

T

o

*)(
2

*))((*)(*)(

*))((*)(
2

*)(*)(*)()()(

xtx

xtxAxfcxf

xtxAcxtx

xfBxtxxftxVxV























   (50) 

Let the function g : R
n
 R be defined as g ( x )  f ( x* ) +  

2

21
*

2
*)(~ xxxxA  




 , where 

2
*)(~ xfc    

0 . Then, by (50), the solution x (t) is contained (t  0) in 

the V (xo) level set of the function g ( x ) . Moreover, g ( x )  is a 

strictly convex function with a unique minimum at x*, hence 

every level set of g ( x )  is bounded, [49, Prop. B.9, p. 569]. 

This proves boundedness of the solution x(t). 

(b) Convergence. To prove the remaining conclusions of the 

Theorem, let 

 be the positive limit set of x(t). Since x(t) is 

bounded, 

 is nonempty, [51, Theorem 4, p. 364], and the 

maximal interval of existence of x (t) is  ,0 , [51, ex. 6, p. 

365]. It then follows from (44) that    


*)(lim T xtxA
t

 

  0)(lim T 


btxA
t

,  i.e.       F       (51) 

where F is the set of feasible points for problem (P) defined in 

(2).  

Since, by (3), F'DD  , it remains to show that D' . We 

shall do so by applying LaSalle’s theorem [51, Theorem 3.2, p. 

243] to the dynamical system (17). Let the function W (x) be 

defined as 
1

T)()( bxAcxfxW  , where 0c  will be 

determined in the sequel. It follows from (7) (see also (44)) 

that 
1o

T

1

T )exp()( bxAtbtxA   , hence the function 

   
   

 
1o

T
1

T

)exp()(

)()()(

bxAtctxf

btxActxftxW






       

is differentiable with respect to t . Then  

   

 
1

T

1o

T

)()()(

)exp()()(

btxActxtxf

bxAtctxf
dt

d
txW













     

 Replacing x  from (17) into the above we obtain,  xR
m
 ,  

 









m

i
i bxAec

bxAAAAxfxfPxfxW

1

TT

T1

)(

)()()()()(




   

i.e., 
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  )()(sgn

)()()(

TT
1

TT2

2

xbxAec

bxAexfPxW

ii

m

i
i







 



    (52) 

where the fact P P
T

P has been used, and  : R
n
 R

m
 is 

defined by  ( x )  (A
T

A)
-1

A
T

)(xf . Let the set X  R
n
 be 

defined as    ,0 : )(X ttx . It follows from [51, Theorem 

5, p. 365], that the set  ΛXX  is compact. It also follows 

from Assumption 1 that  ( x )  defined above is a continuous 

function, hence, Weierstrass’ theorem yields that the quantities 

 X : )( max  yyc i
y

i  , i 1,…,m exist and are finite. Now, 

by choosing },,,max{ 21 mcccc   we obtain 

0)()}(sgn{ TT
 xbxAec ii  , Xx , hence (52) yields  

0)()(
2

2
 xfPxW  , Xx . Since D x  iff  

0)(  xfP , it follows from LaSalle’s Theorem and the 

definitions of  D'  and P  that  

  D'0)(:  xfPRx n           (53) 

Now (51), (53) and (3) yield the desired result.               
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