

1



Abstract—A recurrent neural network for both convex and

nonconvex equality constrained optimization problems is

proposed, which makes use of a cost gradient projection onto the

tangent space of the constraints. The proposed neural network

constructs a generically non-feasible trajectory, satisfying the

constraints only as t . Local convergence results are given

which do not assume convexity of the optimization problem to be

solved. Global convergence results are established for convex

optimization problems. An exponential convergence rate is shown

to hold both for the convex and the nonconvex case. Numerical

results indicate that the proposed method is efficient and

accurate.

Index Terms—Recurrent neural networks, constrained

optimization, convergence, convex and non-convex problems.

I. INTRODUCTION

large number of recurrent neural networks have been

proposed in the literature for solving constrained

optimization problems. Historically, the first approach

towards designing such networks employed penalty functions

which were used to convert the original constrained

optimization problem to an (approximately or exactly)

equivalent unconstrained optimization problem; the latter was

usually solved by gradient descent, thus yielding the neural

network. Although this is not immediately apparent, both the

Tank and Hopfield network [1] and the Chua and Lin

nonlinear programming circuit [2], [3] can be demonstrated to

be, [4], gradient dynamical systems based on the L2 penalty

function. Other gradient-based architectures related to penalty

functions include the switched capacitor neural networks

Manuscript received August 9, 2005; revised April 4, 2006, November 30,

2006, June 3, 2007 and November 2, 2007; accepted December 27, 2007.

This work was supported financially by the project “HRAKLEITOS”. The

project “HRAKLEITOS” is co-funded by the European Social Fund (75%)

and Greek National Resources (25%).

M. P. Barbarosou was with the School of Electrical and Computer

Engineering, National Technical University of Athens, Athens 15773, Greece.

She is now with the Department of Electronics, Technological Educational

Institute of Piraeus, 250 Thivon St. and P. Ralli St., Aigaleo, Athens 12244,

Greece (e-mail: mbarbar@ central.ntua.gr).

N. G. Maratos is with the School of Electrical and Computer Engineering,

National Technical University of Athens, 9 Iroon Polytechniou St., Athens

15773, Greece (phone: +30 210 7723693; fax: +30 210 772 2281; e-mail:

maratos@ece.ntua.gr).

proposed in [5], the neural network proposed in [6] which is

based on the L1 exact penalty function, and a multitude of

network architectures given in [7] for solving constrained

optimization problems. Also, in [8], various combinations of

the L1, L2 and L penalty functions are used to obtain a class

of neural networks which are rigorously analyzed in [9]. More

recently, the nonlinear programming circuit [3] has been

generalized for solving nonsmooth optimization problems,

[10], and applied to quadratic and linear programming

problems, [11], with strong convergence results. Apart from

penalty functions, the logarithmic barrier function has also

been used, together with Newton-type descent, to produce an

interior point recurrent neural network, [12].

A second class of recurrent neural networks, proposed in

[13], [14], makes direct use of the Lagrangian function and of

Lagrangian optimality conditions in order to solve equality

constrained optimization problems. These Lagrangian neural

networks are capable of solving general non-convex problems;

local convergence results are given for such problems in [13],

[14]. For convex problems, global convergence is obtained in

[15] for the neural network of [13].

More recently, a general methodology has been developed,

[18] – [31], for solving constrained optimization problems

over convex feasible sets defined by simple bounds on the

variables and, in some cases, (linear or nonlinear) convex

inequality constraints and/or linear equality constraints.

According to this approach, optimality conditions for such

optimization problems are written in the form of a variational

inequality which is then equivalently transformed into a

projection equation. Neural networks are designed to solve the

projection equation and thus provide a solution to the

associated optimization problem. The work described in [16]

(and in the related paper [17]) for solving positive definite

quadratic programs with bound constraints makes use of

piecewise linear neuron outputs in order to satisfy exactly

Kuhn–Tucker conditions, and thus it may be considered as an

early form of this approach, though it does not use explicitly a

variational inequality or projection equation. The same can be

said about the convex quadratic programming neural network

proposed in [18], for which global convergence is proven. In

[19], a recurrent neural network for solving piecewise linear

projection equations with asymmetric connection matrices is

proposed and applied to semidefinite quadratic programming

problems; global convergence is proven and an exponential

convergence rate is obtained for the positive definite case.

A Non-feasible Gradient Projection Recurrent

Neural Network for Equality Constrained

Optimization Problems

Maria P. Barbarosou, and Nicholas G. Maratos, Member, IEEE

A

2

Globally exponentially convergent neural networks for

positive definite quadratic programming are proposed in [20]

and [21] based on piecewise linear projection equations; the

proposed dynamical equations make use of matrix inversion.

Also based on a piecewise linear projection equation, the

neural network of [22] solves a minimax problem with a

convex–concave quadratic cost function and bound

constraints.

More general problems over convex feasible sets can be

tackled within this approach, by employing nonlinear

projection equations. Thus, in [23], convex and non-convex

optimization problems with convex constraints are considered,

a projection equation and/or penalty functions are used to

define a number of existing neural networks and LaSalle’s

theorem is employed to prove global convergence for convex

problems and local convergence in the absence of convexity.

Also a new neural network is proposed which is proven to be

locally convergent, for convex problems. A neural network is

proposed in [24] for minimizing a not necessarily convex

function f (x) with bound constraints, based on a nonlinear

projection equation. For feasible starting points, global

convergence is proven if f (x) is convex. In [25], a single-layer

neural network for solving a nonlinear projection equation is

proposed and applied to minimization problems with a not

necessarily convex cost function and simple bound constraints

or a single hypersphere constraint on the variables. Neural

networks for minimizing convex functions subject to convex

inequality and linear equality constraints are proposed in [26]

– [28], based on nonlinear projection equations. Global

convergence to the set of optimal solutions is proven in [26],

[27] and global convergence to the unique optimal solution is

proven in [28] under a strict convexity assumption. In [29] –

[33] neural networks for solving variational inequalities are

analysed; when applied to convex optimization problems,

these networks are shown to be globally convergent.

Other neural networks which are not based on a projection

equation or on a variational inequality include [34] and [35]

for solving linear and quadratic programming problems and

[36] for solving convex nonlinear programming problems. In

[34], global convergence is proven for positive definite cost

functions, and [36] is a globally convergent feedback network

which sequentially updates a lower bound for the optimal

solution.

Apart from recurrent neural networks, several other

methods have been proposed, mainly in the optimization

literature, which make use of dynamical systems for solving

optimization (see e.g. [37], [38]) and other related problems,

[39]. Following [40], we consider such methods as constituting

the “dynamical systems” approach. Although both approaches

make use of differential equations to construct trajectories

convergent to the desired solutions, they do so from quite

different perspectives. The “dynamical systems” approach,

being more mathematically oriented, relies on numerical

integration of the differential equations on a digital computer;

indeed, within this approach, well known optimization

algorithms are often obtained as discrete integration schemes

of the underlying differential equations. The neural network

approach, on the other hand, gives emphasis on hardware

implementation of the underlying dynamical system, either as

an electrical circuit or as an interconnection of hardware

integrators and function blocks; thus hardware integration of

the underlying differential equations is obtained in real time.

Surprisingly, cross-referencing between the two approaches

seems rather scarce; however see [40] for a review of both.

Within the “dynamical systems” framework, the main

contribution of this paper is a practical one: we propose

hardware implementations of the dynamical systems involved.

In Section II both an electrical circuit and a function block

diagram implementing the proposed neural network are given.

A detailed comparison of our results to the dynamical systems

of [37], [38] is also given in Section II.

Within the recurrent neural network framework, a novel

neural network is proposed in this paper for the solution of the

following, not necessarily convex equality constrained

optimization problem (P),

(P)  mixhxf i
Rx n

,,1 ,0)(:)(min 


 (1)

where the functions f : R
n
 R, and h i : R

n
 R, i  1,,m

are assumed to be continuously differentiable. Let F denote

the set of feasible points for problem (P), i.e.

 mixhRx i

n ,,1 ,0)(:F  (2)

 The proposed neural network, first presented in [41], is

capable of minimizing nonconvex cost functions over

nonconvex feasible sets. It does not make use of a penalty

function or of a projection equation; instead, it solves problem

(P) directly, based on the well known gradient projection

method of nonlinear optimization [42], in the sense that it

makes use of the orthogonal projection of the cost gradient

onto the nullspace of the constraint gradients. The proposed

neural network does not require feasibility of the initial point

xo and, if xoF it defines a non-feasible solution x(t) which, in

normal operation, approaches the feasible set F only as

t . It may be considered as a continuous time version of a

first order recursive quadratic programming method, [43], for

nonlinear optimization. In case a feasible starting point xoF

is given, the proposed neural network defines a feasible

solution x(t)F, 0t which is a descent trajectory for the

cost function f . In this case the network may be considered as

a continuous time version of Rosen’s gradient projection

method, [42], for nonlinear optimization. From another

viewpoint, since our network aims at satisfying Lagrangian

conditions of optimality for problem (P), it may be considered

as a Lagrangian network; differences from existing Lagrangian

networks are detailed in the next section.

 The following convergence results are established for the

proposed neural network. First, local convergence results are

given for the general case: without assuming convexity of

either the cost function or of the constraints we prove that

strict local minimizers of problem (P) are exponentially stable

equilibrium points of the proposed neural network. Next,

assuming convexity of the problem to be solved, we prove that

solutions emanating from arbitrary initial points are bounded

and converge globally to the set of points satisfying first order

Lagrangian conditions for problem (P). Finally, an exponential

convergence rate is established for both convex and non-

convex problems.

3

The paper is organized as follows. In Section II the

proposed neural network is derived and in Section III

convergence results are given. Section IV contains numerical

results and the paper is concluded in Section V.

II. DERIVATION OF THE NEURAL NETWORK

In this section the proposed non-feasible gradient

projection neural network (NFGPNN) is derived in implicit

and explicit forms, block diagram and analog circuit

realizations are given, its relationship to Lagrangian neural

networks and to the dynamical systems of [37], [38] is

explored, and its ability to tackle inequality constrained

optimization problems is considered.

We define the set D of desirable points for problem (P)

to be the set of all points in R
n
 which satisfy first order

necessary conditions of optimality (Lagrangian conditions) for

(P), i.e. FDD  , where

 mn RxhxfRx   somefor ,0)()(:D . (3)

Here h (x)  [h 1(x), h 2(x),…, h m(x)] T, R
m
 is a

vector of Lagrange multipliers, and h(x)  [h1(x), h2(x),…,

hm(x)] T. Apart from local minima, the set D also contains local

maxima and saddle points of problem (P).

In order to obtain our non-feasible gradient projection

neural network (NFGPNN) for problem (P), we set out to

define a dynamical system with solutions x(t) which start at

any initial point xoR
n
 and, if possible, converge to a local

minimum of (P). Hence, the following two requirements on the

solutions x(t) of NFGPNN are made: in normal operation (i.e.

when x(t) extends to infinite time), (i) x(t) should converge to

the set D , and (ii) x(t) should converge to the feasible set F.

In a first instance, the desired solution x(t) is determined as

part of the solution (x(t), (t)) of the following system of

implicit ordinary differential equations (implicit ODE’s):

    )()()()(ttxhtxftx   ,),0[t (4)

 ))(()()(txhtxtxh 
  ,),0[t (5)

where  and  are positive constants, xo R
n
 is an initial

condition for x(t), and  (t)R
m
 are additional variables

(multipliers). Later in this section, the multipliers  (t) are

eliminated from (4), (5) and a set of ordinary differential

equations (eq. (13)) is obtained for x(t).

Let (x(t), (t)) be a solution of (4), (5) with initial condition

(xo, o) and let [0,) be its maximum interval of existence.

Equation (4) aims at satisfying the first requirement on x(t).

Indeed, let (x*,*) be an equilibrium point of (4), (5). It then

follows from (3) and (4) that x* D , therefore in normal

operation (i.e. when  , and (x(t), (t)) (x*,*) as

t), the solution)(tx will approach the set D .

In order to satisfy the second requirement on x(t), i.e. to

ensure that x(t) will eventually approach the feasible set F, we

use the continuous Newton-Raphson method for solving the

constraint equations h(x) 0. This method, introduced by

Branin [44], when applied to the equations h(x) 0 yields

immediately the differential equation (5). The relationship of

(5) to the classical (iterative) Newton-Raphson method can be

appreciated by applying an Euler numerical integration scheme

to equations (5); then h (xk)
T (xk+1 x k)  t h(xk) is

obtained. If t 1, this is indeed the Newton-Raphson

iteration for solving the equations h(x)  0.

Put together, equations (4) and (5) ensure that, in normal

operation, any solution x(t) will eventually approach the set D

of desirable points. These equations define, in implicit form,

the dynamics of the proposed neural network NFGPNN. The

fact that the variables  (t) do not appear explicitly in equation

(5) should not confuse the reader: equations (4) and (5) may be

written as

 






























))((

)())(())((

)(

)(

0))((

0I
T txh

ttxhtxf

t

tx

txh 






. (6)

This is indeed a system of implicit ordinary differential

equations (see e.g. [45]) with state vector z (t)  [x(t)T, (t)T]
T
.

Next, two equivalent versions of the dynamical system (4),

(5) are obtained. Since
dt

txdh
txtxh

))((
)())((   , integration

of equation (5) gives

),()exp())((oxhttxh ),0[t . (7)

Also by replacing)(tx form (4) into (5) we get, t [0,),

  0))(()())(())(())((  txhttxhtxftxh



 . (8)

 The dynamics of the proposed neural network are defined,

in implicit form, by equations (4) and (5) or, equivalently, by

equations (4) and (7) or, equivalently, by equations (4) and

(8). Since (7) and (8) are algebraic equations, definition of

NFGPNN by equations (4) and (7) or (4) and (8) leads to its

description as a system of differential-algebraic equations

(DAE’s). If, on the other hand, equations (4) and (5) are used

to define NFGPNN, then the description (6), i.e. a system of

implicit ordinary differential equations (implicit ODE’s), is

obtained. Obviously, these definitions are equivalent. Such

dynamical systems arise naturally as descriptions of analog

electronic circuits; when writing circuit equations, based on

Kirchoff’s laws, one usually obtains a system of implicit

ODE’s or a system of DAE’s. Recurrent neural networks

described by implicit dynamical systems have been proposed

in [46] and [47].

Two ways of realizing the proposed neural network are

given next, based on equations (4) and (5). The first realization

of NFGPNN, shown in Fig. 1, is a block diagram of the type

introduced in [46] and [47]. The second realization, depicted

in Fig. 2, is an ideal nonlinear analog circuit which makes use

of ideal ap amps, nonlinear voltage controled current sources

and nonlinear voltage controlled conductances. The values of

conductances)(xGi and)(ˆ xG j are taken to be:










m

j i

j

i ni
x

xh
xG

1

,...,1 ,
)(

)(,

and 








n

i i

j

j mj
x

xh
xG

1

,...,1 ,
)(

)(ˆ .

Then, writing nodal equations for the circuit of Fig. 2 we

obtain,


































))((

))((

)(

)(

0))((

))((I 1

T txh

txf

t

tx

txh

txh









.

4

 

)(f











)(h











x

ox


x

)(h
x

x

x



x

)(xh

)(xh
T)(xh

)(xh

)(xf



 

)(f











)(h











x

ox


x

)(h
x

x

x



x

)(xh

)(xh
T)(xh

)(xh

)(xf



Fig. 1. Block diagram realization of NFGPNN.

These are indeed equations (4) and (5) (or, equivalently,

equations (6)) of NFGPNN. It should be stressed that the ideal

circuit of Fig. 2 is given here simply in order to illustrate that,

in principle, a circuit realization of the proposed neural

network is feasible. Practical implementation of the circuit

would require investigations beyond the scope of this paper.

Note however that, for the special case of linearly constrained

optimization problems, ordinary linear conductors are only

required in Fig. 2.

 Next, we compare NFGPNN to existing Lagrangian neural

networks and to other dynamical systems proposed in the

literature for solving problem (P). The Lagrangian networks of

[13] and [14] are defined by the following differential

equations

    )()()()(ttxhtxftx  (9.1)

))(()(txht  (9.2)

and

    )()()(

)())(()(
))(),((

2

2

ttxhtxf

ttxhtx
x

ttxL











 
 (10.1)

 ))(()()(txhtxtxh 
  (10.2)

respectively. Partial similarities may be observed among

equations (4), (5), (9) and (10). More specifically, for

  , equation (4) reduces to equation (9.1) of [13], and

equation (5) reduces to equation (10.2) of [14]. However, in

contrast to (9) and (10), the variables  (t) of the proposed

dynamical system (4), (5) are non-dynamic variables. Indeed,

(4), (5) is a dynamical system described by implicit ordinary

differential equations (ODE’s), therefore it is substantially

different to both (9) and (10) which are dynamical systems

described by explicit ODE’s. In essence, equations (9.1), (9.2)

are gradient flows aiming to approach the sets D and F

respectively, and equations (10.1), (10.2) are Newton flows

with the same respective aims. On the other hand, NFGPNN

makes use of a gradient flow (equation (4)) in order to

approach the set D and of a Newton flow (equation (5)) in

order to satisfy the constraints. Thus the use of second

derivatives is avoided and fast convergence to the feasible set

is obtained. Therefore, if viewed as a Lagrangian system, the

proposed neural network differs substantially compared to

existing Lagrangian networks.

2

2)(

x

xh





+

_

n

m

x

xh



)(

1G

)(ˆ xGm

m

1

)(

x

xhm





2

)(

x

xhm





nx

G1(x)

+

_
1

1)(

x

xh





1

)(

x

xf





1G





)(ˆ
1 xG

1 1x

2

1)(

x

xh





1

2)(

x

xh



 1x

+

_
2x

nx

xh



)(2

nx

xh



)(1

2

)(

x

xf





1G

)(ˆ
2 xG

2

...
...

...
...

...
...

...
...

...
...

...
...


1C

...

G2(x)

Gn(x)

2x

nx

nx

xf



)(


1C


1C

)(1 xh

)(2 xh




)(xhm



2

2)(

x

xh





+

_

n

m

x

xh



)(

1G

)(ˆ xGm

m

1

)(

x

xhm





2

)(

x

xhm





nx

G1(x)

+

_
1

1)(

x

xh





1

)(

x

xf





1G





)(ˆ
1 xG

1 1x

2

1)(

x

xh





1

2)(

x

xh



 1x

+

_
2x

nx

xh



)(2

nx

xh



)(1

2

)(

x

xf





1G

)(ˆ
2 xG

2

...
...

...
...

...
...

...
...

...
...

...
...


1C

...

G2(x)

Gn(x)

2x

nx

nx

xf



)(


1C


1C

)(1 xh

)(2 xh



)(2 xh





)(xhm


)(xhm



Fig. 2: Ideal nonlinear circuit realization of NFGPNN.

 NFGPNN is more similar to the dynamical systems of [37],

[38]. The dynamical system analysed in [37] is the same as

equations (4), (5) with    . The dynamical system of

[38] also makes use of equation (5) with   , however it

employs curvature terms of f (.) and h(.) in equation (4), by

multiplying its left hand side by a positive definite matrix.

Local convergence results are proven in [37] and [38] for the

corresponding dynamical systems. Global convergence results

are obtained in [37] by assuming boundedness of the solutions.

We provide better local convergence results for NFGPNN, by

proving exponential stability of strict local minima of (P); in

comparison only asymptotic stability is proven in [37] and

[38]. In addition, we obtain strong global convergence results

for the case of convex problems in Section III-B, where both

boundedness and global convergence of the solutions is

proven; no such results are given in [37] or [38]. Finally,

NFGPNN is hardware impementable both as a circuit and as

an interconnection of function blocks, i.e. it is a neural

network and not a dynamical system integrated on a digital

computer.

In order to facilitate analysis of the proposed neural

network, we obtain next an explicit expression for the

differential-algebraic dynamical system which defines

NFGPNN. Let xoR
n
 be an arbitrary initial point and let

 oR
m
 be such that (xo o)R

n+m
 satisfies equation (8). We

define the set 

 

 ]1,0[any for),()(:

)()(:Y

o

o
]1,0[






axahxhRx

xahxhRx

n

n




 (11)

and we make the following assumption.

Assumption 1: (a) The functions f : R
n
 R, h i : R

n
 R,

i  1,…,m are continuously differentiable in R
n
. (b)

For any

xY the matrix h (x)  [h 1(x), h 2(x),…, h m(x)] T has

full rank.

Remark 1: Part (b) of Assumption 1 may appear to be too

strong. In fact this is a standard regularity assumption, which

corresponds to causality of the system, made in order to obtain

dynamical systems described by explicit ODE’s from DAE

descriptions (see e.g. [45]). Moreover, in the literature of

optimization algorithms, this is a standard assumption

5

associated with gradient projection methods (see e.g. [42, p.

331], [48, p. 190]).

 If (x(t), (t)) is a solution of the dynamical system (4), (8)

with initial point (x(0), (0))  (xo o) and if [0,) is its

maximal interval of existence, then equations (5) and (7) will

hold for every t [0,) (see also proof of Theorem 1). Hence

from (7), x(t)Y will hold t [0,). It then follows from

Assumption 1 that equation (8) can be solved for  (t) to give,

  







 ))(())(())(())(())(()(

1
txhtxftxhtxhtxht






 (12)

Replacement of  (t) from (12) into (4) yields the dynamical

system which determines NFGPNN in explicit form:

 ))(())(())(())((

))(())(()(
1T txhtxhtxhtxh

txftxPtx









 (13)

with initial condition
nRxx  o)0((14)

In equation (13), P(x(t)) is the well known projection matrix,

[42], which orthogonally projects an R
n
 vector onto the

nullspace of))((txh , i.e.

   )()()()()(
1

xhxhxhxhIxP (15)

Thus the right hand side of (13) consists of two components:

the first is an orthogonal projection of the cost gradient onto

the tangent plane of the constraints, and the second is a

Newton step aiming to establish feasibility of the constraints. It

is also noted that if the initial point xo is feasible, i.e. if

h(xo) 0, then it follows from (7) that h(x(t))  0, t [0,)

hence (13) and (14) reduce to )(tx P(x(t))))((txf ,

x(0)  xoF. It can be seen that these equations define a

continuous time version of Rosen’s gradient projection

algorithm, [42]. If, on the other hand, the initial point xo is not

feasible, then (13) can be considered as a continuous time

version of the algorithm proposed in [43].

 We close this section by considering inequality constrained

optimization problems (PI) of the following general form,

(PI)  ljxgmixhxf ji
Rx n

,...,1 ,0)(,,...,1 ,0)(:)(min 


where f , h i , i 1,…,m and g j , j 1,…,l are continuously

differentiable (not necessarily convex) functions. A simple

way to extend applicability of the proposed neural network in

order to solve problem (PI) is to transform the latter into the

following equality constrained optimization problem (PE),

(PE)












 ljyxg

mixhxf

jj

i

RyRx ln ,...,1 ,0)()(

,,...,1 ,0)(:)(
min 2

 ,

where y  [y1, y2, …, yl]
T
 is a vector of additional variables. It is

well known, [49, p. 286], that problems (PI) and (PE) are

equivalent in the following sense: x* is a local minimum of

(PI) if and only if (x*,y*) is a local minimum of (PE), where

2
1

))((xgy jj  , j 1,…,l. Thus local minima of (PI) may

be obtained by straightforward application of NFGPNN to

(PE) (see also Example 1 in Section V).

III. CONVERGENCE RESULTS

This section contains convergence results for the proposed

non-feasible gradient projection neural network (NFGPNN)

defined, in explicit form, by equations (13). First, local

convergence results are given in Section III-A where

exponential stability of strict local minimizers of problem (P)

is proven. In Section III-B global convergence results are

given for the case of convex optimization problems. Finally, in

Section III-C, the rate of convergence of NFGPNN is

examined.

A. Local Convergence Results

In this subsection we do not assume convexity of problem

(P). Our main result shows that strict local minimizers of

problem (P) are exponentially stable equilibrium points of

NFGPNN.

Theorem 1: Let the functions f : R
n
 R, h i : R

n
 R,

i  1,…,m be twice continuously differentiable in R
n
. Let

x*R
n
 be a local minimizer of problem (P) which satisfies

the sufficient conditions of optimality for (P) and assume that

x* is a regular point of the constraints (i.e. assume that

h 1(x), h 2(x),…, h m(x) are linearly independent). Then x*

is an exponentially stable equilibrium point of NFGPNN

described by equations (13) with initial condition (14).

Proof: The proof is given in the Appendix. 

B. Global Convergence Results for the Convex Case

We turn now to the convex version of problem (P), i.e. we

consider the following problem, denoted in the sequel as

problem (CP),

(CP)  0 :)(min 



bxAxf
nRx

 (16)

where f : R
n
 R is assumed to be a convex continuously

differentiable function, A an n m full rank matrix with m < n

and b an m vector. For such problems it is well known, [42]

that the set of desirable points D, the set of local minimizers

LM and the set of global minimizers G are identical, i.e.

D LM G. The following assumption is made for the convex

problem (CP).

Assumption 2: (a) The function f : R
n
 R is continuously

differentiable and convex in R
n
. (b) The n m matrix A (with

m < n) has full rank. (c) The set D of minimizers of problem

(CP) is nonempty.

Remark 2: This is a mild assumption. Part (b) is simply a

constraint qualification which excludes redundant constraints

from being present in the description of the feasible set F.

Furthermore, for a large part of the neural network literature

(see e.g. [14], [27], [31], [34], [36]), assumption 2(b) is a

standard assumption made when solving problems with linear

equality constraints.

When applied to problem (CP), the proposed dynamical

system (13) becomes:

))(()())(()(1T btxAAAAtxfPtx   (17)

where the projection matrix P  I A(A
T
A)

-1
A

T
 is now

independent of t.

6

The main objective of this section is to show that, under

mild assumptions, every solution of (17) with initial conditions

(14) is bounded and converges to a global minimum of (CP).

Theorem 2: Let Assumption 2 hold. Then every solution of

(17) with initial conditions (14) is bounded, extends to infinite

time and has limit points, each of which is a global minimizer

of problem (CP).

Proof : The proof is given in the Appendix. 

If f is assumed to be strictly convex and if D is nonempty,

then (CP) has a unique desirable point which is also a strict

local and global minimizer. Under these circumstances, the

following, stronger result is obtained as a direct consequence

of Theorem 2.

Corollary 2.1: If f is continuously differentiable and

strictly convex, if rank{A} m and if D is nonempty, then

every solution x(t) of (22) with initial conditions (14) is

bounded, extends to infinite time and converges to the unique

global minimizer x* of problem (CP), i.e.   *)(lim xtx
t




.

C. Rate of Convergence

In this subsection we show that, under mild assumptions,

the proposed neural network exhibits an exponential

convergence rate when applied to both the general problem (P)

and to the convex problem (CP).

In order to examine the rate of convergence of NFGPNN

for the general (not necessarily convex) problem (P), it is

assumed that NFGPNN generates a solution x(t) which extends

to infinite time and which converges to a strict local minimizer

x* of problem (P). In practice, these assumptions are almost

always satisfied when NFGPNN is applied to specific

examples of problem (P); in this sense they express the usual

operating conditions of the neural network. It is noted that

similar assumptions are made when examining the

convergence rate of discrete optimization algorithms (see [42],

[48] – [49]). Under these circumstances, Theorem 1 provides a

local exponential convergence rate. In the next Theorem we

extend this result to the entire solution x(t).

Theorem 3: Let Assumption 1 hold and let the functions

f : R
n
 R, h i : R

n
 R, i 1,…,m be twice continuously

differentiable in R
n
. Let x*R

n
 be a local minimizer of

problem (P) which satisfies the sufficient conditions of

optimality for (P). Let x(t) be a solution of (13) with initial

conditions (14) and assume that x(t) extends to infinite time

and converges to x*. Then the rate of convergence of x(t) is

exponential, i.e. there exist real numbers    and    such

that:)exp(*)(txtx   , 0t . (18)

Proof: Clearly the assumptions of Theorem 1 are satisfied,

therefore there exist T  0,     and    such that

 *)(xtx   exp)(t , t   . For the finite time interval

[0, we have:  


],0[:)exp(*)(max Tttxtx
Rt

    

where   exists and is finite from Weierstrass' theorem.

Hence  *)(xtx   exp)(t holds t [0,. Now (18)

follows immediately by taking  max{  ,  }. 

Similar results are obtained when NFGPNN is applied to

the convex problem (CP). However, in this case some of the

assumptions on the solution x(t) are redundant. Indeed, if

Assumption 2 holds, it follows from Theorem 2 that x(t) will

extend to infinite time. Furthermore, if f (x) is strictly convex

then any minimizer x* of (CP) is isolated, therefore the set D

contains a single point, D  {x*}, hence Theorem 2 yields that

x(t) will converge to x*. Thus we have proven the following:

Corollary 3.1: Let Assumption 2 hold, let the function

f : R
n
 R be twice continuously differentiable in R

n
, and let

x(t) be a solution of (17), (14). Assume either that f (x) is

strictly convex, or that x(t) converges to a minimizer x* of

(CP). Then the rate of convergence of x(t) is exponential, i.e.

there exist real numbers    and    such that

)exp(*)(txtx   , 0t . 

Numerical results given in the next section confirm the

exponential convergence rate of NFGPNN on both convex and

non-convex problems.

IV. SIMULATION RESULTS

Performance of the proposed neural network is evaluated by

using MATLAB to simulate its response for several test

problems. The simulation is based on the block diagram of

Fig. 1, i.e. on equations (4) and (5).

Example 1: This was originally, [24], a non-convex two

dimensional bound-constrained optimization problem, which

we converted to an equality constrained problem by adding the

variables x3 and x4. Thus a problem with n  4 variables and

m  2 constraints was obtained.

 













 01

,01 :)sin()cos(
min

2

4

2

2

2

3

2

1

2

1221

4 xx

xxxxxx

Rx

 (19)

This problem has an infinite number of global minimizers

including the set X * {xR
4
: x1  0, x3

2
 1, x2

2
 x4

2
1 0}.

In Fig.3a the solution x(t) obtained from the non-feasible

initial point xo  [-2 -2 1 1] T
 is shown. The final point

obtained at the end of the simulation time was [0 -0.99666138

1.00008951 0.08273509]

 which is close to the global

minimizer x* [0 -0.99657218 1 0.08271768] T
. In this

example, the solution x(t) converges to a particular global

minimizer x*X *, although the set X * is a continuum of

global minimizers. Figure 3b shows cost function convergence

to zero; since the initial point xo is not feasible, f (x(t)) is non-

monotonic. In Fig. 3c, log10(dist(x(t), X *)) is plotted as a

function of time, where dist(x(t), X *) 


ytx
Xy

)(min
*

   
2

1
2

3

2
2

4

2

2

2

1 1)(1)()()(




  txtxtxtx is the distance

of x(t) from the set X *. An exponential decrease is clearly

observable, although one of the assumptions of Theorem 3 is

not satisfied (x* does not satisfy sufficient conditions of

optimality). The values     were used for compatibility

with [24].

Trajectories obtained by NFGPNN from 1000 random

initial points with elements xoi [-1, 1], i   are plotted (in

the (x1, x2) plane) in Fig. 3d. As in [24], convergence is

observed to various minimizers which belong to the continuum

of global minimizers of the problem. An additional random

experiment was conducted with 10000 random initial points in

7

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

time

s
o

lu
tio

n
 x

(t
)

x
2
(t)

x
1
(t)

x
4
(t)

x
3
(t)

(a)

0 0.2 0.4 0.6 0.8 1
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

time

lo
g

1
0
(d

is
t(

x
(t

),
X

*)
)

log
10

(dist(x(t), X*))

(c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

time

f(
x
(t

))

f(x(t))

(b)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

(d)

Fig. 3. Simulation results for Example 1: (a) Solution x(t), (b) Convergence of the cost function, (c) log10(dist(x(t), X *)) as a function of time, (d) Trajectories

obtained from 1000 random initial points.

the same intervals as above. As in [24], for each trajectory, a

final cost value not greater than 10
-6

 was considered to be a

criterion of successful solution of the problem. Only 14

failures were recorded with NFGPNN. This corresponds to a

success rate of 99.86% and compares favorably with the

published results for the neural network of [24] (65 failures,

i.e. a success rate of 99.35%).

Example 2: This example is a nonconvex problem with

n 3 variables and m 1 nonlinear constraint:

 0 :)(min 3

2

2

2

13




xxxxf
Ry

,

 where

 




















































1 ,0

0 1

,
1

1
sin

21

1
cos

2
11

)(

3

33

33

1

33

24

3

xif

xandxif

xx

x

xx

x
x

xf

The origin of this problem can be traced in a two dimensional

unconstrained example from [49]. The cost function f :  R

is continuously differentiable in its domain   {xR
3
:

x 3 > 0}. Minimizers of this problem contain the set

X * {xR
3
: x3  1, x1

2
 x2

2
1 0}.

Starting from the non-feasible initial point xo  [222] T
,

the solution x(t) depicted in Fig. 4a is obtained. Figure 4b

shows the corresponding trajectory, in the (x1, x2) plane. It can

be observed both from Fig. 4a and from Fig. 4b that the

solution x(t) does not appear to converge to any particular

point in X *; instead x(t) seems to contain subsequences which

converge to every point in X *. Thus it appears that, for this

example, the set 

 of limit points of x(t) satisfies 


X *, i.e.

the solution x(t) seems to converge to the entire set X *. In Fig.

4c, the distance of x(t) from the set X *: *))),((dist(log10 Xtx

     
2

1
2

3

2
2

2

2

110
*

10 1)(1)()(log)(minlog




 


txtxtxytx

Xy

is plotted as a function of time; the rate of decrease does not

appear to be exponential. However this does not contradict the

results of Section IV since in this example, at least one of the

assumptions (i.e. that x* satisfies sufficient conditions of

8

0 10 20 30 40 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
s
o

lu
tio

n
 x

(t
)

x
1
(t)

x
3
(t)

x
2
(t)

time

(a)

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
1

x
2

(b)

0 10 20 30 40 50
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

time

lo
g

1
0
(d

is
t(

x
(t

),
X

*)
)

log
10

(dist(x(t), X*))

(c)

Fig. 4. Simulation results for Example 2: (a) Solution x(t), (b) Trajectory of

x(t) in the (x1,x2) plane, (c) log10(dist(x(t), X *)) as a function of time.

optimality) of Theorem 3 is not satisfied. The values

   were used.

I. CONCLUSIONS

In this paper a recurrent neural network is proposed for

equality constrained nonlinear optimization problems. When

started from a feasible initial point, the proposed neural

network (NFGPNN) constructs a feasible trajectory, satisfying

the constraints at all times. In the usual case however, when

the initial point is non-feasible, NFGPNN constructs a non-

feasible trajectory, which satisfies the constraints only in the

limit as t . To reduce the cost function, a projection of the

cost gradient onto the tangent space of the constraints is used.

Local convergence results are given for the general case

(i.e. without assuming convexity of the problem to be solved)

which show that strict local minimizers of the optimization

problem (P) are exponentially stable equilibrium points of

NFGPNN. Global convergence results are given for convex

optimization problems: solutions of NFGPNN emanating from

arbitrary initial points are shown to convergence to the set of

global minimizers of the optimization problem. The rate of

convergence of the proposed neural network is shown to be

exponential, both for convex and non-convex problems.

Numerical results confirm these findings and indicate that

NFGPNN is both efficient and accurate.

APPENDIX

Proof of Theorem 1: We first note that since x* is a regular

point and)(xhi , i  1,…,m are continuous, there exists a

neighborhood N(x*,)  {xR
n

 *: xx } of x*, such that

the gradients)(xhi , i  1,…,m are linearly independent

xN(x*,). Thus Assumption 1 holds for every xN(x*,)

therefore, within N(x*,), NFGPNN is well defined (in explicit

form) by equations (13). In this proof, xN(x*,) will be

assumed, unless otherwise stated. Also, the Euclidean norm of

a vector y is denoted simply as y .

We shall obtain some useful bounds and, based on these, we

shall define a Lyapunov function which satisfies the

assumptions of a well known theorem, [50, Theorem 4.10, p.

154], on exponential stability.

Let L(x,   f(x)+
T
h (x) be the Lagrangian function for

problem (P) and let * R
m
 be the Lagrange multipliers

corresponding to x*, so that we have

0**)(*)(*)*,(  xhxfxL (20)

Since 0)()( xhxP we obtain

  *),()(*)()()()()( xLxPxhxfxPxfxP  (21)

Taylor expansion of *),()(xLxP  around x* yields

 )*(*)(*),()(

),(*)(*),()(
T

*
xxoxxxLxP

xLxPxLxP

xx








 (22)

Let p
i
(x)

T
R

n
, i  1,…,n denote the i

th
 row of the n n matrix

P(x). Differentiation of p
i
(x)

T
*),(xL with respect to x

gives, in view of (20),

 
*

2

2

*

T)(
*),(

),()(),()(
xx

iixxi xp
x

xL
xLxpxLxp


 

















 *)(
),(

2

2

xp
x

xL
i








9

Hence

 

    

*)(
),(

),()(,,),()(

*),()(

*),()(

*),()(

T

2

2
*

TT

1

*

T

T

1

*

xP
x

xL

xLxpxLxp

xLxp

xLxp

xLxP

xxn

xx
n

xx















































 (23)

From (20) – (23) it follows that

 **)(
),(

*)()()(
2

2

xxoxx
x

xL
xPxfxP 







 (24)

Let F be a)(mnn  full rank matrix such that  h (x*)
T
F 0

and F
T
F  In-m. Such a matrix F can be easily obtained as part

of the QR decomposition of the matrix  h (x*)
T
. It is easy to

show that:
Τ*)(FFxP 

(25)

Let the n n symmetric matrix B (x) be defined as follows,

  Τ1Τ)()()()()(xhxhxhxhxB 


 (26)

From the definition (15) of P (x), (25) and (26) we obtain,

 
*)(

)()(*)(*)(
T

Τ1ΤT

xBFF

xhxhxhxhFFIn






 (27)

Then (27) yields

))((*)(**)(Τ22Τ xxxBxxxxxxF  (28)

Now, from (13), (24) and (25) we get (where x stands for x(t)

in the right hand sides of the equations that follow),

   *)()()()(

*)(
),(*))((

1Τ

2

2
T

xxoxhxhxhxh

xx
x

xL
FF

dt

xtxd

















 (29)

Premultiplication by (xx *)
T
 and replacement of In from

(27) into the right-hand-side yields

 

   

 

     ***)(
),(

*

)()()()(*)(

*
),(

*

*))((
*)(

*)(

2

1

2

2
ΤΤ

1ΤT

Τ

2

2
ΤΤ

Τ

2

xxoxxxB
x

xL
FFxx

xhxhxhxhxx

xxFF
x

xL
FFxx

dt

xtxd
xtx

dt

xtxd































(30)

Let  be the minimum eigenvalue of the matrix

F
x

xL
F

2

2
T *)*,(



 
. Since x* satisfies the sufficient conditions of

optimality for problem (P), it follows that > 0 therefore we

have

     
2

2

2

* *
),(

* xxFxxFF
x

xL
FFxx 




 




 (31)

Making use of (30), (31) and (28) we obtain, after simple

algebra,

   

 )*()()()()(*)(

**)(**
*)(

2

1

21ΤT

TΤ2
2

xxoxhxhxhxhxx

xxxhWxxxx
dt

xtxd










 (32)

where,

   1

2

2

)()(*)(
),( 











 xhxhxh

x

xL
FFIW n


 .

 Next, we seek bounds for the terms on the right hand side of

(32). Taylor expansion of h (x) around x gives h (x*)  h (x)+

   **)(xxoxxxh   , and, since h (x*)  0,

    *)(*)(xxoxhxxxh   (33)

Similarly, Taylor expansion of h (x) around x* gives h (x) 

   ***)(*)(xxoxxxhxh   , hence, since h (x*)  0,

   *)(**)(xxoxhxxxh   (34)

Since the matrix B (x) is positive semidefinite xN(x*,), it

follows from (33) that,

 

)*(

)*(*))((*)(

)()()()(*)(

2

2T

1ΤT

xxo

xxoxxxBxx

xhxhxhxhxx












 (35)

If
F

W , it follows from (34) that,

     
)*()(*

)*()(***)(*
2

2ΤTΤ

xxoxhxx

xxoxhWxxxxxhWxx






 (36)

Then, from (32), (35) and (36) we obtain,

)*()(**
*)(

2

1 22
2

xxoxhxxxx
dt

xtxd



 (37)

Also, from the definition of o(.), it follows that given any

 (0,), there exists),0(ˆ   such that)*(
2

xxo 

2
xx   holds)ˆ,(xNx . Hence we obtain from (37),

)ˆ*,(

,)(**)(
*)(

2

1 2
2





xNx

xhxxxx
dt

xtxd






 (38)

 We shall now define a suitable Lyapunov function

V : R
n
 R as follows

22
)(

2
*

2

1
)(xh

c
xxxV 

where the parameter c  0 will be determined in the sequel. It

follows from (34) and the definition of o(.) that there exist

01 k and)ˆ,0(~   such that

2

1

2
)(

2

1
xxkxVxx  ,)~*,(xNx (39)

It follows from (5) that    )()(txhtxh  , 0t ; hence

(38) yields,

22
)()(**)(

))((
xhcxhxxxxa

dt

txdV
  ,

)~*,(xNx (40)

Then, by choosing),0(  and 0
4

2





c , we

obtain from (40),

2

2

*)()(
2

*
))((

xxaxhxx
dt

txdV














 






2
)(xxa   ,)~,(xNx (41)

Conditions (39) and (41) ensure that the function V (x) defined

above satisfies the assumptions of [50, Theorem 4.10, p. 154].

10

This implies exponential stability of x* and completes our

proof. 

Proof of Theorem 2: (a) Boundedness of the solutions. We

shall first show that any solution x(t) of (22) is bounded. Let

x* R
n
 be any minimizer of problem (CP). Then we have

A
T

x* 0b and (17) may be written as,

     *)()()(
1

xtxAAAAtxfPtx   (42)

Let the function V : R
n
 R (with 0c) be defined as,

 
1

2

2
**

2
)()(xxAcxxxfxV  




 (43)

First we prove that x(t) is a descent solution for the function

)(xV , i.e. that 0))((txV , 0t . Premultiplication of (17)

by A
T

 gives A
T

)(tx (A
T
x(t))b which upon integration

yields (7) with h (x) A
T
x(t) b A

T
(x x*), i.e.

   *)exp(*)(o

TT xxAtxtxA   (44)

It then follows from (43) and (44),

     
1o

2

2
)exp()(

2
)()(xxAtcxtxtxftxV  





hence

     

 
1o

TT

*)exp(

)(*)()()()(

xxAtc

txxtxtxtxftxV












 (45)

Let B A(A
T

A)
-1

A
T

 and let x stand for x(t). From (45), (42)

and (44) we obtain,

 

1

Τ

T
2

T

TT

*)(

)()()(*)(

*)()()()()(

xxAc

xxBxxxfPxx

xxBxfxfPxftxV
















and, since P + B  I, P P
T

P, B B
T

B, we get

 

1

2

2

2

2

2

)()(

*)()()()(

xxAcxxB

xxxfxfPtxV
















 (46)

As f (x) is convex it follows that   0*)()(*)(  xfxfxx ,

xR
n
 (see e.g. [49]). Hence, since 0*)( xfP , we have

)()(

)()()()(*)(

xfBxx

xfBPxxxfxx








 (47)

An upper bound is obtained for the expressions in (47) by

using norm properties:

22

T

F

1T

22

)()(

)(*)(*)(*)(*)(

xfxxA

AAAxfxxBxfBxx



 

 therefore there exists 0 such that

21

T *)(*)(*)(*)(xfxxAxfBxx    (48)

It now follows from (46), (47), (48) that, for
2

*)(xfc  ,

    0*)(*)()()(
21

2

2
  cxfxxAxfPtxV  .

Thus it holds

 )()(oxVtxV  , 0t (49)

i.e. the solution x(t), t  0 is contained in the V (xo) level set

of the function V (x). We next show that this level set is

bounded. A lower bound for f (x) is obtained by using a

property of convex functions, [49], and the facts P + B  I and

0*)( xfP :

)()(*)(

)()()(*)(

)()(*)()(

xfBxxxf

xfBPxxxf

xfxxxfxf













It then follows from the above bound and equations (49), (48),

(43) that, for
2

*)(xfc  , and 0t :

   

 
2

2

12

1

2

2

T

o

*)(
2

))(()(*)(

))(()(
2

)()(*)()()(

xtx

xtxAxfcxf

xtxAcxtx

xfBxtxxftxVxV























 (50)

Let the function g : R
n
 R be defined as g (x)  f (x*) +

2

21
*

2
*)(~ xxxxA  




 , where

2
*)(~ xfc  

0 . Then, by (50), the solution x (t) is contained (t  0) in

the V (xo) level set of the function g (x) . Moreover, g (x) is a

strictly convex function with a unique minimum at x*, hence

every level set of g (x) is bounded, [49, Prop. B.9, p. 569].

This proves boundedness of the solution x(t).

(b) Convergence. To prove the remaining conclusions of the

Theorem, let 

 be the positive limit set of x(t). Since x(t) is

bounded, 

 is nonempty, [51, Theorem 4, p. 364], and the

maximal interval of existence of x (t) is  ,0 , [51, ex. 6, p.

365]. It then follows from (44) that   


*)(lim T xtxA
t

  0)(lim T 


btxA
t

, i.e. F (51)

where F is the set of feasible points for problem (P) defined in

(2).

Since, by (3), F'DD  , it remains to show that D' . We

shall do so by applying LaSalle’s theorem [51, Theorem 3.2, p.

243] to the dynamical system (17). Let the function W (x) be

defined as
1

T)()(bxAcxfxW  , where 0c will be

determined in the sequel. It follows from (7) (see also (44))

that
1o

T

1

T)exp()(bxAtbtxA   , hence the function

   

 
1o

T
1

T

)exp()(

)()()(

bxAtctxf

btxActxftxW







is differentiable with respect to t . Then

   

 
1

T

1o

T

)()()(

)exp()()(

btxActxtxf

bxAtctxf
dt

d
txW














 Replacing x from (17) into the above we obtain,  xR
m
 ,

 









m

i
i bxAec

bxAAAAxfxfPxfxW

1

TT

T1

)(

)()()()()(





i.e.,

11

  )()(sgn

)()()(

TT
1

TT2

2

xbxAec

bxAexfPxW

ii

m

i
i







 



 (52)

where the fact P P
T

P has been used, and  : R
n
 R

m
 is

defined by  (x)  (A
T

A)
-1

A
T

)(xf . Let the set X  R
n
 be

defined as    ,0 :)(X ttx . It follows from [51, Theorem

5, p. 365], that the set  ΛXX is compact. It also follows

from Assumption 1 that  (x) defined above is a continuous

function, hence, Weierstrass’ theorem yields that the quantities

 X :)(max  yyc i
y

i  , i 1,…,m exist and are finite. Now,

by choosing },,,max{ 21 mcccc  we obtain

0)()}(sgn{ TT
 xbxAec ii  , Xx , hence (52) yields

0)()(
2

2
 xfPxW  , Xx . Since D x iff

0)( xfP , it follows from LaSalle’s Theorem and the

definitions of D' and P that

  D'0)(:  xfPRx n (53)

Now (51), (53) and (3) yield the desired result. 

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their

comments which have greatly improved the manuscript. In

particular the authors are grateful to reviewer #4 for bringing

some important references to their attention.

REFERENCES

[1] D.W. Tank and J.J. Hopfield, “Simple neural optimization networks: an

A/D converter, signal decision circuit, and a linear programming

circuit”, IEEE Trans. Circuits and Systems, vol. 33, pp. 533-541, 1986.

[2] L.O. Chua and G.-N. Lin, “Nonlinear programming without

computation”, IEEE Trans. Circuits and Systems, vol. 31, pp. 182-188,

1984.

[3] M.P. Kennedy and L.O. Chua, “Unifying the Tank and Hopfield linear

programming circuit and the canonical nonlinear programming circuit

of Chua and Lin”, IEEE Trans. Circuits and Systems, vol. 34, pp. 210-

214, 1986.

[4] W.E. Lillo, M.H. Loh, S. Hui, and S.H. Zak, “On solving constrained

optimization problems with neural networks: a penalty method

approach”, IEEE Trans. Neural Networks, vol. 4, pp. 931-940, 1993.

[5] A. Rodriguez-Vazquez, R. Dominguez-Castro, A. Rueda, J.L. Huertas,

and E. Sanchez-Sinencio, “Nonlinear switched-capacitor neural

networks for optimization problems”, IEEE Trans. Circuits and

Systems, vol. 37, pp. 384-398, 1990.

[6] W.E. Lillo, S. Hui, and S.H. Zak, “Neural networks for constrained

optimization problems”, Int. J. of Circuit Th. and Appl., vol. 21, pp.

385-399, 1993.

[7] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and

Signal Processing, John Wiley & Sons, 1993.

[8] S.H. Zak, V. Upatising, and S. Hui, “Solving linear programming

problems with neural networks: a comparative study”, IEEE Trans.

Neural Networks, vol. 6, pp. 94-103, 1995.

[9] E. Chong, S. Hui, and S.H. Zak, “An analysis of a class of neural

networks for solving linear programming problems”, IEEE Trans.

Automatic Contr., vol. 44, pp. 1995-2006, 1999.

[10] M. Forti, P. Nistri, and M. Quincampoix, “Generalized neural network

for nonsmooth nonlinear programming problems”, IEEE Trans. Circuits

Syst. I, Reg. Papers, vol.51, no. 9, pp. 1741-1754, 2004.

[11] M. Forti, P. Nistri, and M. Quincampoix, “Convergence of Neural

Networks for programming problems via a nonsmooth Lojasiewicz

inequality”, IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1471-

1486, 2006.

[12] P.T. Krasopoulos and N.G. Maratos, “A neural network for convex

optimization”, in Proc. ISCAS 2006, pp.747-750, 2006.

[13] S. Zhang and A.G. Constandinides, “Lagrange programming neural

networks”, IEEE Trans. Circuits Syst. II, vol. 39, pp. 441-452, July

1992.

[14] S. Zhang, X. Zhu and L.-H. Zou, “Second-order neural nets for

constrained optimization”, IEEE Trans. Neural Networks, vol. 3, pp.

1021-1024, Nov. 1992.

[15] Y. Xia, “Global convergence analysis of Lagrangian networks”, IEEE

Trans. Circuits Syst. I, vol. 50, pp. 818-822, June 2003.

[16] A. Bouzerdoum and T. Pattison, “Neural network for quadratic

optimization with bound constraints”, IEEE Trans. Neural Networks,

vol. 4, pp. 293-304, 1993.

[17] S. Sudharsanan and M. Sundareshan, “Exponential stability and a

systematic synthesis of a neural network for quadratic minimization”,

Neural Networks, vol. 4, pp. 599-613, 1991.

[18] Y. Xia, “A new neural network for solving linear and quadratic

programming problems”, IEEE Trans. Neural Networks, vol. 7, pp.

1544-1547, Nov. 1996.

[19] Y. Xia and J. Wang, “A recurrent neural network for solving linear

projection equations”, Neural Networks, vol. 13, pp. 337-350, 2000.

[20] Y. Zhang and J. Wang, “A dual neural network for convex quadratic

programming subject to linear equality and inequality constraints”,

Physics Letters A, vol. 298, pp. 271-278, 2002.

 [21] Y. Xia, G. Feng, and J. Wang, “A recurrent neural network with

exponential convergence for solving convex quadratic program and

related linear piecewise equations”, Neural Networks, vol.17, pp. 1003-

1015, 2004.

[22] X.-B. Gao, L.-Z. Liao, and W. Xue, “A neural network for a class of

convex quadratic minimax problems with constraints”, IEEE Trans.

Neural Networks, vol. 15, no. 3, pp. 622-628, 2004.

[23] Y. Xia and J. Wang, “A general methodology for designing globally

convergent optimization neural networks”, IEEE Trans. Neural

Networks, vol. 9, no. 6, pp. 1331-1343, 1998.

[24] X.-B. Liang and J.Wang, “A recurrent neural network for nonlinear

optimization with a continuously differentiable objective function and

bound constraints”, IEEE Trans. Neural Networks, vol. 11, no.6, pp.

1251-1262, 2000.

[25] Y. Xia, H. Leung, and J. Wang, “A projection neural network and its

application to constrained optimization problems”, IEEE Trans.

Circuits Syst. I, vol. 49, no. 4, pp. 447-458, 2002.

[26] Q. Tao, J. Cao, M. Xue, and H. Qiao, “A high performance neural

network for solving nonlinear programming problems with hybrid

constraints”, Physics Letters A, vol. 288, no. 2, pp. 88-94, 2001.

[27] X.-B. Gao, “A novel neural network for nonlinear convex

programming”, IEEE Trans. Neural Networks, vol. 15, no.3, pp. 613-

621, 2004.

[28] Y. Xia and J. Wang, "A recurrent neural network for solving nonlinear

convex programs subject to linear constraints”, IEEE Trans. Neural

Networks, vol. 16, no. 2, pp. 379-386, 2005.

[29] X.-B. Gao, “Exponential stability of globally projected dynamic

systems”, IEEE Trans. Neural Networks, vol. 14, no.2, pp. 426-431,

2003.

[30] Y. Xia and J. Wang, “A general projection neural network for solving

monotone variational inequality and related optimization problems”,

IEEE Trans. Neural Networks, vol. 15, no. 2, pp. 318-328, 2004.

[31] X.-B. Gao, L.-Z. Liao and L. Qi, “A novel neural network for variational

inequalities with linear and nonlinear constraints”, IEEE Trans. Neural

Networks, vol. 16, no. 6, pp. 1305-1317, 2005.

[32] X. Hu and J. Wang, “Solving pseudomonotone variational inequalities

and pseudoconvex optimization problems using the projection neural

network”, IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1487-1499,

2006.

[33] X. Hu and J. Wang, “Solving generally constrained generalized linear

variational inequalities using the general projection neural networks”,

IEEE Trans. Neural Networks, vol. 18, no. 6, pp. 1697-1708, 2007.

[34] Y. Leung, K.-Z. Chen, Y.-C. Jiao, X.-B. Gao, and K. S. Leung, “A new

gradient-based neural network for solving linear and quadratic

programming problems”, IEEE Trans. Neural Networks, vol. 12, no. 5,

pp. 1074-1083, 2001.

12

[35] S. Liu and J. Wang, “A simplified dual neural network for quadratic

programming with its KWTA application”, IEEE Trans. Neural

Networks, vol. 17, no. 6, pp. 1500-1510, 2006.

[36] Y. Leung, K.-Z. Chen, and X.-B. Gao, “A high-performance feedback

neural network for solving convex nonlinear programming problems”,

IEEE Trans. Neural Networks, vol. 14, no. 6, pp. 1469-1477, 2003.

[37] K. Tanabe, “A geometric method in nonlinear programming”, J. of

Optimization Th. and Appl., vol. 30, no.2, pp. 181-210, 1980.

[38] H. Yamashita, “A differential equation approach to nonlinear

programming”, Mathematical Programming, vol.18, pp. 155-168, 1980.

[39] V. Hemke and J.B. Moore, Optimization and Dynamical Systems,

Springer-Verlang, London, 1994.

[40] L.-Z. Liao, H. Qi and L. Qi, “Neurodynamical optimization”, J. of

Global Optimization, vol. 28, pp. 175-195, 2004.

[41] M. Barbarosou and N.G. Maratos, “A non-feasible gradient projection

recurrent neural network for equality constrained optimization”, in

Proc. IJCNN 2004, pp.2251-2256, 2004.

[42] D.G. Luenberger, Linear and Nonlinear Programming, Addison-

Wesley, 1984.

[43] D. Q. Mayne and N. Maratos, “A first order, exact penalty function

algorithm for equality constrained optimization problems”,

Mathematical Programming, vol. 16, pp. 303-324, 1979.

[44] F.H. Branin, “Widely convergent method for finding multiple solutions

of simultaneous nonlinear equations”, IBM Journal of Research and

Development, vol. 16, pp.504-521, 1972.

[45] H.G. Kwatny, R.F. Fischl and C.O. Nwankpa, “Local bifurcation in

power systems: theory, computation, and application”, Proceedings of

the IEEE, vol. 83, no. 11, pp. 1456-1483, 1995.

[46] Y. Zhang, D. Jiang and J. Wang, “A recurrent neural network for

solving Sylvester equation with time – varying coefficients”, IEEE

Trans. Neural Networks, vol. 13, no. 5, pp. 1053-1063, 2002.

[47] Y. Zhang and S.S. Ge, “Design and analysis of a general recurrent

neural network model for time – varying matrix inversion”, IEEE Trans.

Neural Networks, vol. 16, no. 6, pp. 1477-1490, 2005.

[48] E. Polak, Optimization Algorithms and Consistent Approximations,

Springer-Verlag New York, 1997.

[49] D. Bertsekas, Nonlinear Programming, Athena Scientific, 1995.

[50] H.K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 2002.

[51] N. Rouche, P. Hebets, and M. Laloy, Stability Theory by Liapunov’s

Direct Method, Springer-Verlag, New York, 1977.

Maria P. Barbarosou recieved the B.Sc. degree in

Physics from the University of Athens, Creece, in

1996, the M.Sc. degree in Applied Mathematics and

the Ph.D. degree in Neural Networks, both from the

National Technical University of Athens, Greece, in

2004 and 2008 respectively.

From 1997 to 1999 she was with the Institute of

Accelerating Systems and Applications (IASA), in

Athens, working on the implementation of the

control system for the IASA microtron. Since 1998,

she is working in the Department of Electronics, Technological Educational

Institute of Piraeus, Creece, as a teaching and research cooperator. Her

research interests include neural networks, systems theory and state

estimation.

Nicholas G. Maratos (M’06) received the Diploma

in Electrical and Mechanical Engineering from the

National Technical University of Athens, Greece in

1973, the M.Sc. degree in Control Systems and the

Ph.D. degree in Optimization, from Imperial

College of Science and Technology, London, UK, in

1974 and 1978 respectively.

 From 1980 to 1983 he was a Postdoctoral

Research Assistant in the CAD Group, Dept. of

Electrical Engineering, Imperial College of Science

and Technology, London. In 1985 he joined the School of Electrical and

Computer Engineering, National Technical University of Athens, Greece,

where he is currently a Professor. His research interests include nonlinear

optimization (theory, algorithms, and applications), computer-aided design of

electrical circuits, and neural networks.

