About
9
Publications
3,146
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
200
Citations
Introduction
Skills and Expertise
Current institution
TB Raab GmbH
Publications
Publications (9)
Current estimates of temperature effects on plants mostly rely on air temperature, although it can significantly deviate from leaf temperature (Tleaf). To address this, some studies have used canopy temperature (Tcan). However, Tcan fails to capture the fine‐scale variation in Tleaf among leaves and species in diverse canopies.
We used infrared rad...
Plants face a trade‐off between hydraulic safety and growth, leading to a range of water‐use strategies in different species. However, little is known about such strategies in tropical trees and whether different water‐use traits can acclimate to warming.
We studied five water‐use traits in 20 tropical tree species grown at three different altitude...
The productivity and climate feedbacks of tropical forests depend on tree physiological responses to warmer and, over large areas, seasonally drier conditions. However, knowledge regarding such responses is limited due to data scarcity. We studied the impact of growth temperature on net photosynthesis (An), maximum rates of Rubisco carboxylation at...
The effect of temperature change on leaf physiology has been extensively studied in temperate trees and to some extent in boreal and tropical tree species. While increased temperature typically stimulates leaf CO2 assimilation and tree growth in high-altitude ecosystems, tropical species are often negatively affected. They may operate close to thei...
Warming climate increases the risk for harmful leaf temperatures in terrestrial plants, causing heat stress and loss of productivity. The heat sensitivity may be particularly high in equatorial tropical tree species adapted to a thermally stable climate.
Thermal thresholds of the photosynthetic system of sun‐exposed leaves were investigated in thre...
The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical mon...
Tropical climates are getting warmer, with pronounced dry periods in large areas. The productivity and climate feedbacks of future tropical forests depend on the ability of trees to acclimate their physiological processes, such as leaf dark respiration (Rd), to these new conditions. However, knowledge on this is currently limited due to data scarci...