
Maria Helena Macedo- PhD
- Research Fellow at International Iberian Nanotechnology Laboratory
Maria Helena Macedo
- PhD
- Research Fellow at International Iberian Nanotechnology Laboratory
Research Fellow in in vitro intestinal models
About
20
Publications
12,575
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
689
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (20)
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell‐based in vitro m...
The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a m...
Obesity is associated with metabolic and physiological effects in the gut. In this study,
we evaluated the anti-inflammatory effect of trypsin inhibitor isolated from tamarind seeds (TTI) in vitro (interaction with lipopolysaccharide (LPS) and inhibitory activity against human neutrophil elastase (HNE)), and using intestinal co-cultures of Caco-2:H...
Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic...
In vitro cell-based models have been used for a long time since they are normally easily obtained and have an advantageous cost-benefit. Besides, they can serve a variety of ends, from studying drug absorption and metabolism to disease modeling. However, some in vitro models are too simplistic, not accurately representing the living tissues. It has...
Colorectal cancer (CRC) is a heterogeneous and molecularly complex disease, associated with high mortality worldwide, exposing the urgent need for novel therapeutic approaches. Their development and translation to the clinic have been hampered, partially due to the absence of reliable cellular models that resemble key features of the human disease....
The oral administration of drugs remains a challenge due to rapid enzymatic degradation and minimal absorption in the gastrointestinal tract. Mechanical forces, namely hypergravity, can interfere with cellular integrity and drug absorption, and there is no study describing its influence in the intestinal permeability. In this work, it was studied t...
The small intestine is the primary site of drug absorption following oral administration, making paramount the proper monitoring of the absorption process. In vitro tools to predict intestinal absorption are particularly important in preclinical drug development since they are less laborious and cost-intensive and raise less ethical considerations...
Insulin is a protein macromolecule used to treat diabetes mellitus. Currently, insulin requires multiple daily subcutaneous (SC) injections to control blood sugar in diabetics. Thus, reducing the patients’ compliance and adherence to medication as SC route is invasive. Insulin is poorly absorbed through intestinal epithelium because it is a large a...
The progressive loss of renal function in chronic kidney disease (CKD) leads to the accumulation of uremic toxins. Recent studies related uremic plasma as well dysbiotic gut microbiome to impaired intestinal barrier function, allowing the translocation of microorganisms or by-products from the intestinal lumen to systemic circulation, contributing...
The traditional intestinal models used to evaluate permeability are based on cell monolayers seeded on Transwell insert systems. However, these 2D monocultures are normally static, lack the intestinal architecture, do not represent the different intestinal cell types and the expression of drug transporters and metabolizing enzymes are different fro...
Nanoparticle-based mucosal drug delivery is a promising method to increase the residence time of a drug in the mucosa. It is known that the stability of polysaccharide-based nanoparticles in aqueous solutions is limited, due to hydrolysis; hence the long-term stability of a formulation is usually improved by freeze-drying. The aim of this study was...
This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids,...
Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic...
In recent decades, collagen is one of the most versatile biomaterials used in biomedical applications, mostly due to its biomimetic and structural composition in the extracellular matrix (ECM). Several attempts are proposed for designing innovative collagen‐based biomaterials and applying them in tissue regeneration. The regeneration of different t...
The increased understanding of molecular aspects associated with chronic diseases, such as cancer and the role of tumor microenvironment, has led to the identification of endogenous and exogenous stimuli that can be exploited to devise “stimuli-responsive” materials for site-specific drug delivery applications. This book provides a comprehensive ac...
Intestinal cell models have been widely studied and used to evaluate absorption and metabolism of drugs in the small intestine, constituting valuable tools as a first approach to evaluate the behavior of new drugs. However, such cell models might not be able to fully predict the absorption mechanisms and metabolic pathways of the tested compounds....
Modulation of endogenous adult stem cell niches represents a promising strategy for regeneration of tissues and to correct cell abnormalities, including cancer. Recent advances show the possibility to target endogenous stem cells or their progenies by using nanoparticles conjugated with specific biomolecules. In addition, the targeting of the stem...
The intracellular delivery of nanomaterials and drugs has been attracting increasing research interest, mainly because of their important effects and functions in several organelles. Targeting specific organelles can help treat or decrease the symptoms of diabetes, cancer, infectious, and autoimmune diseases. Tuning biological and chemical properti...
Questions
Question (1)
I want to quantify the mucus produced by HT29-MTX cells and I don't know what are the best methods to perform this quantification.