Maria Jose Escorihuela

Maria Jose Escorihuela
isardSAT

PhD

About

107
Publications
20,916
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,721
Citations
Citations since 2016
54 Research Items
3063 Citations
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
20162017201820192020202120220100200300400500
Additional affiliations
January 2008 - present
isardSAT
Position
  • Senior Researcher
March 2007 - December 2007
Centre d'Etudes Spatiales de la Biosphere
Position
  • Post-Doctoral Scientist
Description
  • post-doctoral scientist
January 2003 - December 2006
French National Centre for Scientific Research
Position
  • PhD Student

Publications

Publications (107)
Article
Full-text available
The aim of this study is to analyze the influence of the soil moisture sampling depth in the parameterization of soil emission in microwave radiometry at L-band. The analysis is based on brightness temperature, soil moisture and temperature measurements acquired over a bare soil during the SMOSREX experiment. A more detailed profile of surface soil...
Article
Full-text available
The Iberian Peninsula is prone to drought due to the high variability in the Mediterranean climate with severe consequences for drinking water supply, agriculture, hydropower and ecosystem functioning. Because of the complexity and relevance of droughts in this region, it is necessary to increase our understanding of the temporal interactions of pr...
Article
Full-text available
Surface water availability is a fundamental environmental variable to implement effective climate adaptation and mitigation plans, as expressed by scientific, financial and political stakeholders. Recently published requirements urge the need for homogenised access to long historical records at a global scale, together with the standardised charact...
Preprint
Surface water availability is a fundamental environmental variable to implement effective climate adaptation and mitigation plans, as expressed by scientific, financial and political stakeholders. Recently published requirements urge the need for homogenised access to long historical records at a global scale, together with the standardised charact...
Article
Irrigation is the most impacting and uncertain human intervention on the water resource. The possibility of retrieving information on irrigation practices through remote sensing technology opens unprecedented perspectives on the monitoring of anthropized basins. This study is aimed at assessing the impact of different approaches to model the contri...
Preprint
The Iberian Peninsula is prone to drought due to the high variability of the Mediterranean climate with severe consequences for drinking water supply, agriculture, hydropower, and ecosystems functioning. In view of the complexity and relevance of droughts in this region, it is necessary to increase our understanding of the temporal interactions of...
Article
Despite a detailed knowledge of the spatial-temporal dynamics of irrigation being necessary to optimize the agricultural production without exacerbating the pressure exercised on the water resource, such information is still often lacking worldwide. In this study, a double-scale analysis on the detectability of the irrigation occurrence over an are...
Article
Full-text available
Maps of irrigation systems are of critical value for a better understanding of the human impact on the water cycle, while they also present a very useful tool at the administrative level to monitor changes and optimize irrigation practices. This study proposes a novel approach for classifying different irrigation systems at field level by using rem...
Article
Full-text available
This paper introduces a modified version of the DisPATCh (Disaggregation based on Physical And Theoretical scale Change) algorithm to disaggregate an SMAP surface soil moisture (SSM) product at a 20 m spatial resolution, through the use of sharpened Sentinel-3 land surface temperature (LST) data. Using sharpened LST as a high resolution proxy of SS...
Article
Full-text available
This project explored the integrated use of satellite, ground observations and hydrological distributed models to support water resources assessment and monitoring in High Mountain Asia (HMA). Hydrological data products were generated taking advantage of the synergies of European and Chinese data assets and space-borne observation systems. Energy-b...
Article
Full-text available
Soil moisture (SM) data are required at high spatio-temporal resolution—typically the crop field scale every 3–6 days—for agricultural and hydrological purposes. To provide such high-resolution SM data, many remote sensing methods have been developed from passive microwave, active microwave and thermal data. Despite the pros and cons of each techni...
Article
Full-text available
Citation: Stefan, V.-G.; Indrio, G.; Escorihuela, M.-J.; Quintana-Seguí, P.; Villar, J.M. High-Resolution SMAP-Derived Root-Zone Soil Moisture Using an Exponential Filter Model Calibrated per Land Cover Type.
Article
Full-text available
DISPATCH is a disaggregation algorithm of the low-resolution soil moisture (SM) estimates derived from passive microwave observations. It provides disaggregated SM data at typically 1 km resolution by using the soil evaporative efficiency (SEE) estimated from optical/thermal data collected around solar noon. DISPATCH is based on the relationship be...
Article
Although irrigation practices affect food production and water resource management, with ever more impacting effects under climate change and population increasing scenarios, detailed knowledge of irrigation is still lacking. In fact, explicit information on the spatial occurrence of irrigation and on the amounts of water used for this purpose is o...
Article
Full-text available
Despite irrigation being one of the main sources of anthropogenic water consumption, detailed information about water amounts destined for this purpose are often lacking worldwide. In this study, a methodology which can be used to estimate irrigation amounts over a pilot area in Spain by exploiting remotely sensed soil moisture is proposed. Two hig...
Article
Full-text available
The Sentinel-3 Mission Performance Centre (S3MPC) is tasked by the European Space Agency (ESA) to monitor the health of the Copernicus Sentinel-3 satellites and ensure a high data quality to the users. This paper deals exclusively with the effort devoted to the altimeter and microwave radiometer, both components of the Surface Topography Mission (S...
Article
Full-text available
The resolution of current satellite surface soil moisture (SM) estimates is very low, of tens of kilometers, which proves to be insufficient for various agricultural and hydrological applications. Amongst the existing downscaling approaches of remotely sensed SM, DISPATCH (DISaggregation based on a Physical And Theoretical scale CHange) improves th...
Article
Full-text available
Mapping the time-variable calving front location (CFL) of Antarctic ice shelves is important for estimating the freshwater budget, as an indicator of changing ocean and structural conditions or as a precursor of dynamic instability. Here, we present a novel approach for deriving regular and consistent CFLs based on CryoSat-2 swath altimetry. The CF...
Article
Remote sensing data, crop modelling, and statistical methods are combined in an original method to overcome current limitations of crop yield estimation. It is then tested for timely estimation of maize grain yields and their year-on-year variability in Burkina Faso. Outputs from the SARRA-O crop model were used as a proxy for observed data for cal...
Article
Full-text available
Global soil moisture (SM) products are currently available from passive microwave sensors at typically 40 km spatial resolution. Although recent efforts have been made to produce 1 km resolution data from the disaggregation of coarse scale observations, the targeted resolution of available SM data is still far from the requirements of fine-scale hy...
Article
Full-text available
Mapping irrigated plots is essential for better water resource management. Today, the free and open access Sentinel-1 (S1) and Sentinel-2 (S2) data with high revisit time offers a powerful tool for irrigation mapping at plot scale. Up to date, few studies have used S1 and S2 data to provide approaches for mapping irrigated plots. This study propose...
Article
Swath mode processing of CryoSat-2 Synthetic Aperture Radar Interferometric (SARIn) mode has been used to monitor elevation of areas with complex topography such as over ice sheet and ice cap margins. Swath processing relies on an accurate measure of the angle of arrival of the measured echo and, therefore, requires custom strategies in order to re...
Article
Full-text available
Satellite altimeters have been used to monitor river and reservoir water levels, from which water storage estimates can be derived. Inland water altimetry can, therefore, play an important role in continental water resource management. Traditionally, satellite altimeters were designed to monitor homogeneous surfaces such as oceans or ice sheets, re...
Article
Full-text available
1.Preventive control of desert locusts is based on monitoring recession areas to detect outbreaks. Remote sensing has been increasingly used in the preventive control strategy. Soil moisture is a major ecological driver of desert locust populations but is still missing in the current imagery toolkit for preventive management. 2.By means of statisti...
Preprint
Full-text available
Satellite altimeters have been used to monitor river and reservoir water levels, from which water storage estimates can be derived. Inland water altimetry can therefore play an important role in continental water resource management. Traditionally, satellite altimeters were designed to monitor homogeneous surfaces such as oceans or ice sheets, resu...
Article
Full-text available
The recently launched Sentinel-1 satellite with a Synthetic Aperture Radar (SAR) sensor onboard offers a powerful tool for irrigation monitoring under various weather conditions, with high spatial and temporal resolution. This research discusses the potential of different metrics calculated from the Sentinel-1 time series for mapping irrigated fiel...
Article
Full-text available
The FAO-56 dual crop coefficient (FAO-2Kc) model has been extensively used at the field scale to estimate the crop water requirements by means of the simulated evapotranspiration (ET) and its two components evaporation (E) and transpiration (T). Given that the main limitation of FAO-2Kc for operational irrigation management over large areas is the...
Book
This paper presents the the first attempt to include soil moisture information from remote sensing in the tools available to desert locust managers. The soil moisture requirements were first assessed with the users. The main objectives of this paper are: i) to describe and validate the algorithms used to produce a soil moisture dataset at 1 km reso...
Article
Full-text available
Radar data have been used to retrieve and monitor the surface soil moisture (SM) changes in various conditions. However, the calibration of radar models whether empirically or physically-based, is still subject to large uncertainties especially at high-spatial resolution. To help calibrate radar-based retrieval approaches to supervising SM at high...
Article
Full-text available
Abstract This paper presents the first attempt to include soil moisture information from remote sensing in the tools available to desert locust managers. The soil moisture requirements were first assessed with the users. The main objectives of this paper are: i) to describe and validate the algorithms used to produce a soil moisture dataset at 1 k...
Poster
Full-text available
By controlling the plant transpiration, the root-zone soil moisture (RZSM) plays a crucial role in meteorological modeling and hydrological studies over vegetated areas. In agriculture, RZSM can be used to detect the onset of crop water stress to trigger irrigations. The crop water requirements have been commonly estimated from FAO-56 dual crop coe...
Conference Paper
The water level of inland water bodies plays an essential role in water balance management. Satellite altimeters can play an important role in monitoring water level, namely in remotely access places. However, satellite altimeters are normally designed to monitor homogeneous surfaces such as oceans or ice sheets, which results in poor performance o...
Article
Full-text available
The 40 km resolution SMOS (Soil Moisture and Ocean Salinity) soil moisture, previously disaggregated at a 1 km resolution using the DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) method based on MODIS optical/thermal data, is further disaggregated to 100 m resolution using Sentinel-1 backscattering coefficient (σ°). For th...
Article
For more than 25 years, satellite radar altimetry has provided continuous information on the state of the cryosphere and on its contribution to global sea-level rise. The technique typically delivers maps of ice-sheet elevation and elevation change with 3–10 km spatial resolution and seasonal to monthly temporal resolution. Here we show how the int...
Conference Paper
Full-text available
Satellite altimetry has been used extensively in the past few decades to observe changes affecting large and remote regions covered by land ice such as the Greenland and Antarctic ice sheets. Glaciers and ice caps have been studied less extensively due to the limitation of altimetry over complex topography. However, their role in current sea-level...
Article
Full-text available
The recent deployment of ESA’s Sentinel operational satellites has established a new paradigm for remote sensing applications. In this context, Sentinel-1 radar images have made it possible to retrieve surface soil moisture with a high spatial and temporal resolution. This paper presents two methodologies for the retrieval of soil moisture from rem...
Conference Paper
Satellite altimetry has been traditionally used in the past few decades to infer elevation of land ice, quantify changes in ice topography and infer mass balance estimates over large and remote areas such as the Greenland and Antarctic ice sheets. Radar Altimetry (RA) is particularly well suited to this task due to its all-weather year-round capabi...
Poster
Full-text available
The CryoSat mission is designed to determine fluctuations in the mass of the Earth’s land and the marine ice fields. Its primary payload is a radar altimeter that operates in different modes optimised depending on the kind of surface: Low resolution mode (LRM), SAR mode (SAR) and SAR interferometric mode (SARin). This radar is named SIRAL: Syntheti...
Presentation
Full-text available
Land surface models (LSM) physically simulate the water and the energy balance of the land-surface, including the vegetation. Some of them also simulate river routing and underground water processes. They may be run within a meteorological model (coupled to the atmosphere) or within a climate model (coupled to the atmosphere and the ocean). In addi...
Conference Paper
Full-text available
The lake-level change is one of the important indicators for the water balance of the Qinghai-Tibetan Plateau (QTP). In this region lake level is directly affected by the temperature both upstream and in the surroundings. In addition, other factors like: precipitation, evaporation, glaciers, perennial snow cover and permafrost do have an impact as...
Presentation
Full-text available
Reference and repeat-observations of Glacier, Ice Caps and Ice Sheet Margin topography are critical to identify changes in ice thickness, provide estimates of mass gain or loss and thus quantify the contribution of the cryosphere to sea level change. The lack of such sustained observations was identified in the Integrated Global Observing Strategy...