
Maria Fernanda Cardinal- PhD
- Group Leader and Adjunt Professor at National University of General San Martín
Maria Fernanda Cardinal
- PhD
- Group Leader and Adjunt Professor at National University of General San Martín
About
21
Publications
6,285
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,127
Citations
Introduction
Current institution
Publications
Publications (21)
Surface-enhanced Raman scattering (SERS) spectroscopy has evolved into a cross-disciplinary analytical technique by unveiling relevant chemical, biological, material, and structural information. The focus of this review is on two critical properties for successfully expanding applications of SERS spectroscopy: quality of the plasmonic substrate and...
We report here the first fabrication of aluminum film-over nanosphere (AlFON) substrates for UV surface-enhanced resonance Raman scattering (UVSERRS) at the deepest UV wavelength used to date (λex = 229 nm). We characterize the AlFONs fabricated with two different support microsphere sizes using localized surface plasmon resonance (LSPR) spectrosco...
The combination of electrochemistry (EC) and single molecule surface-enhanced Raman spectroscopy (SMSERS) has recently proven to be a sensitive method to investigate electron transfer (ET) reactions at the single molecule level. SMSERS can both detect single redox-active molecules and can potentially monitor both the oxidized (O) and reduced (R) fo...
The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar ene...
This perspective presents recent developments in the application of surface-enhanced Raman spectroscopy (SERS) to biosensing, with a focus on in vivo diagnostics. We describe the concepts and methodologies developed to date and the target analytes that can be detected. We also discuss how SERS has evolved from a ‘point-and-shoot’ stand-alone techni...
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic...
This paper describes how the ability to tune each nanoparticle in a plasmonic hetero-oligomer can optimize architectures for plasmon-enhanced applications. We demonstrate how a large-area nanofabrication approach, Reconstructable Mask Lithography (RML), can achieve independent control over the size, position, and material of up to four nanoparticle...
A centrifugal route for separating small {110}-faceted gold nanostructures, namely rhombic dodecahedra (RD) and triangular bipyramids (BPs), which form simultaneously during synthesis and cannot be separated by means of conventional filtration methods, is presented. The centrifuged solution shows two distinct bands: i) RD and ii) BPs, as verified i...
Surface-enhanced Raman spectroscopy (SERS) is highly dependent upon the substrate, where excitation of the localized metal surface plasmon resonance enhances the vibrational scattering signal of proximate analyte molecules. This article reviews recent progress in the fabrication of SERS substrates and the requirements for characterization of plasmo...
The dependence of the spectral width of the longitudinal Localized Surface Plasmon Resonance (LSPR) of individual gold nanorods protected by a silica shell is investigated as a function of their size. Experiments were performed using the Spatial Modulation Spectroscopy technique which permits to optically determine both the spectral characteristics...
The effects of the dielectric environment on the optical extinction spectra of gold nanorods were quantitatively studied using individual bare and silica-coated nanorods. The dispersion and amplitude of their extinction cross-section, dominated by absorption for the investigated sizes, were measured using spatial modulation spectroscopy (SMS). The...
We report on the identification of surface plasmons in individual gold dumbbell-shaped nanoparticles (AuDBs), as well as AuDBs coated with silver. We use spatially resolved electron energy-loss spectroscopy in a scanning electron microscope, which allows us to map plasmon-energy and intensity spatial distributions. Two dominant plasmon resonances a...
The acoustic vibrations of gold nanorods coated with palladium were investigated as a function of Pd amount using ultrafast pump–probe spectroscopy. Both the extensional and breathing vibrational modes of the nanorods were coherently excited and detected. This permits precise determination of their periods, which were found to decrease and increase...
We describe the modulation of localized surface plasmons in gold nanodumbbells through stepwise silver coating, along with a detailed discussion regarding the experimental parameters affecting the final core−shell morphology. Interestingly, whereas conformal growth was observed for thin coatings, for intermediate and high silver salt concentrations...
Ni–W–MoS2 composite coatings were obtained by pulse plating from a Ni–W electrolyte containing suspended MoS2 particles. The coating composition, morphology, crystalline structure, microhardness and frictional behavior were studied as a function of MoS2 concentration. The results obtained in this study indicate that co-deposited lubricant particles...
In this study doped-silicon polymers were synthesized using the non-ionic surfactant Tween 80 as template. The obtained material was compared with silicates doped with the cationic surfactant CTAB. Both materials were synthesized by sol–gel process with tetraethoxysilane (TEOS) as silicon source. In the synthesis procedure reported herein the main...
Porous silica matrices prepared by sol-gel process yield biocompatible materials adequate for encapsulation of biomolecules or drugs. The procedure is simple and fast, but when alkoxyde precursors like tetraethoxysilane (TEOS) are used the polymerisation reaction leads to the formation of alcohol as a by-product, which can produce undesirable effec...