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Abstract 

 

Continuously rising trends in obesity-related malignancies render this disease spectrum a public 

health priority. Worldwide, the burden of cancer attributable to obesity, expressed as population 

attributable fraction, is 11.9% in men and 13.1% in women. There is convincing evidence that 

excess body weight is associated with an increased risk for cancer of at least 13 anatomic sites, 

including endometrial, esophageal, renal and pancreatic adenocarcinomas; hepatocellular 

carcinoma; gastric cardia cancer; meningioma; multiple myeloma; colorectal, postmenopausal 

breast, ovarian, gallbladder and thyroid cancers. We first synopsize current epidemiologic 

evidence; the obesity paradox in cancer risk and mortality; the role of weight gain and weight loss 

in the modulation of cancer risk; reliable somatometric indicators for obesity and cancer research; 

and gender differences in obesity related cancers. We critically summarize emerging biological 

mechanisms linking obesity to cancer encompassing insulin resistance and abnormalities of the 

IGF-I system and signaling; sex hormones biosynthesis and pathway; subclinical chronic low-

grade inflammation and oxidative stress; alterations in adipokine pathophysiology; factors 

deriving from ectopic fat deposition; microenvironment and cellular perturbations including 

vascular perturbations, epithelial-mesenchymal transition, endoplasmic reticulum stress and 

migrating adipose progenitor cells; disruption of circadian rhythms; dietary nutrients; factors with 

potential significance such as the altered intestinal microbiome; and mechanic factors in obesity 

and cancer. Future perspectives regarding prevention, diagnosis and therapeutics are discussed. 

The aim of this review is to investigate how the interplay of these main potential mechanisms and 

risk factors, exerts their effects on target tissues provoking them to acquire a cancerous phenotype. 

Key words: Adipokine; Adiponectin; Biomarker; Cancer; Inflammation; Microbiome; Obesity; 

Resistin; Visfatin 
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1. Introduction 

Cancer constitutes the second leading cause of death worldwide, with an estimated 14.1 million 

incident cases and 8.2 million deaths annually [1, 2]. Besides the well-established cancer risk 

factors such as genetic predisposition, ionizing radiation, tobacco use, infections, unhealthy diet, 

alcohol consumption, sedentary lifestyle and other environmental exposures, obesity is an 

established risk factor for several malignancies [3-5]. Cancer incidence will continue to grow due 

to the increase in the prevalence of risk factors, mainly obesity and metabolic syndrome (Mets) 

[6].  

The prevalence of overweight and obesity has been expanded dramatically in almost all developing 

and developed countries, reaching pandemic levels of 60-70% of the adult population in 

industrialized countries, and being more frequent in females and in urban areas [7, 8]. The global 

prevalence of overweight and obesity has increased by 27% in adulthood and 47% in childhood 

during the last decades [9]. Obesity develops when exceeding energy consumption overtakes 

energy expenditure from metabolic and physical activity. As a consequence of excessive or 

abnormal fat tissue accumulation which exceeds genetically and epigenetically determined adipose 

tissue stores, fat gets deposited and accumulates as ectopic fat tissue leading to increased risk for 

many disease entities. Overweight and obesity are generally currently defined as a Body Mass 

Index (BMI) between 25-29.9 kg/m2 and over 30 kg/m2 respectively [10].  

Obesity represents a risk factor for many chronic disease, most notably hypertension, dyslipidemia, 

Mets, diabetes mellitus (DM) type 2, cardiovascular disease (CVD), non-alcoholic fatty liver 

disease (NAFLD), Alzheimer's disease including cancer [11, 12]. In the USA, overweight and 

obesity may cause 14% of cancer deaths in men and 20% in women [13]. Overweight/Obesity 

constitute major determinants of the increasing incidence and prevalence of cancer that could 
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surpass smoking as a significant preventable cause against cancer [14]. Tobacco cessation and 

reduction of overweight and obesity may represent the most important lifestyle changes impacting 

on human health and cancer in particular. Specifically, reduction of overweight/obesity may 

decrease the burden of postmenopausal breast cancer and colorectal cancer, which represent two 

of the most frequent malignancies at a global level. Ectopic fat deposition, which is described as 

the pathological expansion of white adipose tissue in areas that it should not be (e.g. intrahepatic, 

intra-abdominally, intramyocellular, etc), may cause through multiple pathways metabolic, 

inflammatory, and immunologic alterations affecting Deoxyribonucleic Acid (DNA) repair, gene 

function, cell mutation rate as well as epigenetic changes permitting malignant transformation and 

progression [3, 4].  

In this review, we provide an overview of the association between excess body weight and cancer 

synopsizing the main biological mechanisms underpinning this association as well as highlighting 

recent developments that provide new insights on pathogenetic mechanisms. Furthermore, we give 

a special emphasis on: 1) current epidemiologic evidence; 2) the obesity paradox in cancer risk 

and mortality; 3) the role of weight gain or weight loss in the modulation of cancer risk; 4) reliable 

somatometric indicators for obesity and cancer research; and 5) gender difference in obesity-

related cancer risk. Elucidating the association between obesity, adiposopathy and cancer is 

important for the development of preventive, diagnostic and therapeutic strategies against cancer.  

2. Epidemiologic evidence linking obesity to cancer risk 

As summarized in Table 1, based on the International Agency for Research on Cancer (IARC) 

Working Group, there is convincing evidence that excess body weight, is associated with an 

increased risk for cancer of at least 13 anatomic sites, including endometrial, esophageal, renal and 

pancreatic adenocarcinomas; hepatocellular carcinoma; gastric cardia cancer; meningioma; 
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multiple myeloma; colorectal, postmenopausal breast, ovarian, gallbladder and thyroid cancers 

[15].  Therefore, there is sufficient evidence ruling out bias, confounding and chance with 

confidence, to conclude that avoiding excess body weight reduces the risk of the abovementioned 

malignancies. For other anatomic sites, the IARC Committee cannot exclude confounding and bias 

in the observed positive associations. Based on a different classification of the strength of evidence 

for the link between overweight/obesity and cancer risk, the World Cancer Research 

Fund/American Institute for Cancer Research (WCRF/AICR) found in common with the IARC 

working group convincing and sufficient evidence for cancers of endometrium, esophagus 

(adenocarcinoma), colon and rectum, liver, pancreas, postmenopausal breast and kidney (renal 

adenocarcinoma) [16]. In addition, the WCRF/AICR found some level of evidence of a probable 

protective effect, not addressed by the IARC Working Group, for premenopausal breast cancer, 

cervix, oral, oropharyngeal and larynx cancers.  All these results were generally supported by a 

recent umbrella review of systematic reviews and 204 meta-analyses that have assessed the 

relationship between adiposity and cancer risk [17]. Although there is substantial uncertainty, the 

most valuable finding of this umbrella analysis was the strong evidence for the association between 

obesity and cancer, predominantly cancers of digestive organs and cancers of hormone sensitive 

organs in women [17]. 

Importantly, excess weight during adult life is not the unique driver of the association between 

obesity and cancer risk. Emerging data link higher body fatness in late adolescence and early 

adulthood with malignancy risk at an older age [18-20].  Excess body weight during childhood 

and early adulthood has been particularly associated with risks of pancreatic cancer independently 

from diabetes, colon cancer in women, and multiple myeloma [19, 21, 22]. Taking into account 
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the elevated rates of childhood obesity, this observation underscores the importance to prevent 

obesity in childhood and young adulthood.   

Finally, another interesting epidemiologic aspect is the finding that excess body weight and its 

comorbidities have been increased in cancer survivors more rapidly compared with the general 

population [23]. In particular, colorectal and breast cancer survivors were identified as the more 

susceptible group for obesity risk [23]. 

3. The paradox between the association of obesity with cancer risk and mortality 

 Interestingly, recent epidemiological data support the hypothesis that obesity may be probably a 

protective factor for certain cancer types regarding their incidence and mortality. Indeed, obesity 

is associated with reduced risk of premenopausal breast cancer (BC), non-small cell lung cancer 

(NSCLC) and head and neck cancers, as suggested also by the WCRF/AICR working group 

(probable protective effect), while it is associated with improved survival in NSCLC, renal cell 

cancer and metastatic colorectal cancer (CRC) [24, 25]. This phenomenon, called “obesity 

paradox”, is mainly analyzed in cardiovascular, renal, pulmonary, sepsis and metabolic studies, 

and is less estimated in cancer studies [26-31]. Potential explanations of the obesity paradox in 

cancer patients may include methodologic issues such as 1) the use of BMI as a measure of general 

adiposity; 2) study limitations including inadequate adjustment for confounding, selection, 

stratification and detection biases; 3) confounders such as age, smoking, physical activity, etc. 

Indeed, residual confounding by tobacco smoking, which is related with reduced weight, may 

account for the observed inversed association between obesity and smoking-related malignancies 

such as NSCLC, squamous cell esophageal and urinary bladder cancers [32]; 4) reverse causality 

where weight loss is associated with BMI at diagnosis due to cancer cachexia and biological 
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mechanisms such as i) differences in body composition and adiposity; ii) less aggressiveness of 

tumor biology in obesity; iii) nutritional reserve to face anti-cancer treatments [33, 34].  

4. Τhe role of weight gain and weight loss in the modulation of cancer risk 

Weight gain as well as weight loss may modulate cancer risk. Adult weight gain, as a better metric 

indicator than BMI for determining the dynamic nature of adiposity throughout adulthood, is also 

associated with elevated cancer risk, particularly esophageal adenocarcinoma; colorectal 

(especially in men), pancreatic, liver, gallbladder (in women), renal, postmenopausal breast, 

endometrial, ovarian and advanced stage prostate cancers, as portrayed in Table 2 based on data 

of the WCRF project [35, 36]. A recent dose-response meta-analysis of 50 prospective 

observational studies found that adult weight gain was not associated with cancer risk of prostate, 

colorectal (in women), pancreas, thyroid and breast (in premenopausal and in postmenopausal 

Hormone Replacement Therapy/HRT users) [36]. In this meta-analysis, adult weight gain for 

breast cancer was significantly higher amid postmenopausal women and HRT users [36]. Although 

the assessment of weight gain relies on recall in most studies, weight gain represents a snapshot of 

the weight projection in adulthood signaling fat tissue accumulation in the majority of adults [35]. 

Because there is a correlation between BMI at later adulthood, captured as the baseline BMI in 

prospective studies, and weight gain, weight gain may not add more value than BMI per se [37]. 

However, as a preventive measure, avoidance of weight gain is a more drastic target than weight 

loss [36].  

Intentional weight loss has been related with lower risk of cancer, particularly obesity associated 

cancers in women, underscoring the link between excess body weight and cancer risk [38-40]. 

However, the role of sustained weight loss needs to be further evaluated [40]. Moreover, there is 

evidence for a significant decline in cancer mortality after weight loss; however, trials presented 
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heterogeneity in terms of endpoints and design [40]. Recent meta-analyses of Randomized 

Controlled Trials (RCT) and non-RCTs have shown that bariatric surgery for weight loss has been 

associated with lower risk of obesity associated cancers and any type of cancer [41, 42].  However, 

the effect of such intervention in morbidly obese individuals may be seen in the long-term [37]. It 

is important to note that evidence regarding bariatric surgery and cancer risk from RCTs is limited 

due to lower statistical power, small sample sizes and short follow-up period, whereas the results 

from interventions employing medical nutrition therapy for obesity are eagerly awaited in the not 

so distant future.   

5.  Reliable Somatometric Indicators for Obesity and Cancer Research  

BMI does not fully characterize the intricate biology and physiology of excess body fat, which is 

a heterogeneous condition associated with distinct cardiometabolic risk [37, 43]. Generally, BMI 

is inaccurate to evaluate: 1) the elderly population who may be losing height and/or developing 

sarcopenia due to ageing; 2) individuals of Asian descent; 3) individuals of extreme height; 4) very 

muscular individuals; and 5) fat individuals belonging to the normal-overweight range of BMI as 

evidenced by the National Health and Nutrition Examination Survey (NHANES) study [44]. Also, 

self-reported weight tends to underestimate BMI in heavy subjects. BMI cannot differentiate 

between adipose tissue and lean mass, which present high variability based on gender, age, 

ethnicity and race [35]. Finally, BMI may underestimate the prevalence of visceral obesity in the 

population, leading to misclassifications of visceral obesity status which result in potential biases 

of the association between obesity/overweight and cancer towards the null effect [39].   

Visceral fat represents a key determinant of insulin resistance (IR), secreting a substantial amount 

of free fatty acids (FFAs), pro-inflammatory molecules, growth factors, locally synthesized 

estrogens, hormones and adipocytokines contributing to the development of diseases, including 
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cancer [4]. Besides its energy-storage and thermal buffering properties, white adipose tissue, 

particularly visceral fat, is a dynamic endocrine organ synthesizing a plethora of heterogeneous 

adipocytokines that modulate several physiologic and pathologic processes including insulin 

sensitivity, inflammation, appetite regulation, innate and adaptive immunity, hematopoiesis, and 

angiogenesis [45, 46]. To date, more than 15 adipocytokines have been linked to cancer while their 

list is still growing [3, 4, 47, 48].  

Computed tomography represents the standard method for direct quantification of Visceral 

Adipose Tissue (VAT) but it is not feasible for population-based studies [39]. Somatometric 

measures surrogates of visceral adiposity in population-based research (Table 3), such as Weight 

Circumference (WC) and Waist-to Hip Ratio (WHR), may be better indicators for cancer risk, 

particularly colon and postmenopausal breast cancers, than BMI because they are associated more 

strongly with visceral fat than BMI [49-51].  However, the epidemiologic evidence is conflicting 

[37]. This is due to the fact that WC and WHR poorly approximate visceral adiposity, because 

they characterize both VAT and subcutaneous adipose tissue (SAT) at the waist level [37]. This 

may lead to potential misclassifications of visceral obesity status biasing the association between 

obesity and cancer [39]. Tables 2 and 3 synopsize the association between somatometric data and 

cancer risk. 

6. Gender differences in obesity related cancer risk 

Worldwide, the burden of cancer attributable to obesity, expressed as population attributable 

fraction (PAF), is 11.9% in men and 13.1% in women for all obesity-related malignancies with a 

substantial worldwide variation depending on the prevalence of obesity and the relative risk 

estimates [52]. In men, the largest PAF is usually observed for esophageal adenocarcinoma 

(≈33.3%) and in women the largest PAF is observed for endometrial cancer (≈34% and 47.8% in 
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North America) [52]. Overall, there is a striking association between obesity and gynecologic 

cancer (endometrial, postmenopausal breast and ovarian cancers), pointing to the role of female 

sex steroids in cancer pathogenesis. BMI and other somatometric parameters present differential 

associations by gender with risks for some cancers such as colon, rectal, gallbladder, renal and 

pancreatic cancers [17, 37]. For example, the relationship between BMI and colon cancer was 

supported by strong evidence in males and suggested evidence in females [17]. As men are more 

prone to visceral adiposity than women, this observation highlights the detrimental role of visceral 

adiposity and insulin resistance in colon cancer and the protective endogenous estrogenic effects 

against colon cancer in women [53, 54].  Interestingly, there was no association between BMI and 

rectal cancer in women [17]. In contrast, overweight/obesity in females at childhood has been 

associated with an elevated colon cancer risk at adulthood. This association presented a weaker 

evidence in males [21]. 

Finally, based on one prospective intervention trial, bariatric surgical procedures have been shown 

more effective at lowering cancer risk in women compared to men; however, the small mean 

follow-up period of ten years, which is not considered as adequate for cancer manifestation; the 

low statistical power; and the smaller sample size of men may account for the observed results 

[55].   

7. Biological mechanisms linking Overweight/Obesity to Cancer  

Recent data have underlined the contribution of the triad of overweight/obesity, IR and 

adipocytokines in cancer.  Although the role of obesity in cancer etiopathogenesis is not fully 

elucidated, the main pathways linking obesity and adiposopathy to cancer comprise: 1) 

hyperinsulinemia/ IR and abnormalities of the insulin-like growth factor-I (IGF-I) system and 

signaling; 2) sex hormones biosynthesis and pathway; 3) subclinical chronic low-grade 
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inflammation and oxidative stress; 4) alterations in adipocytokine pathophysiology; 5) factors 

deriving from ectopic fat deposition; 6) microenvironment and cellular perturbations; 7) factors 

causing obesity and cancer such as disruption of circadian rhythms and dietary nutrients; 8) altered 

intestinal microbiome; and 9) mechanic factors in obesity. Figure 1 depicts the mechanisms 

associating obesity with cancer. 

7.1 Abnormalities in the IGF-I axis and hyperinsulinemia/insulin resistance 

Insulin-like growth factors (IGFs), synthesized by almost any tissue in the organism, constitute 

significant mediators of growth, development, and survival, being implicated in cancer 

pathogenesis [56]. The IGF system represents a complex system comprising two growth factors 

(IGF-I and IGF-II), six specific high-affinity binding proteins (IGFBP-1 to IGFBP-6), cell surface 

receptors (IGF-IR and IGF-IIR), proteases for Insulin-like growth factor-binding proteins 

(IGFBP), and many other IGFBP-interacting molecules that modulate and generate IGF actions in 

several tissues [56, 57]. Evidence from in vitro and animal studies underscored that IGFs 

overexpression by cancer or stromal cells as well as the specific type of IGF-I receptor by the 

cancer cells could exert neoplastic actions by promoting cell cycle progression and inhibition of 

apoptosis either directly or indirectly through interaction with established oncogenic systems, such 

as the steroid hormones and integrins [56]. Acromegaly, an endocrine disorder characterized by 

sustained hypersecretion of growth hormone and concomitant increase of IGF-I is associated with 

cancer risk, particularly colorectal cancer [58]. Epidemiologic evidence has highlighted that 

increased serum IGFs levels and/or altered circulating levels of their binding proteins are 

independently associated with an elevated risk for developing several malignancies, particularly 

prostate, colorectal and breast cancer [59-63]. However, overall these associations are modest and 
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vary between anatomic sites leading to conflicting results for some obesity associated cancers like 

pancreatic and ovarian cancer [64-66]. 

Type 2 DM has been shown to cause a consistent elevation in the risk of pancreatic, biliary tract, 

and esophageal cancer in men; breast and endometrial cancer (EC) in women; and kidney, liver 

and CRC in both genders [67]. Moreover, patients with DM present greater cancer mortality in a 

variety of malignancies when compared with non-diabetic controls [67]. Obesity is associated with 

increased adipose tissue inflammation manifested as the secretion of pro-inflammatory cytokines 

and alterations in the pattern of adipokine secretion. IR in metabolically active tissues increases as 

a consequence of these changes, demanding more insulin from the pancreatic islets to maintain 

normal glucose levels. In practice, IR is reflected in elevated HbA1C and C-peptide serum levels, 

the latter being a more sensitive indicator of early phases, when HbA1C is still in the normal range. 

C-peptide levels have been associated with the risk of CRC in the New York University Women’s 

Health Study, and have been replicated within the European Prospective Investigation into Cancer 

and Nutrition (EPIC) study [68, 69]. 

Insulin is thought to promote carcinogenesis directly and indirectly; target cell stimulation occurs 

via the insulin receptor or IGF mediation [70, 71].  Insulin reduces the circulating levels of IGFBP1 

and IGFBP2 and as a result, circulating IGF is increased. Insulin and IGF induce a multitude of 

tumor-promoting mechanisms on target cells, implicated in proliferation, antiapoptosis, 

angiogenesis and lymphangiogenesis [72]. These effects are the result of a series of cellular events, 

starting with membrane receptors and downstream transduction through the phosphatidylinositol 

3-kinase (PI3K)–AKT– mammalian target of rapamycin (mTOR) pathway regulating cell growth 

and differentiation, and the Ras–Raf–MEK– Mitogen-Activated Protein Kinase (MAPK) pathway 

that induces proliferation [7]. In more detail, stimulation of the insulin receptor or the IGF-1R, 
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both receptors with intrinsic tyrosine kinase activity, induces the production of lipid messengers 

by PI3K that, in turn, activates the v-Akt murine thymoma viral oncogene homolog (Akt) cascade. 

The cascade culminates with mTOR activation, which regulates cell growth, proliferation and 

death through various other mediators [73]. Stimulation of mTOR is common in tumors and many 

normal tissues from obese and/or diabetic mice, and mTOR inhibitors hinder obesity-induced 

tumor progression in mouse models [74-76]. IGF as well as IGF receptors are highly expressed in 

many types of cancers [67].   

Many tumors, including breast, colon, lung, prostate, ovary, and thyroid cancers, express the 

insulin receptor in high levels [77, 78]. Insulin receptor exists in two splice variants, Insulin 

Receptor-A (IR-A) and IR-B. In tumors, aberrant signaling leads to changes in the expression of 

splicing factors, leading to an increase in IR-A expression, and this is speculated to be responsible 

for at least part of the effects of hyperinsulinemia on oncogenesis [77]. Insulin upregulates the 

metabolic activity of the cell, leading to increased levels of oxidative stress that cause DNA 

damage either in the form of double strand breaks or mutations. These events have been displayed 

in colon cancer cell lines as well as in intestinal epithelium cells and lymphocytes of rats in vivo 

[79].  

Cancer cells rely upon aerobic metabolism for their energy demands; they also synthesize fatty 

acids, proteins and nucleotides. As a result, they are in a constant need of increased glucose supply 

that has been proposed to be supported by diabetes associated hyperglycemia. High dietary 

glycemic load in patients with higher BMI, who likely present Mets or DM type 2, may induce 

hyperglycemia, providing the tumor with more glucose that facilitates its growth and progression, 

leading to decreased survival [80]. High levels of HbA1c that reflect the levels of hyperglycemia 

have been positively associated with various malignancies; breast, colorectal, gastric, pancreatic, 
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and hepatocellular cancer [81]. However, when the effect of hyperglycemia alone (without 

hyperinsulinemia) was investigated in streptozotocin-induced diabetes in mice, no positive 

associations of glucose levels with tumor growth were observed [82-85]. Interestingly, data on 

patients with type 1 DM are inconsistent, showing a weak, if any, association of type 1 DM with 

cancer risk or mortality, adding to the hypothesis that hyperglycemia-the common theme of type 

1 and 2 DM- should not be a principal contributor of tumor promotion [67]. 

The pharmacotherapy of diabetes has an interesting interplay with the risk of cancer development. 

On the one hand, insulin as well as insulin secretagogue therapy have been associated with an 

increased risk of cancer development in human and animal studies [86, 87] but these associations 

may not reflect causality. On the other hand, patients who receive metformin seem to have a lower 

risk in cancer development [67]. Metformin induces hepatic gluconeogenesis and reduces IR of 

peripheral tissues resulting in lower insulin and IGF1 levels. Moreover, it leads to activation of 5’ 

AMP-activated protein kinase (AMPK) affecting the mTOR pathway that is crucial for cell 

proliferation [67]. 

7. 2 Sex hormones biosynthesis and pathway 

The peripheral adipose tissue is responsible for the process of steroid aromatization. Androgens 

and androgenic precursors are converted to estradiol by the enzyme aromatase. In the context of 

obesity and excess adipose tissue, aromatase increased activity leads to higher conversion rates 

resulting in higher levels of estrogens [88].   

Higher concentrations of circulating sex hormones including dehydroepiandrosterone, 

dehydroepiandrosterone sulfate, Δ4androstenedione,  testosterone,  oestrone  and  total estradiol, 

and decreased concentrations of sex hormonebinding globulin (SHBG) were associated with 

increased risk of breast cancer in postmenopausal women in the Endogenous Hormones and Breast 
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Cancer Collaborative Group (EHBCCG) and EPIC studies [89, 90].  Increased estrogen levels in 

women with higher BMI accounted almost exclusively for the association of BMI with 

postmenopausal BC risk [89].  The higher risk of obesity-associated BC in postmenopausal women 

is mainly observed in hormone receptor positive (ER+/PR+) disease, without any history of 

hormone replacement therapy, a fact that supports the hypothesis of the essential role of estrogen 

[91]. The reduced risk for BC in obese premenopausal women is hypothesized to be mediated by 

reduced mammary tissue progesterone exposure caused by ovarian hyperandrogenism [91].  

Testosterone has displayed a bimodal correlation with BMI when subjects are grouped by gender. 

It has been shown to be elevated in obese women and decreased in obese men.  Elevated blood 

concentrations of androgens have been associated with increased risk of BC in women regardless 

of menopausal status [89, 90]. However, basic research has been inconclusive on the testosterone 

effect on mammary tissue [88]. 

Obesity is associated with a 2.6-fold higher risk of  EC compared to normal weight [92]. Estrogen 

promotes tumorigenesis in endometrial tissue by stimulation of cell proliferation and inhibition of 

apoptosis [92]. These effects are mediated by the induction of IGF1 production in endometrial 

tissue which then acts on the endometrium in a paracrine manner [92]. Progesterone, on the other 

hand, opposes estrogen effects mainly by stimulating the production of IGF1 binding protein 

which, in turn, inhibits IGF1 [93]. IGF2 mediates the effects of progesterone in the luteinizing 

phase of the menstrual cycle and is important in endometrial differentiation and in endometrial 

interactions with the fetus [94]. Unopposed estrogen effect is the main sex-hormone hypothesis 

for EC. Ovarian hyperandrogenism is another proposed mechanism linking obesity sex-hormone 

dysregulation and EC [93]. 
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Although androgens occupy a central role in prostate cancer pathogenesis, there is no clear 

correlation of serum sex hormone levels and risk of malignancy development [37]. As previously 

stated, obese men tend to have lower testosterone levels when compared to normal weight 

individuals. This low testosterone environment seems to promote the development of a less 

differentiated, aggressive cancer phenotype [95]. Men treated with finasteride, a 5a-reductase 

inhibitor that decreases dihydrotestosterone levels, displayed an increased risk for high-grade and 

decreased risk for well-differentiated prostate cancer [96].  Low serum testosterone was associated 

with a higher risk of poorly differentiated prostate cancer, albeit BMI was not considered in the 

data analysis [97, 98]. 

7.3 Subclinical chronic low-grade inflammation and oxidative stress 

Obesity is a state of chronic inflammation [99] which constitutes an established mediator of cancer 

development and progression as many inflammatory components reside in the tumor 

microenvironment and promote a cancerous phenotype [100]. When comparing obese subjects 

with or without adipose inflammation and metabolic dysfunction, the former exhibit elevated 

cancer and CVD risk [101]. 

Adipose tissue, an active endocrine organ, releases a variety of adipocytokines in the bloodstream, 

the more important being adiponectin and leptin [48]. Visceral obesity and excessive ectopic fat 

distribution are strongly associated with hypoadiponectinemia [102]. Adiponectin is a hormone 

synthesized by adipose tissue presenting anti-inflammatory as well as insulin-sensitizing 

properties [102]. Adiponectinemia has an inverse correlation with inflammatory cytokines which 

are elevated in obesity, such as tumor necrosis factor-α (TNF-a) and interleukin (IL)-6; it can also 

attenuate nuclear factor-κB (NF-kB) activation [103]. Leptin levels positively correlate with BMI 

and adipose tissue mass [104]. Contrary to adiponectin, leptin exerts pro-inflammatory actions 
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stimulating the production of IL-1, IL-6, IL-12, TNF-α, Leukotriene B4 (LTB-4) and 

Cyclooxygenase 2 (COX2) [105].  Moreover, it promotes T cell proliferation and TH1 phenotype 

whereas it suppresses Regulatory T (Treg) cells [105].   

Hypoadiponectinemia has been observed in a multitude of malignancies, confirming its tumor 

suppressive role; epidemiological data for leptin levels relative to cancer has been inconclusive in 

contrast to many experimental studies where supraphysiologic levels of leptin were employed [4, 

48, 104, 106-110].  

Obesity presents a causal relation with IR, which, in turn, potentially promotes inflammation as 

hinted by recent data [111]. Beside their direct effect on tissues, inflammatory adipocytokines 

influence the sex hormone mechanism of tumorigenesis via stimulation of estrogen production by 

aromatase (separately addressed). 

A recent study by Lee et al attempted to elucidate the effect of systemic inflammation on all-cause 

and cancer-related mortality [112]. Increased mortality rates in individuals with elevated 

Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and/or high sensitivity C-

reactive protein (hsCRP) levels were observed [112]. Interestingly, the effect of systemic 

inflammation in cancer-related mortality was found to be more pronounced. Tumor progression in 

obesity-related malignancies implicates IR, inflammation and tumor infiltration with immune cells 

[113].  

The inflammatory environment of obesity has been proven reducible following weight loss. 

Ziccardi et al showed an attenuation of endothelial dysfunction in women that lost weight [114]. 

Reduction of subcutaneous adipose tissue inflammation has been observed in patients that have 

achieved a decrease in their BMI by bariatric surgery [115]. Although, holistic lifestyle 

modifications for weight loss as investigated in the Look Ahead study have a positive effect on 
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cardiometabolic factors, the potential benefits in cancer risk reduction are much awaited [116]. 

Contributing to the above, an array of  drugs used to treat several factors of metabolic syndrome 

such as thiazolidinediones, angiotensin receptor blockers and statins can raise adiponectin levels 

contributing to the much desired reduction of inflammation [99].  

Malignant cells can induce adjacent adipocytes to alter their phenotype; reducing their lipid content 

and release of adipokines and secreting tumor-promoting substances such as matrix 

metalloproteinases [117]. 

Reactive oxygene species (ROS) production, which has been associated with obesity, contributes 

to tumor promotion [118]. Hyperglycemia along with elevated free fatty acid levels induce ROS 

production and the secretion of pro-inflammatory cytokines that additively provoke mitochondrial 

and DNA damage [119]. 

The effect of inflammation-combating medication on obesity-related cancer is an ongoing research 

question. Non-steroid anti-inflammatory medication has been associated with reduced cancer risk 

in obesity-related malignancies [120-122].  

7.4 Alterations in adipocytokine pathophysiology 

White adipose tissue (WAT), a major component of the adipose tissue is considered to be a 

metabolically active endocrine and secretory organ [123]. It produces a plethora of cytokines and 

adipokines [123]. In obesity, adipose tissue hypoxia ensues and results in chronic inflammatory 

state [124]. This condition, triggers alterations of normal leptin and adiponectin levels, which in 

combination with the co-occurrence of other changes, including infiltration of macrophages, 

mitochondrial dysfunction and increased endoplasmic reticulum (ER) stress response, may be 

associated with promotion of cancers such as CRC in obese individuals [125-127]. In a recent 

review, our group described the multiple and complex associations of a dozen of different 
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adipocytokines (both classic and novel) with various cancers and the possible therapeutic 

approaches which target those adipocytokines [48]. 

Peritumoral adipocytes may augment tumor growth [128]. In BC, adipocytes of tumor-stromal 

interface [cancer-associated adipocytes (CAAs)] acquire a fibroblast-like phenotype which is 

associated with greater invasiveness through secretion of various proteases and cytokines [117, 

129]. Regarding ovarian cancer, CAAs, found in omentum, secrete cytokines (IL-6 and IL-8), 

which result in increased migration and invasiveness of cancerous ovarian cells [130]. Other 

mechanisms of “cross-talk” between cancer and peritumoral adipocytes include increased 

lipolysis, which provides an energy source to cancerous cells, as observed in ovarian cancer, and 

chemokine secretion, as detected in prostatic cancer [131]. 

7.5 Factors deriving from ectopic fat deposition   

Ectopic local adipose tissue might be a more important risk factor for site-specific cancers. Data 

from the Framingham Heart Study indicate that the risk for malignancies could be elevated for 

metabolically unhealthy obesity (MUO) older individuals than metabolically healthy obesity 

(MHO) adults [101]. MHO individuals present with less local ectopic adipose tissue surrounding 

organs and blood vessels [132].  Emerging data from epidemiologic and translational research 

studies have indicated that the local ectopic fat tissue, such as breast, bone marrow, intrahepatic 

and intrapancreatic adipose tissues, presents toxic and carcinogenic effects for the development of 

breast, hematopoietic, liver and pancreatic cancers [37, 133, 134]. Local ectopic adipose tissue is 

associated with a more pronounced inflammatory milieu influencing tumor promotion and 

progression [135, 136]. 

Adiponectin, the most abundant adipokine in blood, is the first hormone that gets dysregulated 

(hypoadiponectinemia) due to intrabdominal and ectopic fat distribution leading to dysregulation 
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of IGFs, inflammation, estrogen/progesterone imbalance, and finally to neoplastic transformation 

[4, 137]. 

Although adiponectin is primarily produced in fat tissue, circulating concentrations of adiponectin 

are paradoxically decreased in obese subjects. Besides its intimate implication in the regulation of 

metabolism, in vitro studies have been shown that adiponectin inhibits the proliferation of several 

cancer-derived cells such as endometrial, breast, prostate and colorectal cancer. Adiponectin has 

been shown to inhibit tumor development and growth by affecting several intracellular signaling 

pathways including AMPK, mTOR, PI3K/ Akt, MAPK, Signal Transducer and Activator of 

Transcription (STAT) 3, NFκB and the sphingolipid metabolic pathway [4, 138]. Importantly, 

adiponectin seems to exhibit its strongest effect under the high-fat diet i.e. a condition directly 

related with insulin resistance and pro-inflammatory state, a fact with significant implications in 

anti-neoplastic therapy [138]. Adiponectin exhibits also indirect anti-tumor action through an 

insulin-sensitizing and anti-inflammatory effect. Consistent with in vitro and animal studies, 

several epidemiological studies conducted to date link hypoadiponectinemia to the risk of obesity-

associated cancers including but not limited to breast, endometrial, prostate, colon, pancreatic 

cancers, and hematologic malignancies [4, 107, 109, 110, 133, 139-146]. Current evidence has 

highlighted the role of adiponectin as a novel risk factor (hypoadiponectinemia) and potential 

diagnostic and prognostic biomarker in cancer. 

7.6 Microenvironment and cellular perturbations 

7.6.1 Vascular perturbations 

Obesity is linked to chronic low grade inflammation, described as lipo-inflammation [147]. It is 

also known that inflammation contributes to carcinogenesis [148]. “Angiogenic switch”, a process 

during which many different tumor-associated immune cells promote angiogenesis, is a main 
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pathway through which inflammation promotes carcinogenesis [149, 150].  On the other hand, 

cancer cells per se produce pro-angiogenic factors which, in turn, activate endothelial cells [151]. 

Activated endothelial cells give rise to tumor-associated vasculature which is essential for cancer 

progression and dissemination [152].  

7.6.2 Epithelial-Mesenchymal Transition (EMT) 

Epithelial-mesenchymal transition (EMT) is a process of epithelial cell differentiation to a 

mesenchymal phenotype. This change decreases cell adhesion to other cells and matrix, increasing 

cell motility [153]. EMT is normally implicated in embryogenesis allowing controlled cell 

migration and differentiation [153].  

In diet-induced obesity animal models, there is formation of a microenvironment appropriate for 

tumorigenesis [154]. Such a microenvironment is the result of changes in hormones, growth 

factors, cytokines, adipocytes and alterations in EMT [154]. In contrast, calorie restriction presents 

opposite effects; these include prevention of intra-tumoral adipocytes infiltration, decrease in 

various hormones, growth factors and cytokines and attenuation of EMT [154]. EMT components 

may represent novel targets for cancer prevention or therapy, particularly in obese individuals 

[154]. 

7.6.3 Endoplasmic reticulum (ER) stress 

ER is involved in the process of protein folding. Increased FFAs levels are found in obese 

individuals and are associated with ER stress in adipocytes [155]. Specifically, FFAs induce 

formation of ROS that oxidize proteins and, thus increase the number of unfolded proteins in ER 

[128]. The accumulation of unfolded proteins elicits an inflammatory response [128]. The 

cytokines involved in this process have been linked to colon cancer [156]. The identification of 
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ER stress as a factor related to cancer cell proliferation and survival, has led to the idea that 

“unfolded protein response’”, could possibly be a target for antitumor therapies [157]. However, 

one should necessarily bear in mind that cellular response to ER stress is not always oncogenic; 

meaning that this pathway needs further investigation [157]. 

7.6.4 Migrating adipose progenitor cells 

The stroma of tumors contains mesenchymal cells (MSCs) that serve as important progenitor cells 

which, in turn, play an important role in carcinogenesis [37].  Such an example is 

neovascularization by endothelial cells derived from MSCs [37]. MSCs are initially found in 

circulation and are recruited in tumor sites under the influence of necessary signals (inflammation 

or hypoxia) [158]. In the past, bone marrow was considered the major site of production of such 

cells [158]. However, it has been shown that WAT, found in abundance in obese individuals, is 

another possible site of MSCs production [158]. 

7.7 Factors causing obesity and cancer 

7.7.1 Disruption of circadian rhythms 

Circadian rhythm dysregulation is linked to both obesity and cancer [159]. Decreased sleep 

quantity and quality can result in altered glucose regulation and energy balance including obesity 

[160]. For example, obesity is associated with the development of Hepatocellular Cancer (HCC) 

through obesity-induced steatosis [160]. Disruption of circadian rhythms may be associated with 

HCC due to metabolic and obesity-related factors. 

It has also been shown that hepatic hormones function in a circadian-rhythm fashion and an 

alteration of this rhythm has been linked to the development of cirrhosis and HCC [161]. Of 

interest, it was found that certain drugs against HCC are better administered in a circadian-

modulated rhythm [162]. Thus, circadian rhythm may also be taken into consideration in anti-
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cancer treatments [160]. Lately, the theory that electric light exposure during night may be 

associated with BC, has been investigated epidemiologically; consequently, the link between 

cancer and circadian rhythm disruption will probably be a promising field of future investigation 

[163]. 

7.7.2 Dietary nutrients and cancer 

Since the Hippocratic “Let food be thy medicine and medicine be thy food”, it has been known 

that diet can both increase the risk for cancer and also be used therapeutically in cancer [164]. Red 

and processed meat consumption, which is common among obese people, is strongly associated 

with stomach, colon and rectal cancer [165, 166]. In contrast, high fiber consumption (vegetables 

and fruits), not usually consumed by obese people, decreases the risk of developing CRC [167, 

168] 

Regarding BC, findings from a meta-analysis showed that increased fat intake is probably 

associated with increased risk for the disease [169]. However, the effect of meat and fruit/vegetable 

consumption on BC was not clear [169]. Mediterranean diet, which is associated with lower 

obesity rates, consists of food items rich in antioxidants, fibers and unsaturated fatty acids, being 

associated with a lower risk for EC [170]. Regarding ovarian cancer, no clear associations with 

dietary habits have been identified so far [171]. For renal cancer, there is a higher risk among those 

who frequently eat red or processed meats but no association was found among those ingesting 

low fiber [172, 173]. Interestingly, consumption of sweetened carbonated beverages, which is a 

common habit of obese people, is not associated with an increased risk for any type of cancer 

[174]. However, these results need further validation [174].  

In the micronutrient level, B-complex vitamins, vitamin D and magnesium are associated with 

decreased risk for CRC [175-177]. B vitamins are also protective against lung cancer [178]. In 



27 
 

 

addition, vitamin C and carotenoids decrease the risk for gastric  malignancy [179]. Antioxidant 

intake is possibly associated with a low risk for EC but these results need further confirmation by 

cohort studies [180]. Regarding ovarian cancer, no specific association has been identified with 

any antioxidant or dietary element, in recent systematic reviews [171]. Of dietary supplements, 

calcium and multivitamins are associated with reduced CRC, while for the rest supplement types, 

the associations are inconsistent [181]. 

7.8 Altered intestinal microbiome, obesity and cancer 

One potential factor in the association between cancer and obesity may be the altered intestinal 

microbiome. The intestinal microbiota harbour a very large number of genes, which outnumber 

human genome by about 100 times [182]. These genes provide them with elaborate tools that 

enable them to utilize gut substances, adapt to host defences and form a stunning network of 

symbiosis. Bacteria metabolize a vast variety of substances, among which are prebiotics, fibers, 

aminoacids and drugs. The products of these reactions may be utilized by other species; the big 

picture consists of a highly complex system with many relations of interdependence. The host 

organism through an evolutionary maintained, albeit, complex system of innate immunity, 

epithelial cells and a spectrum of other factors, functions to prevent invasion, i.e. maintaining a 

well-functioning gut barrier.  

The human gut microbiome consists of four phyla:  Bacteroidetes and  Probacteria which are Gram 

negative; Acenetobacteria and Firmicutes which are Gram positive [183]. Bacteroidetes and 

Firmicutes comprise over 90% of the microbiome, whereas their relationship and prevalence is 

determined by diet, BMI and other environmental factors [183]. Gut microbiome has an active role 

in the intestinal metabolism of digested nutrients, influencing their availability for absorption and, 

consequently participates in the pathogenesis of metabolic disorders such as DM, obesity, CVD 
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but also cancer [184]. Obese mice, either genetically predisposed or diet-induced, tend to display 

an increase in Firmicutes and a decrease in Bacteriodetes [185-189]. Specifically, in diet-induced 

obesity, Mollicutes, a subclass of Firmicutes seems to be particularly favored [189].  These bacteria 

are associated with higher levels of lactate, acetate and butyrate; all three being substrates for fatty 

acid synthesis [189]. Obesity can be induced through alteration in the microbiome; it is unlikely 

that altered microbiome is a consequence of obesity. When the microflora of diet-induced obese 

mice was transferred to normal weight, low-fat fed mice, the latter acquired the phenotype of the 

former [189]. Weight loss and bariatric surgery in humans has been shown to decrease Firmicutes 

abundance [190]. The vital role of microbiota in humans was demonstrated in a study where 

researchers transferred fecal content of twins that had different phenotype regarding obesity, to 

microflora-free mice [191]. Interestingly, the rodents adopted the respective phenotype of the 

human donors. 

The potential mechanisms that link microbiota, obesity and cancer can be classified in two 

overlapping groups: promotion of inflammation and production of cancer-promoting substances 

[69]. 

The intestine displays a highly complex, interconnected immunologic response to the inhabitant 

microflora. Pattern recognition receptors sense the profile of microorganisms which they process 

downstream as an innate inflammatory response. Alterations in this interaction are proposed as a 

strong component of the obesity-inflammation-cancer trio. 

Obesity-associated inflammation originates in the intestinal lumen. Endotoxinemia, a term coined 

for the leakage of bacteria derived substances in the bloodstream, is currently considered pivotal 

for the initiation of inflammation [192]. Bacterial death releases LPS that binds to a Toll-like 

receptor (TLR)4 molecule, activating NF-kB and promoting the secretion of inflammatory 
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cytokines as IL-1, IL-6 and TNF-a. NF-kB is a central player in the initiation of liver and intestinal 

tumorigenesis; its inhibition promoted apoptosis in cells carrying malignant potential [193-195]. 

Whereas under normal conditions the gut barrier allows only a minimal amount of 

Lipopolysaccharide (LPS) to enter circulation, LPS levels in obesity are at least doubled [192]. 

The elevation in serum LPS of mice fed with a high fat diet was attributed to decreased ZO-1 

expression of tight junction molecules on intestinal epithelial cells [196]. The effects of TLR2, 

TLR4 and TLR family members exhibit global cancer promoting properties in the colon, liver and 

pancreas [197]. Apart from TLRs, Nucleotide Oligomerization Domain-line Receptor (NLR)1 and 

2, which are also receptors for bacterial molecules, function against gut inflammation and 

tumorigenesis in the context of obesity [198]. Taken together, obesity leads to gut barrier 

dysfunction, mediated by a variety of pathways, eventually, favoring carcinogenesis. This context 

is thought to be pivotal in the association of ulcerative colitis and CRC [197, 199]. The gut barrier 

dysfunction seems to be conditionally reversible; prebiotic induced alteration of gut bacteria, 

stimulated the secretion of Glucagon Like Peptide (GLP)1, PYY and GLP2 that led to reduced 

food intake, and enhanced glycemic indices as well as gut barrier function reducing local 

inflammation [192].  

An interesting display of the role of bacteria induced inflammation in cancer promotion is derived 

from studies in HCC [200]. Obesity favors the manifestation of NAFLD that progresses to non-

alcoholic steatohepatitis (NASH) associated with HCC [200]. Gut barrier dysfunction is 

considered as the main trigger of NASH. Microbe-associated Molecular Patterns such as LPS 

translocation through a defective intestinal barrier and, subsequent TLR, NF-kB signaling and 

upregulation of mitogenic factors are thought to be central in the sequence of liver cancer 

pathophysiology [201]. 
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Fusobacteria, species of particular focus regarding oncogenesis, have been found elevated in the 

saliva and the intestine of obese individuals [202, 203]. It has been shown that they provoke 

activation of NF-kB and other proinflammatory components such as IL-1, IL-6, IL-8, TNF-a, 

matrix metalloproteinase (MMP)3 and COX2, that are associated with intestinal carcinogenesis 

[7].  Other possible mediators of Fusobacteria cancer promotion are β-catenin, TLR4 and p21-

activated kinase (PAK)1 signaling [202, 203]. Adenomatous Polyposis Coli (APC) deficient mice 

fed with Fusobacteria exhibited higher number of tumors and a more rapid intestinal tumor 

progression compared to controls fed with Streptococci [7, 204, 205].  

The effects of the microbiome on body weight and HCC cancer risk may be transmitted along 

generations [206]. Gut content of high-fat diet fed mice transferred to germ-free mice, increased 

the risk of obesity and liver cancer in their offsprings as well [206]. 

The second main theme of microbiota-related cancer promotion is the generation of toxic 

metabolites. Obesity and high-fat diet associated changes in intestinal microbiome have been 

associated with altered bile acid metabolism, with increased production of deoxycholic acid (DCA) 

being of particular importance.  High fat diet fed mice exhibit higher levels of serum DCA, a 

phenomenon attributed to Clostiridia that used primary bile acids as substrates [207].  DCA 

suppresses p53 by enhancing its degradation by the proteasome system [208]. Moreover, DCA 

causes DNA damage through ROS formation [209]. The cancer promoting environment created 

by DCA, in conjunction with cytokines secreted from senescent cells have been demonstrated to 

favor HCC genesis and progression [207]. When researchers suppressed Clostiridia populations 

with antibiotics, DCA levels were diminished and HCCs were reduced in size and number [207].  
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Last but not least, gut microflora has been shown to have the ability to affect the human epigenome. 

Butyrate, an abundant bacterial metabolite, inhibits deacetylation of histones whereas certain 

species of bacteria can alter the non-coding RNA profile of host cells [210-212].  

7.9 Mechanic factors in obesity and cancer 

Esophageal adenocarcinoma represents a paradigm where obesity increases the risk of cancer 

indirectly through a “mechanic” way [213]. Specifically, obesity increases abdominal pressure 

resulting in relaxation of the lower esophageal sphincter (LES) [214]. Due to relaxation of the 

LES, esophageal mucosa is exposed to gastric contents resulting in gastro-esophageal reflux 

(GERD), a phenomenon strongly associated with Barett’s esophagus and esophageal 

adenocarcinoma [214]. Obesity is also associated with increased occurrence of hiatal hernia, which 

also plays a role in the pathogenesis of GERD and, consequently, esophageal cancer in obese 

people [215].     

8. Perspectives and future directions  

A significant percentage of cancer cases may be preventable through quitting smoking, 

maintaining a healthy weight, following a diet with nuts, fruits, vegetables and olive oil, increasing 

physical exercise and decreasing alcohol intake [5]. The American Society of Clinical Oncology 

has stressed that obesity is one of the most important determinant of cancer mortality [14]. From 

a public health aspect, tackling obesity offers the opportunity to prevent an important number of 

chronic non-communicable diseases, including CVD and DM, with the same panel of public health 

interventions.  

The most important preventive measures for obesity associated cancers are based on lifestyle 

modification, diets leading to weight loss, medical nutrition therapy and bariatric surgery. 

Intentional weight loss has been reported to decrease cancer incidence in women, specifically 
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postmenopausal breast and endometrial cancers [216, 217]. Hypocaloric diet is the most effective 

way to induce weight loss [218]. However, it is difficult to keep long-term caloric restriction. 

During adulthood, there is a weight gain at a rate of 0.5 kg per year observed in all BMI ranges 

[219]. In contrast to weight loss and its maintenance over time, avoidance of further weight gain 

may be a better preventive and effective goal to achieve, which confers protection against obesity 

associated cancers, particularly among women [36]. Incorporation of physical exercise into daily 

practice may be an effective preventive strategy to tackle with weight gain [36].  

Ketogenic (low-carbohydrate) diets may be options for weight loss and cancer prevention as they 

adjust systemic metabolic signalling by reducing blood glucose and insulinemia and improving 

insulin sensitivity in murine models and humans [220-222]. Although the available evidence is 

only preliminary, a ketogenic diet may decelerate the progression of certain cancer types [138, 

223]. Dietary patterns rich in vegetables, fruits, nuts, olive oil, fibre and wholegrains, and low in 

processed food and animal products full of saturated fatty acids and cholesterol are associated with 

decreased cancer incidence and mortality [224-226]. Dietary ω3-polyunsaturated fatty acids, 

which share anti-inflammatory and anti-neoplastic properties, could diminish the risk of several 

cancers [7, 227]. Some nutraceuticals such as curcumin, a polyphenol derived from turmeric, may 

regulate the mRNA and protein levels of pro-inflammatory adipocytokines: resistin and 

visfatin/Nampt [228].  

Bariatric surgery provides long-term weight loss for morbidly obese individuals along with 

resolution of comorbidities [229]. Nowadays, laparoscopic sleeve gastrectomy provides excellent 

weight loss with low complication rates and technical simplicity [230]. More importantly, bariatric 

surgery has been shown to reduce the incidence of many cancers such as endometrial, breast, 

colorectal, non-Hodgkin lymphoma and melanoma [55, 231, 232]. Overall, bariatric surgery 
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causing weight loss has been shown to decrease obesity associated cancers with a 40-50% 

reduction in cancer-specific mortality across cancer types, highlighting that weight loss could be 

an effective preventive measure in obese subjects [39, 233].  In MUO, bariatric surgery improved 

insulin sensitivity and intestinal microbiota profile, restored inflammatory adipocytokines and 

decreased tissue inflammation [3, 47, 234-236].  

Glycemic control with metformin or Peroxisome Proliferator-Activated Receptors (PPAR)-γ 

agonists can restore adipocytokines concentrations, increasing adiponectin and decreasing pro-

inflammatory adipocytokine levels in both humans and mice being at the forefront of therapeutic 

strategies for obesity-related malignancies [3, 47, 237, 238]. Metformin is a chemopreventive 

agent against a plethora of cancers restricting tumor growth through insulin-independent 

mechanisms involving the activation of the AMPK, which is critical in cell proliferation [239]. 

Whilst evidence from preclinical and population-based studies suggests an anticancer role for 

metformin, this is challenged by the fact that higher metformin doses are used in mechanistic 

studies and animal studies, exceeding standard treatment doses in humans [240]. Since direct 

tumor uptake of metformin relies on the expression of elevated levels of organic cation transporters 

which vary in cancers, it seems that metformin’s actions in lowering insulin levels account for the 

decrease in cancer risk observed in epidemiologic studies [241, 242]. Emerging evidence from 

human studies have shown that metformin is a cancer chemotherapeutic agent. Despite several 

conflicting results, meta-analyses have shown an overall decrease in cancer risk of about 30% 

throughout all malignancies, particularly in pancreatic and hepatocellular cancers [243, 244]. 

Clinical trials using metformin alone or in combination with standard therapy in a variety of 

malignancies, either as a preventive or therapeutic strategy are ongoing [245].  Currently, 322 trials 

on metformin in cancer can be identified in Clinicaltrials.gov (retrieved on October 6, 2018). 
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Overall, the data is strongest regarding treatment against gynecologic (endometrial and breast), 

colorectal, prostate cancers where there is some evidence of positive biomarker modulation [246-

248]. However, the design of most trials has been questioned due the insufficient underlying 

molecular rationale and the wide inclusion criteria [249].  Long-term phase II-III clinical trials are 

strongly warranted to further explore metformin activity in malignancies [250]. Whether 

metformin should be utilized as a chemopreventive agent in obese subjects without DM or insulin 

resistance is a matter of debate. Generally, metformin is a well-tolerated drug with mild side effects 

including gastrointestinal disturbances, such as abdominal discomfort, anorexia, nausea and 

diarrhea [248]. 

Activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists could restrict cell 

proliferation by decreasing insulin and influencing key pathways of the Insulin/IGF axis, such as 

MAPK, PI3K/mTOR and Glycogen synthase kinase (GSK)3-β/Wnt/β-catenin cascades, which 

modulate tumor cell survival and differentiation [251]. Nevertheless, the use of PPAR-γ agonists 

as antineoplastic agents have reached conflicting results in clinical trials [251]. 

Lipid-lowering drugs, calcium-channel blockers, vitamin C and D supplementation, folic acid and 

oleic acid could significantly restore adipocytokine levels impacting on cancer risk. In particular, 

long-term statin use (≥ 4 years) is associated with lower overall cancer mortality [7, 252]. 

Acetylsalicylic acid may be beneficial in treating the systemic or local implications of white 

adipose tissue inflammation decreasing the incidence and mortality of certain obesity-related 

cancers, particularly colorectal and endometrial cancers [128, 253]. Since obesity is related to 

elevated levels of cyclooxygenase-2 and elevated prostaglandin signaling and synthesis, non-

steroidal anti-inflammatory drugs (NSAIDs) may play a role in obesity associated cancers through 

COX inhibition and decrease of prostaglandin levels [254]. The strongest evidence for an anti-
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neoplastic role of chemoprevention with NSAIDs is observed in colorectal adenoma and cancer 

[255].  Antimicrobial treatment modulating gut microbial populations could be a useful approach 

for the management of obesity and metabolic conditions including cancer [128, 253].  

In pre-clinical studies, pegylated leptin-receptor antagonist 2 has been reported to diminish the 

proliferation and angiogenesis of BC cells [256, 257].  Also, ADP355, a peptide-based adiponectin 

receptor agonist, has been shown to restrict the proliferation of adiponectin receptor-positive 

cancer cell lines [258, 259]. Targeting the inhibition of pro-inflammatory adipocytokines such as 

resistin and visfatin could be an effective strategy in cancer therapeutics, particularly in depleting 

the tumor inflammatory microenvironment [3, 47]. Combination treatment of chemotherapeutics 

drugs or radiation with Nicotinamide phosphoribosyltransferase (Nampt) inhibitors could 

represent an emerging strategy potentiating the efficacy of existing chemotherapeutic agents [3]. 

A critical research goal is to include serum or plasma biomarkers reflecting adipose inflammation 

that would allow wider studies of associations between obesity and malignancies, providing 

surrogate markers of intervention efficacy in obesity-related cancers. Adipocytokines, particularly 

adiponectin, may be useful diagnostic and prognostic biomarkers, reflecting stage, prognosis and 

inflammatory state in cancer [3, 47, 260-263]. However, more prospective and longitudinal studies 

are needed to investigate the diagnostic and prognostic potential of classic and novel 

adipocytokines as cancer biomarkers. Also, there is need to develop more reliable and practical 

automated laboratory techniques with standardization of immunoassay procedures to explore the 

pathophysiological relevance of adipocytokines. Finally, high throughput technologies such as 

proteomics and metabolomics will discover novel adipocytokines and obesity-related biomarkers. 

More detailed methods of adipose tissue distribution in large epidemiological studies are required 

to better discriminate and quantify different body fat composition (VAT and SAT) and ectopic fat 
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deposition, and their role in cancer, such as 1H magnetic resonance spectroscopy and Magnetic 

Resonance Imaging (MRI) [37, 264].    

In summary, there is evidence for a strong connection between obesity-driven chronic 

inflammation, IR, adipokines, altered microbiome and cancer. Further research in basic and 

translational research is essential to delineate the ontological role of adipocytokines and their 

interplay in obesity-related cancer pathogenesis. More prospective and longitudinal studies are 

expected to determine a broad spectrum of obesity-related biomarkers and evaluate their clinical 

utility in cancer prognosis and monitoring. Reversing obesity-associated dysfunction and 

inflammation of the adipose tissue by lifestyle interventions such as weight loss, physical activity 

and dietary modifications as well as bariatric surgery could present a public health relevant 

contribution to decrease cancer risk or progression. Finally, novel more effective and 

adipocytokine-oriented therapeutic interventions could pave the way for targeted oncotherapy.  
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Table 1. Epidemiologic evidence associating overweight/obesity and cancer risk by level of 

evidence and strength of Relative Risk increase for overweight/obesity in comparison to normal-

range body mass index (18.5-24.9 kg/m2) defined by the WHO as synopsized by the IARC 

Working group in 2017. 

Evidence level Strength of Relative Risk Increase for Obesity and Cancer Risk 

Convincing/Sufficient High (RR increase≥3) Modest (RR increase: 

1.50-2.99) 

Little (RR increase: 

1.00-1.49) 

 Endometrial 

adenocarcinoma 

 

Renal adenocarcinoma Colorectal cancer 

 Esophageal 

adenocarcinoma 

Hepatocellular cancer Postmenopausal breast 

cancer 

 

  Pancreatic 

adenocarcinoma 

 

Gall bladder cancer 

  Gastric cardia cancer Ovarian Cancer 

  Multiple myeloma Thyroid Cancer 

  Meningioma  

Limited    

  Advanced stage 

prostate cancer 
 

   

Male breast cancer 

 

  Diffuse large B-cell 

lymphoma 
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Table 2. Associations of weight gain per 5 kg per m2 increase of BMI with cancer risk by anatomic site. Associations 

with somatometric data and overall level of evidence for the association of BMI with cancer risk by cancer type based 

on the WCRF project. 
Refs Strength of 

evidence 

Anatomic site Histologic 

type 

Summary risk 

estimate per 5 

kg per m2 BMI 

increase  

 (95% CI) 

 

BMI WC WHR Adult 

attained 

height 

[1], [4] 

 

Convincing Esophageal Adeno-

carcinoma 

Men 

1.52 (1.33, 1.74) 

 

Women 

1.51 (1.31, 1.74) 

+ +    

[1], [5] 

 

Probable Gastric Adeno-

carcinoma 

Men 

0.97 (0.88, 1.06) 

 

Women 

1.04 (0.90, 1.20) 

+    

[1], [6] 

 

Convincing Colorectal Adeno-

carcinoma 

Colon 

men 

1.24 (1.20, 1.28)  

Women 

1.09 (1.05, 1.13) 

 

Rectum 

Men 

1.09 (1.06, 1.12)  

Women 

1.02 (1.00, 1.05) 

 

+ + + + + + + + 

[1], [7] 

 

Probable Gallbladder Adeno-

carcinoma 

Men 

1.09 (0.99, 1.21) 

women 

1.59 (1.02, 2.47) 

+    

[2], [8] 

 

Convincing Pancreatic Adeno-

carcinoma 

Men 

1.13 (1.04, 1.22) 

 

Women 

1.10 (1.04, 1.16) 

+ + + + + + + 

[3], [9] 

 

Convincing Liver HCC Men 

1.19 (1.09, 1.29) 

 

Women 

1.12 (1.03, 1.22) 

+ +    

[1], [10] 

 

Convincing Renal Not  

investigated 

Men 

1.24 (1.15, 1.34) 

 

Women 

1.34 (1.25, 1.43) 

+ + + + + + + 

[1], [11] 

 

Convincing Postmenopausal 

breast 

Not 

 investigated 

Women 

1.12 (1.08, 1.16) 

+ +   + + 

[1], [12] 

 

Convincing Endometrial Not  

investigated 

Women 

1.59 (1.50, 1.68) 

+ + +   

[13] Probable Ovarian Not  Women +   + + 
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investigated 1.06 (1.00, 1.12) 

[14] Probable Advanced 

prostate 

Not 

 investigated 

Men 

1.08 (1.04, 1.12) 

+ + +  

+ + convincing increased risk; + probable increased risk: BMI, Body Mass Index; WC, Waist Circumference; WHR, Waist-Hip ratio; 

WCRF, World Cancer Research Fund 
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Table 3. Somatometric data related to obesity and cancer risk 
 

Factors 

 

Classifications Comments 

BMI (kg/m2) Underweight: <18.5 

Normal weight: 18.5–24.9  

Overweight: 25.0–29.9  

Obese I: 30.0–34.9  

Obese II: 35.0–39.9  

Obese III: ≥40.0  

 

✓ BMI is not a good marker of adiposity as 

it cannot differentiate between adipose 

tissue and lean mass. This may partially 

explain the “obesity paradox” in cancer 

patients.  

✓ BMI is inaccurate to evaluate obesity in 

elderly subjects; individuals at extreme 

height; very muscular individuals and fat 

subjects in the normal-range BMI. 

✓ BMI may underestimate visceral obesity 

status biasing the association between 

obesity and cancer risk towards the null  

✓ At the same BMI, women tend to present 

higher fat percentage than men 

✓ Self-reported weight tends to 

underestimate BMI in heavy subjects  

 

WC (cm) M: >102  

W: >88  

 

✓ WC is associated more strongly with 

visceral fat than BMI 

✓ WC is a better indicator for cancer risk 

than BMI 

 

WHR M: >0.90 

W: >0.85 

 

✓ WHR is associated more strongly with 

visceral fat than BMI;  

✓ WHR is a better indicator for cancer risk 

than BMI.  

✓ WHR better mirrors weight changes in 

men 

 

HC - 

 

✓ Lower HC is associated with increased 

cancer mortality and increased risk of 

CVD   

Fat distribution Abdominal adiposity as SAT 

and VAT 

 

✓ There is evidence that the association 

between obesity and cancer is mediated by 

VAT.  

✓ CT is the standard method for 

quantification of VAT but is not feasible 

for population-based studies 

✓ WC and WHR are surrogates of visceral 

obesity in population-based studies but 

they may not distinguish VAT and SAT at 

the waist level 

NAFLD 

 

Steatosis, NASH, 

inflammation, injury, 

fibrosis  

✓ NAFLD is considered the hepatic 

manifestation of metabolic syndrome. 

✓ NAFLD is a key predictor of insulin 

resistance 
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BMI, body mass index; CT: Computed Tomography; CVD: Cardiovascular Disease; HC, hip circumference; M, men; 

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; SAT, subcutaneous adipose tissue; VAT, 

visceral adipose tissue; W, women; WC, waist circumference; WHR, waist/hip ratio. 
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Figure legend Main mechanisms associating obesity and cancer 
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