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Abstract:

This is Part Il of two closely related papers, where we show that the strong repulsive
interaction caused by specifically adsorbed anions leads to a failure of the nearest-neighbor
Ising model to describe structures on electrode surfaces. In this part, an analytical form of
the step diffusivity is derived in terms of nearest and next-nearest neighbor interactions for
steps with a mean direction along (110) (the close-packed direction). With the help of a
further analytical expression for the diffusivity of steps with (100) mean orientation a simple
scheme is developed whereby the nearest and next-nearest interaction energies can be
extracted from the experimental values for the diffusivity along the (110)- and (100)-
directions. The method is applicable to repulsive and attractive next-nearest neighbor
interactions, both for surfaces in vacuum and in contact with an electrolyte. An example is
presented in Part I, where we apply our approach to Au(100) in Br-, CI- and SO,*containing
electrolytes.
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1. Introduction

The statistical analysis of step fluctuations and island perimeter fluctuations is one of the
few windows which enables a view onto the energetics of atoms and atomic motions at the
solid-electrolyte interface. This window is particularly precious as it allows the study of
exactly those processes which are active at ambient temperature and therefore important in
all practical application of electrochemistry. One may even argue that the view provided by
statistical methods has even a certain element of uniqueness, since the view focuses on the
rate determining steps in transport processes and on the energetics of those structures
which are not frozen-in at ambient temperature. The statistical analysis of step and island
perimeter fluctuations has therefore a considerable tradition especially in application to
single crystal electrode surfaces [1-7].

The theoretical analyses of earlier results concerning equilibrium fluctuations and
transport processes on electrode surfaces took merely nearest-neighbor interactions
between atoms into account. Kinks within a step e.g., were assumed to possess the energy
proportional to their length [1, 8, 9], an assumption equivalent to allow for nearest-neighbor
(NN) interactions only (see Sect. 2). In particular on (100) surfaces where the in-plane
coordination is only four, next-nearest-neighbor (NNN) interactions need be taken into
account. For Cu(100) surfaces in vacuum, e.g., attractive NNN interaction energies of 1/4 of
the NN interaction energies need to be invoked to describe the step diffusivity as a function
of step-orientation [10].

Addition of NNN interactions has consequences for the entire functional dependence
of the diffusivity on the angle of orientation. This dependence is described by a set of

interwoven, complex equations which have to be solved together [11, 12]. To match those



to experimental curves for a particular set of energies is a rather arduous task. Fortunately,
there is a much easier path.

This paper shows that NN and NNN interactions on fcc (100) surfaces can be extracted
just from two values of the diffusivity, i.e., the diffusivity of steps oriented along (110) (i.e.
6 = 0°) and (100) (i.e. 8 = 45°). At 6 = 45°, the diffusivity is almost entirely due to
geometrically forced kinks [13]. The diffusivity caused by those is described by a simple
equation, even for the entire angle range. Specifically at 8 = 45° the diffusivity depends
solely on the NNN interaction, so that the NNN interaction can be calculated directly from
the diffusivity. At 8 = 0°, geometrically forced kinks do not exist and the diffusivity is
entirely caused by thermally excited kinks. The diffusivity is then a simple function of the
energy of kinks as function of their length. These energies are conveniently expressed in
terms of NN and NNN interactions. Thus the two parameters for NN and NNN interaction
energies can be extracted just from two data points on the diffusivity vs. angle curve.
We remark that the statistical mechanics of steps is equivalent to that of a phase separation
line within the Ising model for a two-dimensional antiferromagnetic lattice and has been
treated in this context by many authors (see e.g. [14-16]). There is furthermore ample
literature on the statistical mechanics of interfaces and 2D equilibrium shapes (see e. g.
[17]). These papers; however, do not explicitly discuss the experimental quantity of interest
here, which is the diffusivity of steps. They furthermore display great deal of abstractness. It
is therefore felt that a simple derivation of the relevant equations in the context of our
experimental analysis is in order.
Part Il is organized as follows. The next section considers the contribution of NN and NNN
interactions on the energy of kinks of variable length. It is shown that the resulting

expressions for the kink energy can be mapped onto the model in which the kink energy is



split into a contribution of a corner-energy and an energy proportional to the length of the
kink. The closed expression for the diffusivity is easily derived for that case. Section 3
considers the diffusivity due to geometrically forced kinks. Section 4 shows that the line
tension of (110) oriented steps can be expressed in terms of the same energy parameters

for the NN and NNN interaction.

2. Thermally excited kinks in presence of next-nearest neighbor interactions

The considerations to follow are based on the Terrace Step Kink (TSK) model of surfaces
which assumes that the surface consists of flat terraces separated by steps in such a way
that an unequivocal numbering of the steps by an index i is possible [18]. The steps are
allowed to have kinks, but no overhangs so that the position of a step is uniquely described

by a single Cartesian y;(x) for each step i.
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Fig. 1: Top view onto two steps to illustrate the definition of the coordinates. In the TSK-model overhangs are

not permitted so that y;(x) uniquely defines a position on a step.



Fig. 1 shows a top view on step positions on a surface with square symmetry (e.g. (110)
steps on {100} surfaces of an fcc-material). The defining equation for the diffusivity of step i

is [19-21]

()= yi(x0)?) a2 = (b2 /2 x—xg| /3y (1)

when the coordinate x is along the (110) direction of the step and y the coordinate
perpendicular to it. The symbols a; and a, stand for the atom length unit parallel and
perpendicular to the (110) direction, respectively (a; = a, for fcc (100) surfaces). We note

that eq. (1) is the TSK analog of the continuum equation for a freely meandering step

(3 () = 31 (x0))") = 225 |x — x, (2)

in which § is the stiffness of the step. Within the TSK-model the step meanders because of
the presence of kinks of discrete length in units of a,. The diffusivity of a step is then given
by the normalized sum over the Boltzmann probabilities to have kinks with length of n-
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Here g, (n) is the energy required to create a kink with a length of na . The factor 2 before
the sums takes into account that kinks can have two different orientations.
NNN interactions have a nontrivial effect on the energy of kinks as function of their

length. This is illustrated with Fig. 2. Extracting a pair of atoms from a step edge and placing



them onto a straight step creates four kinks of single atom length. As illustrated in Fig. 2(a)
by solid bars, four NN bonds are broken in the process; however, two of them are regained.
Broken NNN bonds are completely regained. Hence, NNN interactions do not contribute to
the creation energy of a single atom length kink. The energy per kink for a single atom kink is
therefore half the energy required to break a single nearest-neighbor bond. We denote this
energy as eyy SO that g.(n = 1) = eyy. We remark that the energy for this special case is

often noted in literature simply as e = gg(n = 1).
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Fig. 2: Solid and dashed lines mark broken NN and NNN bonds, respectively. (a) Extracting two atoms from a
step edge and placing them onto the step creates four kinks of single atom length. Four NN bonds are broken in
the process (red), two of them regained (green). Broken NNN bonds are completely regained. Hence, the
energy per single-atom kink (n = 1) is (1) = eyy Where eyy denotes half the energy to break a single NN
bond. (b) The creation of a kink of two atoms length (n = 2) requires the net breaking four NN and four NNN

bonds . The creation energy per kink is £,.(2) = 2exy + 26nnN-



The creation of kinks with more than a single atom length a; however, does involve

the breaking of NNN bonds. This is illustrated by Fig. 2(b) for the case of two atom long kinks
(n=2). We consider first the nearest neighbor bonds. Six of them are broken in the process,
two of them regained. Hence, the creation of two-atom long kinks requires to break four
NNN bonds, hence the energy 2eyy, twice as much as a kink of single atom length.
In terms of NNN bonds eight are broken; however, four of them regained. Hence, one NNN
bond is broken per kink to which we assign the energy 2eynn (i-€. eynnis half the energy to
break a NNN bond). The total creation energy per kink of n=2 length is therefore €. (2) =
2enN T 2€nNN-

For each additional atom length two more of the NNN energies are to be added. In

general we therefore have

ex(n) = neyy + 2(n — 1exnn = n(enn + 26nnn) — 2ENNN- (4)

We note that this equation is equivalent to eq. 2 in [14] derived in the context of the 2D Ising

lattice. The energy for &.(n) therefore consists of two parts, an energy proportional to the

kink length

ne; = n(enn + 26nnn) (5)

and a "corner energy" [22]

E = _ZENNN' (6)



Note that the "corner energy" is negative for positive eyyy i.€. attractive NNN interactions
and vice versa. With the ansatz for the length dependence of the kink energies, the sums in

eq. (3) are executed to yield
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k

with c=e ¥8T and g=e keT (7)

b2/a2 = (n2) - 2cad+a)
= <n> (1-0)*(1-q+2cq)

(Eg. (7) was derived previously in [23] as eq. (5.26). However, there the last term in the
denominator erroneously reads 2cq? instead of 2cq). As was brought to our attention by
T.L. Einstein, our eq. (7) also corrects the corresponding expression in table 1 of ref. [24].

For a better understanding of the role of NNN interactions for the microscopic
structure of steps, it is useful to compare the meandering of (110) steps with and without
repulsive NNN interactions. For that purpose we plot out steps using the probability to find a

kink of length n

g

W(n) = Ze—gk(n) ’ (8)
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The parameters in g.(n), namely exy and exny, are taken from two experimental examples.
One is for the 504'2 electrolyte at the potential £ =+0.3 V SCE for which eyy = 43 meV, € =
0 meV (Table 3 of Part ). The other is for the Br containing electrolyte at £ =+0.17 V SCE for
which exy = 98 meV, eyyy = —42 meV was found (Table 1 of part 1). These examples were
chosen since for these parameters steps have about the same diffusivity. Due to the

different NNN interactions, the microscopic structure is qualitatively different (Fig. 3). The



red line depicts the step for the S0,% electrolyte with no NNN interactions. The orange line is
representative for the Br containing electrolyte with strong repulsive NNN interaction.
Obviously, the appearance of the two steps is qualitatively different, despite the fact that
they have about the same diffusivity. In the case of strong repulsive interactions (the Br’
containing electrolyte), kinks are longer on the average length; however, they are also much

rarer.
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Fig. 3: Profiles for freely meandering, [110] oriented steps. The horizontal scale encompasses 10* atom

lengths. The vertical axis is enlarged by a factor 160. The steps are not fixed in average orientations, so that

they deviate from the (110) direction by the angle 8 = arc tan(/(n?)). The orange line is representative for
the Br containing electrolyte (eyy = 98 meV, eyyny = —42 meV), the red line for the S0, -electrolyte
(enny = 43 meV, eyyy = 0 meV). Both steps have about the same diffusivity; however, kinks are rarer and

longer in the Br containing electrolyte.

The reason for the different microscopic structure of the steps becomes clear when one
takes a look at the energy of kinks as function of the length on the one hand and the

contribution of those kinks of length n to the diffusivity
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In Fig. 4, w(n) (eq. (8)) and bz(n)/ai (eq. (9)) are plotted as circles and squares,
respectively. The solid orange symbols stand for a case of strong repulsive NNN interactions,
as realized with Br™ containing electrolytes. The open red symbols stand for the case of zero
NNN interactions, as realized in the SO,> containing electrolyte. In that latter case, w(n) is
large for small n; however, falls off more rapidly than in the Br case. The diffusivity is mainly

due to one and two atom long kinks (see red open squares in Fig. 4).
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Fig. 4: The probability w(n) to find a kink of length n and the contribution to the diffusivity b?(n)/a? made by
kinks of length n is plotted as circles and squares, respectively. The solid orange and open red symbols stand for

a case of strong (Br) and zero (S0.%) repulsive NNN interactions, respectively.

For the Br case with strong repulsive NNN interaction, the energy required to create a single

kink is eyy = 98 meV, the energy required to create a kink of length 2a;, however, is only



marginally higher (&,(2) = 2-98 meV — 2 - 42 meV = 110 meV). Since the contribution of
kinks to the diffusivity is proportional to n?, kinks of length 2a, contribute more to the
diffusivity than kinks of length 1a, (see solid orange squares in Fig. 4). Even kinks of length
up to n = 7 make a larger contribution to the diffusivity than kinks of length 1a,, despite

the fact that they are rare.

3. Geometrically forced kinks

Steps deviating from the (110) orientation by an angle 8 must have a certain fraction of
kinks of a sign dictated by the angle 6. The positions of these kinks are randomly distributed,
which gives those steps non-zero diffusivity, even at zero temperature. These kinks are
called "geometrically forced" kinks. Within the NNN model, the diffusivity caused by forced

kinks is given by a simple expression [10]:

b(0) _ sin;29) J1 =1 —2exp(=2 eynn/kgT)] sin(26) (10)

2
ay

The diffusivity due to forced kinks vanishes for 8 = 0°, as it must be. In the absence of NNN

interactions (eyyny = 0), the diffusivity due to forced kinks is simply

b2(9) _ sin(26)
A

1 + sin(26). (11)

For (100) oriented steps, i.e. 8 = 45°, the diffusivity becomes

b2(6=45°) 1
e \/_Eexp(_eNNN/kBT)- (12)



At 6 = 45° the diffusivity due to forced kinks depends solely on the NNN interaction energy
ennn- In case exyny = 0 (NN interactions only), the diffusivity is b%(45°)/a? = 1/v/2. For
ennn < O (repulsive NNN interactions) one has b?(45°)/a? > 1/+/2 and vice versa.

The important point is now that for a wide range of energies and temperatures the
diffusivity is mainly determined by geometrically forced kinks. Thermal kinks contribute only
for small angle 6. This is illustrated with Fig. 5. The figure compares the diffusivity
b?(45°)/a? due to geometrically forced kinks (dashed and dotted lines) to the exact
solution [10, 13] for two cases: eny = 114 meV,eyyy = 28.5meV  and

enny = 68 meV, eyyny = 6.8 meV.

6—r——
eyy = 114 meV ennn = —28.5meV

exact solution '

0.5} = =geometric kinks only i

eyy = 68meV, €yyy = 6.8 meV
exact solution
------- geometric kinks only

©
~
T

Diffusivity b*(6) / a ®
o o
N w

o
=

0.0 0.2 0.4 0.6 0.8 1.0

| tan(6)

o
o

Fig. 5: The diffusivity b?(45°)/a3 due to geometrically forced kinks (dashed and dotted lines) is compared to
the exact solution [10, 13] for two cases : eyy = 114 meV, eyyy = 28.5 meV and eyy = 68 meV, eyyny =

6.8 meV. The temperature is 300K.

The temperature is set to 300K. Both cases assume specific sets with repulsive NNN

interactions for which exact solutions have been published [10, 13]. For the case ey =



114 meV, exyn = 28.5 meV (eynn/€Enn = 1/4), one finds a perfect agreement between
the exact solution (red solid line) and the analytical equation for forced kinks only (dashed
line) down to tan 8 = 0.05. For eyy = 68 meV, eyyny = 6.8 meV (exnn/Enn = 1/10) one
has larger deviation which tails off slowly with higher tan 8. Nevertheless, at 8 = 45° the
contribution of thermal kinks to the diffusivity is marginal.

Since the contribution of geometrically forced kinks vanishes at 8 = 0° and thermal
kinks play hardly a role at 8 = 45°, the two parameters eyy and eyyy €an be determined
from two experimental data points, the diffusivities at 6 = 0° and 8 = 45°: Firstly, the NNN
interaction energy exnyy is calculated analytically from b2(45°)/a3. The NN interaction
energy eyy is then obtained by varying the value for ey while keeping eynyn fixed until the

diffusivity b%(0°)/a? (eq. (7)) assumes the experimental value.

4, Line tension of (110) steps in the TSK model

The line tension of steps can be determined experimentally from equilibrium shape
fluctuations of islands which are one atom layer high [25, 26] (see also Sect. 4.3.8 of [23]).
Similar to the considerations of the diffusivity, a coarse-grained view on the surface is
adopted, and the fluctuations are described employing statistical thermodynamics of
fluctuations. The resulting line tension is therefore the free energy of steps in case of
surfaces in vacuum and the equivalent to the free energy, now with the side condition of
constant electrode potential instead of zero charge, in the case of electrode surfaces. The
two energies deviate from each other except at the potential of zero charge [27, 28]. Since
the quantity is obtained from the circumference of islands, the resulting line tension is a
weighted average over all orientations. By invoking the inverse Wulff-construction on the

equilibrium shape of islands of the same type, it is possible to obtain the line tension for



individual step orientations [29]. The method has been applied to islands on surfaces in
vacuum [29, 30], as well as to islands on electrode surfaces [31]. In the context of this paper,
the line tension of (110) steps is of particular interest. Experimental data as function of the
electrode potential are available for three electrolytes [31-33] considered in part I. This
section shows how the line tension of (110) steps can be expressed in terms of the NN and
NNN interaction energies eyy and eyyn- The energetic part of the line tension in the TSK
model follows immediately from eq. (5). The entropic term follows from the partition

function Z. In our notation one therefore has for the line tension per atom

,8(110)61” = €ENN + ZENNN — kBT Inz (13)

The partition function contains contributions from all degrees of freedom. However, only the
phonon degrees of freedom and the structural fluctuations (diffusivity) have sufficiently low
energies to make a contribution to the free energy. The phonon part results from the
difference in the phonon spectrum of stepped and flat surfaces. It has been calculated for
steps on copper surfaces [34]. For (110) steps on Cu(100) surfaces, the vibrational
contribution to the free energy at 300 K was found to be rather small (-2 meV/step atom).
We therefore neglect the phonon contribution to the step free energy and focus on the

structural part. The partition function due to step meandering is the denominator of eq. (3)

g (n)

Z=1+2¥% e ksT, (14)

After inserting &, (n) from eq. (4) one obtains



Bi110y = €nn + 2ennn — kpT In{1 + 2e2NNN/kBT /(g (ennt2ennn)/keT — 1)} (15)

We note that this equation is equivalent to eq. 4 in [14] derived in the context of the 2D Ising
lattice. The entropic contribution to the free energy is of considerable magnitude when the
energies involved in the kink generation are comparable to kgT, which is the case for
surfaces in contact with an electrolyte; less so for surfaces in vacuum. Table 1 compiles
samples of energy parameters obtained from step diffusivities in the TSK model with NNN
interactions, eyy and eyyn for Au(100) in three different electrolytes and for Cu(100) in
vacuum. The data for the different electrolytes refer to surface coverages between
approximately 0.1-0.2 (SO4*) and 0.2-0.5 (Br, CI') anions per gold surface atom. The fifth
column is the step energy per atom Eg., = €xn + 2€xnn- The sixth column shows the
entropic contribution TSy, to the step line tension. The last column compares the step line
tension calculated in the TSK model with NNN interactions to experimental data (in
brackets). The good agreement entails that the energy parameters obtained from the
orientation dependence of step diffusivities describe the line tension obtained in
independent experiments rather well. The NNN TSK model is therefore an adequate basis for
the description of the energetics of steps, while the NN model fails completely in most cases.
For gold in CI" and Br e.g., the step energy Ese, and therefore also the step line tension
would be calculated twice as high, if the repulsive interaction between NNNs were
neglected. For Cu(100) in vacuum on the other hand, neglect of the attractive NNN
interactions would result in a step energy of 129 meV per atom, only about half the actual

value.



Surface coverage | eyn/meV | eynn/meV | Egep/meV TSstep/ MmeV line tension/meV
Au(100)/50,> 0.17 54 2 58 7 51 (52)
Au(100)/CI 0.43 62 12 38 6 32(27)
Au(100)/Br 0.4 71 -19 33 4 29 (27)
Cu(100) - 129 40 209 0.35 209 (220)

Table 1: Energy parameters obtained from step diffusivities in the TSK model with NNN interactions eyy and
ennn for Au(100) in three different electrolytes and Cu(100) in vacuum. The fifth column is the step energy per
atom, Eg.p, = enn + 2€nnn- The sixth column shows the entropic contribution TS, to the step line tension.
The final column compares the step line tensions calculated in the TSK model with experimental data obtained

from island shape fluctuations (in brackets) [35, 36].

5. Conclusion

By mapping NN and NNN interaction energies exy and eyyny Onto the "corner model", the
diffusivity of step in (110) direction is calculated in closed form. The diffusivity of steps
oriented along the (100) direction is well described (up to the fourth order in exp[—(exn +
2ennn)/kgT]) by a simple equation, which involves only the NNN energy. Hence, the two
energetic parameters of the NNN model can be calculated from the diffusivities of steps
oriented along the (110) and (100) directions. The step line tension calculated in the TSK
model with NNN interactions included agrees well with experimental data obtained in

independent experiments.
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