Margarita Komarova

Margarita Komarova
Sechenov Institute of Evolutionary Physiology and Biochemistry · Laboratory of biophysics of synaptic processes

PhD

About

5
Publications
549
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
44
Citations
Citations since 2016
4 Research Items
44 Citations
20162017201820192020202120220246810
20162017201820192020202120220246810
20162017201820192020202120220246810
20162017201820192020202120220246810

Publications

Publications (5)
Article
Full-text available
The chemical structures of some antidepressants are similar to those of recently described amine-containing ligands of acid-sensing ion channels (ASICs). ASICs are expressed in brain neurons and participate in numerous CNS functions. As such, they can be related to antidepressants action or side effects. We therefore studied the actions of a series...
Article
The transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel gated by numerous chemical and physical stimuli (protons, capsaicin, heat, etc). TRPV1 receptors are important integrators of multiple noxious and inflammatory signals in vertebrates. Modulation of TRPV1 receptors activity is considered to be a promising stra...
Article
Full-text available
Proton-gated channels of the ASIC family are widely distributed in the mammalian brain, and, according to the recent data, participate in synaptic transmission. However, ASIC-mediated currents are small, and special efforts are required to detect them. This prompts the search for endogenous ASIC ligands, which can activate or potentiate these chann...
Article
Full-text available
TRPV1 (vanilloid) receptors are activated by different types of stimuli including capsaicin, acidification and heat. Various ligands demonstrate stimulus-dependent action on TRPV1. In the present work we studied the action of polypeptides isolated from sea anemone Heteractis crispa (APHC1, APHC2 and APHC3) on rat TRPV1 receptors stably expressed in...
Article
Antidepressants have many targets in the central nervous system. A growing body of data demonstrates the influence of antidepressants on glutamatergic neurotransmission. In the present work, we studied the inhibition of native Ca2+-permeable and Ca2+-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rat brain neur...

Network

Cited By