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Predicting Real-Time Roadside CO and NO2

Concentrations Using Neural Networks
Pietro Zito, Haibo Chen, and Margaret C. Bell

Abstract—The main aim of this paper is to develop a model
based on neural network (NN) theory to estimate real-time road-
side CO and NO2 concentrations using traffic and meteorological
condition data. The location of the study site is at a road intersec-
tion in Melton Mowbray, which is a town in Leicestershire, U.K.
Several NNs, which can be classified into three types, namely, the
multilayer perceptron, the radial basis function, and the modular
network, were developed to model the nonlinear relationships
that exist in the pollutant concentrations. Their performances
are analyzed and compared. The transferability of the developed
models is studied using data collected from a road intersection
in another city. It was concluded that all NNs provide reliable
estimates of pollutant concentrations using limited information
and noisy data.

Index Terms—Multilayer perceptron (MLP), pollutant concen-
tration prediction and air quality, radial basis function (RBF).

I. INTRODUCTION

THE POLLUTANT concentrations in urban areas that are
produced by traffic emissions depend on vehicle charac-

teristics, traffic and weather conditions, geographic and built
environment characteristics of the local site, etc. [14], [16]. Car-
bon monoxide (CO) and nitrogen oxides [collectively known
as NOx and include nitrogen monoxide (NO) and nitrogen
dioxide (NO2)] are mostly from vehicle exhausts and, hence,
the focus of this paper. When emitted into the atmosphere, CO
has a stable behavior, which means that it does not change
its structure through chemical reactions with other pollutants
or substances [6]. In contrast, NO reacts with ozone (O3) to
form NO2. NO2 can revert to NO by energy gained from
sunlight. It has been shown that NO2 causes adverse effects
in the pulmonary function when inhaled at high concentrations
[6]. The estimates of the pollutant concentration near road
intersections are the focus of air pollution regulations.

The use of deterministic models to forecast pollution levels
in urban areas is made rather difficult due to the complex
topography and heat phenomena, which characterize the urban
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environment. The advantage of using the neural network (NN)
lies in the fact that it learns to identify the intrinsic relation-
ships between the input and output data by being repeatedly
presented with the data during its training phase. The NN can
approximate highly nonlinear functions with little information
about the nature of these relationships hidden in the data. The
use of the NN allows us to better understand the complex
intrinsic and nonlinear relationships, which may not be easily
modeled by conventional statistical approaches. As a result, the
NN often presents an improvement over existing air quality
models [6], [14].

Similar applications of NNs to forecast pollutant concentra-
tions and to model dispersion phenomena have widely been
used for a number of years. Moseholm et al. [14] studied the
usefulness of the NN to understand the relationships between
traffic parameters and CO concentrations measured near an
intersection. Dorzdowicz and Benz [5] developed a dispersion
model based on the NN to estimate hourly mean concentrations
of CO in the urban area of Rosario City, Argentina. Their analy-
sis considered 11 input variables (including flow, wind speed
and direction, solar radiation, humidity, pressure, rain fall, and
temperature). Gardner and Dorling [6] developed a multilayer
perceptron (MLP) NN model with hourly NOx and NO2 and
meteorological condition data of Central London, U.K. Their
results showed that the NN model outperforms the regression
models developed by Shi and Harrison [18] using the same
study site. Similar work was done in Santiago, Chile [16], and
in Perugia, Italy [20]. Furthermore, Grivas and Chaloulakou
[7] used the NNs to predict PM10 hourly concentrations in
the metropolitan area of Athens, Greece, by comparing their
performance with a multivariate regression model, whereas
Pelliccioni and Tirabassi [15] showed that the integrated use
of dispersion models and NNs can improve the prediction
performance of models. Questions remain on whether the NN
models developed at a site can still perform well at other loca-
tions and can enhance the pollutant prediction models during
peak periods with negative impacts on human health. In this
analysis, we developed a methodological approach to achieve
the transferability of neural models on other sites. In particular,
the proposed approach does not depend on the geometry of the
road intersection. In fact, by aggregation of the inbound and
outbound traffic parameters of each road link and by testing
of the trained NN on another intersection with unseen data, we
were able to achieve transferability. In addition, we conducted a
comparison between different NN paradigms, namely, the MLP,
the radial basis function (RBF), and the modular network, to
estimate CO and NO2 concentrations at roadside during peak
and off-peak periods, achieving different results. A sensitivity
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analysis was carried out to study the formation of the pollutant
concentrations to understand the interrelationships between
traffic, weather conditions, and pollutant concentrations and to
evaluate the strength of these relationships. Two classes of input
variables, namely, traffic and meteorological condition data,
are taken into account. The traffic data, which are extracted
from the instrumented City (iC) database [2], include flow,
delay, stops, and congestion for each direction of the chosen
road intersection. The meteorological condition data considered
are wind speed, wind direction, and ambient temperature. The
sensitivity analysis of the input parameters is to determine the
most important inputs, in particular, understanding which are
the dominant links of the road intersection to the formation
process of pollutant concentrations. Their knowledge is crucial
for decision makers in planning more effective traffic control
strategies to decrease congestion and the resulting pollution,
improving environmental sustainability.

II. NEURAL MODELS

A. MLP

The MLP consists of a set of simply interconnected neurons.
The output of each neuron (except those in the input layer)
is scaled by the connecting weights, modified by a transfer or
activation function, which can be either linear or nonlinear, and
fed forward to be an input to the neurons in the next layer of the
network.

The output yi of a neuron is given by following equation:

yi = f

(
N∑

k=0

xkwk,i + bi

)
(1)

where xk is the output of a neuron of the previous layer,
constituted by N neurons, wk,i is the link weight between the
kth previous layer’s neuron and the ith neuron of the current
layer, and bi is the bias constant.

The MLP NN, which is used in this paper, learns in a
supervised manner and, hence, requires a training data set,
which consists of an input vector and an associated target
vector. During training, the NN is repeatedly presented with the
training data, and the weights in the network are adjusted until
the output vector produced by the network does not match the
target vector within a certain error. The training process uses
this error to adjust the weights of the network according to the
gradient descent learning algorithm to minimize the error.

The initial problem using an MLP NN is to decide the
number of layers and neurons in each layer. The number of
input and output neurons is determined by the nature of the
specific problem. Generally, only one hidden layer is required
to approximate any smooth measurable function between inputs
and outputs [8]. The optimum number of neurons required in
the hidden layer depends on the degree of desired accuracy
and, generally, has to be found using a trial-and-error approach.
Therefore, the goal is to determine the smallest network that is
able to adequately capture the relationship to be modeled.

Overtraining may occur if the model learns the noisy details
in the training data and results in poor generalization capabil-
ities when new data are presented [3]. For this purpose, our

data are divided into three subsets for training, validation, and
testing. The validation set is used during training to check
the generalization performance. Training can be stopped when
the performance on the validation data reaches a maximum or
starts to decline. Finally, the performance of the trained NN is
assessed using the test data, which are what we report in this
paper. This network is widely employed in the literature [19].

B. Modular NN (MNN)

With respect to the previous network, the MNN has, in addi-
tion, an integrating unit, called the gating network, that assigns
different features of the input space to the different expert
networks (subnet). The expert and gating networks receive the
input. The gating network has output nodes that are equal to
the number of expert networks. Each expert module produces a
response corresponding to the input vector, and the output of the
MNN is the weighted sum of these responses with the weights
equal to the gating network output. The output of the MNN is
written as follows:

y =
N∑

i=1

giyi (2)

where y is the output vector of the MNN, yi is the output
of expert i, and gi is the ith output of the gating network.
Each expert (subnet) is typically a multilayer network. The
gating network can also be a multilayer network, with a softmax
function as the transfer function in the last layer, i.e.,

gi =
esi∑N

j=1 esj

(3)

where si is the net input to the last layer transfer function. The
role of the gate is to find out which weighting should be given
to each expert contribution.

The modular network has been chosen since the modular
architecture allows the decomposition and assignment of tasks
to several modules by its modular architecture (competitive
network [10]). The learning algorithm can be the classic error
backpropagation.

C. RBF

An interesting alternative to the aforementioned NNs is the
RBF NN, which consists of a set of bell-shaped basis functions,
each of which has a center and a spread, to approximate the
output of the network using the Euclidean distance between the
input vector and the center vector [4], [11]. These statements
can be mathematically expressed by the following equations:

φj(x) = exp

(
−
‖x − µj‖2

2σ2
j

)
(4)

where φj(x) is the output of the jth basis function. σ is a
parameter, the value of which controls the spread of the function
and, hence, the smoothness of the approximation. x is the
n-dimensional input vector, and µj is the vector determining
the center of the jth basis function φj .
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Each of the basis functions of the RBF NN is connected to
the neurons in the output layer by a weight, as shown in the
following form:

yk(x) =
M∑

j=1

wk,jφj(x) + wk,0 (5)

where yk(x) is the output of the kth output neurons for the
input vector x, M is the number of basis functions in the RBF
network, wk,j is the weight between the kth output neuron and
the jth basis function neuron, and wk,0 is the bias constant for
the kth output neuron.

Poggio and Girosi [17] showed that RBF networks possess
the property of best approximation. An RBF network is nor-
mally trained in two phases. First, the parameters governing
the shapes of the basis functions (i.e., σ and µ) are determined
through an unsupervised optimization procedure (i.e., no target
information required). The basis function centers µj can be
considered as prototypes of the input vectors. The second
phase is to find the weights wk,j by a supervised training
scheme, which resolves a linear matrix equation [3]. The RBF-
based self-learning algorithm automatically adds nodes into the
hidden layer when needed, until the actual error is below the
given error.

III. DATA COLLECTION AND ANALYSIS

The data used in this paper were provided by the iC facility,
which is capable of storing the M02 and A02 messages pro-
duced by the Split Cycle and Offset Optimization Technique
(SCOOT) system [9] that is widely implemented in U.K. cities.
The study site was a road junction in Melton Mowbray, which
is a town in Leicestershire, U.K. with a population of 25 000.
The town has heavy through traffic (with about 7% heavy
vehicles), as well as local traffic on its urban roads. The major
source of air pollution in Melton Mowbray is from traffic. These
characteristics made it an ideal location to study the complex
phenomena of vehicular emissions and the resulting air quality.
The chosen road junction has seven links: two links on Norman
Way (identified by I and E in the SCOOT network diagram),
three links on Wilton Road (identified by J, B, and A), and
one link on each of Nottingham Road (identified by D) and
Asfordby Road (identified by C), as shown in Fig. 1. The
roadside pollution monitoring (RPM) unit is located on Norman
Way, around 5 m back from the junction with a height from
ground of 2 m and a distance from road of 3 m, on a pedestrian
island between the left-turning and straight-ahead traffic lanes
of westbound traffic. The air inlet of the unit faces the straight-
ahead traffic. Prevailingly, the wind direction is to the southwest
with an average value of 203◦.

The choice of input variables is generally based on a priori
knowledge of the physics and chemistry processes, which may
explain the pollutant concentration levels. According to the
literature [13], roadside pollutant concentration levels depend
on many factors, such as vehicle characteristics (e.g., fuel type
and engine power), vehicle categories (e.g., cars, lorries, buses,
and motorcycles), vehicle age, maintenance level, traffic condi-
tions (e.g., speed, flow, delay, stops, and acceleration), meteo-

Fig. 1. Study site showing neurons, links, and location of RPM.

rological conditions (e.g., temperature, wind speed, and wind
direction), and site characteristics (e.g., topology of network
and canyon streets). All these factors can cause a significant
change in the levels of roadside pollutant concentrations.

Traffic and meteorological condition data were available as
input variables in this paper. The traffic data (i.e., flow, delay,
stops, and congestion) were collected by the SCOOT system
every 5 min.

Flow is the number of vehicles that cross the stop line on
a road link (number of vehicles/hour). Stop is the number of
vehicles that stopped at least once along a road link (number
of vehicles/hour). Delay is an estimate of the total delay, in
one-tenth vehicle-hours per hour, experienced by all vehicles
arriving at the stop line. Congestion is the total number of 4-s
intervals in a time interval during which the loop on a road link
was continuously occupied (time interval/hour). The prevailing
meteorological condition data were recorded every 15 min by
a facility installed 5 mi away from the study site. The CO and
NO2 concentrations were measured every minute by the RPM
unit and averaged into 5-min intervals to synchronize with the
traffic data before presented to the NNs.

All the data used are regularized into 5-min intervals. Data
between January 1, 2001, and December 31, 2001, inclusive,
are collected and preprocessed to remove invalid values for
the training and testing of NNs. The initial data set of input
variables is made up of 31 parameters (four traffic parameters
from each of the seven links plus three meteorology parameters)
and consists of 115 000 cleaned records (65 000 for 2001 and
50 000 for 2002). Initially, the data were analyzed by using tra-
ditional statistical methods to investigate whether any obvious
correlations were present. The linear regression analysis carried
out by SPSS highlighted low coefficients of correlation that
are equal to 0.656 and 0.538 for CO and NO2, respectively.
The determination of the number of appropriate input variables
is particularly important for complex problems such as air-
quality prediction because a large number of input variables
can increase the size of the NN model. Larger networks have a
number of disadvantages, including decreased processing speed
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and an increase in the amount of data required to estimate the
model parameters (i.e., weights). An appropriate input set was
determined using a sensitivity analysis.

IV. METHODOLOGY

The number of input and output neurons in the NNs de-
veloped was driven by the nature of the problem under study,
and the number of neurons in the hidden layer governs the
required degree of accuracy and is therefore a parameter in
formulating an NN model. The 2001 data set was divided into
three different data subsets: the training set with 50% of all of
the records and the validation and test sets with 25% of the
records, respectively, picking the sets as equally spaced points
throughout the original data. Data were linearly scaled to a
range that is appropriate for the transfer function used in the
NNs. The normalization of data ensures that values of different
input variables are in the same range of the transfer functions
used and also avoids overflows due to very large or very small
weights.

Six NNs were developed in MATLAB [1]: one MLP, one
RBF, and one MNN for each of the modeled pollutants (i.e., CO
and NO2). A pruning approach was used to determine the op-
timal neuron number of hidden layers for the MLP and MNN,
whereas for the RBF, the training algorithm automatically adds
nodes into the hidden layer when needed until the actual error
is below the given error. All six NNs consist of an input layer of
31 input variables and an output layer of one neuron cor-
responding to either CO or NO2. The MLPs each have ten
neurons in the hidden layer; the MNNs each have two hid-
den layers with 12 and six neurons, respectively; whereas
the RBFs each have a hidden layer of 183 and 268 neurons
for CO and NO2, respectively. Our results showed that the
use of more neurons or more hidden layers did not improve
the performance of the NNs. The logistic and linear transfer
functions were used in hidden and output layers, respectively,
for all NNs. The learning algorithm was the back-error prop-
agation for the MLP and MNN. The performance index used
during the training process was the mean sum of squared errors
between the estimated ti and the actual values ai, and N is the
number of observations, according the following equation:

MSE =
1
N

N∑
i=1

(ti − ai)2. (6)

After the NNs were trained and their performances were
evaluated, the input variables were examined to see which
of them is the most important input to the estimation of the
roadside concentrations. The determination of appropriate input
variables was carried out using the following sensitivity analy-
sis: Let xp be an input variable for p = 1, . . . , 31; each of the
input variables was increased by a certain percentage (e.g., 5%)
in turn, and the change in the output caused by the increase in
the input was calculated. The sensitivity of each input is given
by

S(xp) = 100 × ∆Voutput

∆Vinput
. (7)

Fig. 2. CO: Sensitivity analysis of the 31 input variables using the 2001
data set.

Fig. 3. NO2: Sensitivity analysis of the 31 input variables using the 2001
data set.

The sensitivity analysis was used to study the response of the
NN to small and equal increments of input variables. The con-
clusion from the sensitivity analysis was that if an increase in an
input variable causes a significant change (either positively or
negatively) to the output variable, this input variable is regarded
as an important input and should be retained in the model.

V. RESULTS

A. Modeling of Roadside Concentrations

Following the initial training of the NNs, a sensitivity test
was carried out on the individual input variables in turn to assess
their contributions to the output (i.e., CO or NO2) and, hence,
decide whether they should be retained in the models. As can
be seen in Figs. 2 and 3, many of the 31 input variables give low
(< 0.5%) contributions to the model outputs and were removed
from the model. In particular, the congestion parameters for
all the links hardly make contributions (i.e., a value of zero),
whereas the meteorological condition parameters highlight a
remarkable importance, as do vehicle stops and flow.

It also shows that links D and C are the most important inputs
to the determination of pollutant concentrations. By removing
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TABLE I
NN MODEL PERFORMANCE FOR 2001 (WITH 18 INPUTS)

TABLE II
NN MODEL PERFORMANCE FOR APRIL 2002 (WITH 18 INPUTS)

the least important input variables from the models, 18 input
variables were retained for further studies (in particular, STOP
of links I, E, D, C, B, and J; DELAY of links I and E; FLOW
of links I, E, D, C, B, A, and J; TEMP; WIND_SD; and
WIND_DIR).

Table I shows the performance of the NNs compared by
using the root-mean-square error (RMSE) and the correlation
coefficient as statistical indexes of the goodness of fit between
real and estimated pollutant concentrations. These statistical
indexes have been calculated by taking into account the entire
data set 2001 (hence, training, validation, and test sets).

It was concluded that the CO concentrations are more related
to the traffic characteristics and the meteorological conditions
than the NO2 concentrations. These indexes highlight good
performances for all neural nets; moreover, they give a measure
of error on the roadside pollutant concentration estimates with
respect to real values. The generalization capabilities of the
NNs were tested using an independent data set collected in
2002. Table II shows the performance of the NNs calculated
over the period (April 2002).

The lower performances are due to the fact that the 2002
data set was found to be corrupted by the SCOOT system
faults. In fact, the traffic parameters of link E for all of 2002
were completely missing. This causes an error with estimated
values and results in a low generalization capability of the NNs
used. However, the achieved performances highlight that both
MLP and RBF NNs still performed well, even with the training
data having such a large number of missing values. Moreover,
MNNs perform worse than MLPs and RBFs. This shows that
the NNs can be used as a reliable tool to predict the roadside
pollutant concentrations in real time, where missing data are
inevitable.

In all cases, the RBF produced better prediction than the
MLP and the MNN. The performances of MNNs are shown
in the tables but not plotted in the figures because they are
significantly lower than those of RBFs and MLPs. Figs. 4
and 5 show the comparison between actual and predicted CO
concentrations by the RBF and MLP networks, respectively,
considering a single month under observation (April 2001).

As can be seen, all NNs were able to predict well the CO
levels that were less than 4 ppm but failed to predict the high
CO concentrations. This may be because the intention of NNs,
like many other statistical analysis techniques, is to model

Fig. 4. RBF performance for April 2001. (Black line) Actual values. (Gray
dashed line) Predicted values.

Fig. 5. MLP performance for April 2001. (Black line) Actual values. (Gray
dashed line) Predicted values.

the average behavior of a process by assuming that data are
normally distributed. Such an assumption is unlikely to be true
with CO data.
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TABLE III
NN MODEL PERFORMANCE FOR PEAK PERIODS

TABLE IV
NN MODEL PERFORMANCE FOR OFF-PEAK PERIODS

Fig. 6. RBF performance for peak periods. (Black line) Actual values. (Gray
dashed line) Predicted values.

To predict these extreme values to improve modeling perfor-
mance, CO and NO2 data sets were split into peak and off-peak
periods (threshold values were 5 ppm for CO and 38 ppb for
NO2, taking into account short-term human heath effects [21]).
For both pollutant concentrations, the AM and PM peaks during
the average day occurred at about 08:20 and 16:40, respectively,
reflecting their strong correlation with traffic peaks. Therefore,
we retrained the neural models considering these four subdata
sets, whose results are summarized in Tables III and IV.

It should be noted that we have an improvement in perfor-
mance, reaching a correlation of 0.979 for CO and peak periods
(Fig. 6), whereas for NO2, we have an increase during off-
peak periods (a correlation up to 0.75; Fig. 7) and a decrease
of the correlation for peak periods. This different behavior is
probably due to NO2, which is a secondary pollutant. In fact,
off-peak values are more correlated to traffic parameters than
peak values, since the latter depend on other factors, such as
ozone and direct solar radiation, which are responsible for the
high levels of NO2.

It is crucial to model pollutant extreme values to identify
where and when they occur so that sufficiently accurate traffic
demand management strategy models can be developed to
mitigate their impact.

Fig. 7. RBF performance for off-peak periods. (Black line) Actual values.
(Gray dashed line) Predicted values.

B. Prediction of Roadside Pollutant Concentrations

While recognizing the importance of knowing the relation-
ship between traffic characteristics and roadside pollutant con-
centrations is useful, it is more powerful to use the relationship
to forecast in real time the roadside pollutant concentrations
in the future (e.g., in 5, 10, 15, and 20 min). The prediction
abilities of the NNs were tested through a set of simulations
using the current traffic and meteorological condition data
(18 inputs) to predict the roadside pollutant concentrations in
5, 10, 15, 20 min, etc., in the future, using the same structure
of NNs. Fig. 8 shows the forecasting performance of MLP
NNs for the CO concentration. As can be seen, the indexes R
and RMSE show the good prediction capability of the neural
net. The forecast is less accurate when the forecast time lag
increases, as expected. The decision makers can plan more
effective traffic control strategies to decrease the acute traffic
congestion phenomena and the resulting pollution by the use of
a calibrated prediction tool.

C. Transferability Study of the Models

The main purpose of this paper is to study a generic approach
that allows the NNs developed at the selected study site to
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Fig. 8. CO: Forecasting performance. R is the coefficient of determination,
and RMSE is the root-mean-square error.

Fig. 9. CO: Goodness of fit between estimated values A and actual values T
for 2001.

be transferred to other sites. The topologies of intersections
in urban areas vary from one to another. For example, the
most common four road intersections normally have eight
traffic directions (four inbound and four outbound), whereas
the intersection chosen for this paper has only seven traffic
directions. To study the transferability of the models developed,
it is hence necessary to aggregate all the flow, stops, and delay
on inbound and outbound links, respectively, to produce six
input variables. Together with the meteorological condition data
(six traffic plus three meteorological parameters), nine input
variables were used to retrain an NN with the data. Fig. 9
shows the goodness of fit of the network after retraining. The
correlation coefficient and RMSE between actual and estimated
values are 0.7682 and 0.5169, respectively, for CO, which
are very similar to the performance of the NN with 18 input
variables, as used earlier. This implies that link-based traffic
data could be aggregated to generate network data to reduce the
dimension of the input vector of the NN. Thus, the neural model
with aggregated input requires less computational time than
that with disaggregated input to calibrate the weight matrix.
Furthermore, it is independent of the geometric characteristics
of the road intersection with nine aggregated input parameters.

The trained NN was tested with unseen data from another
road intersection and RPM on Narborough Road in Leicester,
U.K., which a city in Leicestershire county that is so far away
from Melton Mowbray that the traffic at these locations hardly

Fig. 10. Narborough Road.

Fig. 11. RBF performance on CO for Narborough Road. (Black line) Actual
values. (Gray dashed line) Predicted values.

correlates. This road intersection, which is identified as 10321,
has height road links (see Fig. 10). The test carried out gave
a correlation coefficient and the RMSE between actual and
predicted values of 0.631 and 0.6199, respectively. Fig. 11
shows the comparison between actual and predicted CO con-
centrations on the test site, highlighting that the approach used
still produces a fair performance on transferability.

The difference between actual and predicted values on the
test site (Fig. 11) is probably due to the different geomet-
ric characteristics of the test site (e.g., distance from RPM).
Obviously, the neural model is not able to capture this change
since it was trained on another site. However, the NN still
performs well. Table V shows the performance of the three
models on the test site. For NO2 concentrations, the test on
transferability with calibrated models did not provide signif-
icant outcomes since peak values depend on other weather
factors (such as ozone and solar radiation), which are directly
responsible for the high levels of NO2. Clearly, this procedure
has some limitations since the performance of the model de-
pends on the RPM characteristics, which should be similar to
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TABLE V
NN MODEL PERFORMANCE ON THE TEST SITE

the RPM characteristics of the training site. Nevertheless, by
standardizing the geometric characteristics of the monitoring
site (e.g., height and distances), this issue can be overcome.

VI. CONCLUSION

A comparison between three different kinds of NNs has been
carried out, namely, MLPs, MNNs, and RBFs. The involved
input variables are traffic parameters and meteorological con-
dition data. It has been found that the RBF NN in all studied
cases performs better than the MLP and the MNN. However, all
kinds of NNs produced similar and good estimates of roadside
pollutant concentrations. The results highlight how the RBFs
can be an effective tool to estimate the pollutant concentrations
with comparable performances to the MLPs widely used in the
literature. In this paper, the MNNs highlighted a significantly
lower performance than the RBFs and MLPs. It was shown that
the RBF NN is able to explain about 97% of CO variations for
peak periods and 75% of NO2 variations for off-peak periods.
It is conjectured that the remaining variations could be due
to the absence of other important parameters (e.g., ozone and
solar radiation) in our models. The RBF was shown to be more
accurate in predicting pollutant extreme values than the MLP.
Furthermore, the calibrated tool allows us to identify where and
when extreme values occur so that sufficiently accurate traffic
demand management strategy models can be developed to
mitigate their impact. A sensitivity analysis has been carried out
to determine which of the input variables were most important
to the estimation of the pollutant concentrations. This shows
that the weather plays the most important role in the formation
process of the pollutant concentrations. Moreover, the analysis
highlighted how the road links related to Nottingham Road
(D) and Asfordby Road (C) were the most important inputs
in the determination of pollutant concentrations. Among the
traffic inputs, the congestion parameter has the least influence
on the process since this parameter produces little effect on the
pollutant concentration.

This paper examines the transferability in terms of both time
and space. The study of the use of NNs for the short-term
prediction of roadside pollutant concentration reveals that there
is a fair correlation between current traffic and meteorological
condition data and future pollutant concentration. The forecast-
ing of future pollutant concentration (i.e., 15 min) in terms of
current traffic and meteorological conditions is crucial since the
decision maker can adopt real-time traffic control measures on
links that are greatly responsible for the high levels of pollution
near the intersection to relieve their effects.

Finally, the transferability of the trained NN has been tested
with data from another road intersection in Leicester. The issue
concerning various geometries of the intersection (character-

ized by different numbers of links) can be overcome by aggre-
gating all the flow, stops, and delays on inbound and outbound
links. The results show that the NN still performs well. The
results for CO concentrations are encouraging, although the
input data set has a high background noise, which does not
allow a very high performance of calibrated neural models. For
NO2 concentrations, the test on transferability with calibrated
models did not provide significant outcomes since peak values
highly depend on other weather factors (such as ozone and solar
radiation), which are directly responsible for the high levels
of NO2.

Differences are probably due to the geometric characteristics
of the test site. The results presented in this paper are a specific
case but are encouraging for further application of the proposed
methodology on an enhanced database.
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