Marek Wodzinski

Marek Wodzinski
  • PhD Student
  • Research Assistant at AGH University of Krakow

About

89
Publications
10,105
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,071
Citations
Current institution
AGH University of Krakow
Current position
  • Research Assistant
Additional affiliations
November 2020 - present
MedApp
Position
  • Scientific Developer
November 2019 - May 2020
MedGIFT
Position
  • Scientific Internship
June 2018 - September 2018
University of Central Lancashire
Position
  • Scientific Internship
Education
October 2016 - July 2021
AGH University of Krakow
Field of study
  • Biomedical Engineering / Electronics

Publications

Publications (89)
Article
This study explores an innovative approach to early Parkinson’s disease (PD) detection by analyzing speech data collected using a mixed reality (MR) system. A total of 57 Polish participants, including PD patients and healthy controls, performed five speech tasks while using an MR head-mounted display (HMD). Speech data were recorded and analyzed t...
Chapter
Full-text available
Radiation therapy is one of the most frequently applied cancer treatments worldwide, especially in the context of head and neck cancer. Today, MRI-guided radiation therapy planning is becoming increasingly popular due to good soft tissue contrast, lack of radiation dose delivered to the patient, and the capability of performing functional imaging....
Preprint
Full-text available
Multi-class segmentation of the aorta in computed tomography angiography (CTA) scans is essential for diagnosing and planning complex endovascular treatments for patients with aortic dissections. However, existing methods reduce aortic segmentation to a binary problem, limiting their ability to measure diameters across different branches and zones....
Conference Paper
Addressing the imperative need for interpretability in medical models based on machine learning and artificial intelligence , our study focuses on the crucial task of Parkinson's disease detection. In this paper, we introduce a vision transformer incorporating multilingual vowel phonations, achieving a classification accuracy of 89%. To enrich the...
Article
Full-text available
Humanity stands at a pivotal moment of technological revolution, with artificial intelligence (AI) reshaping fields traditionally reliant on human cognitive abilities. This transition, driven by advancements in artificial neural networks, has transformed data processing and evaluation, creating opportunities for addressing complex and time-consumin...
Article
Full-text available
In recent years, several algorithms have been developed for the segmentation of the Inferior Alveolar Canal (IAC) in Cone-Beam Computed Tomography (CBCT) scans. However, the availability of public datasets in this domain is limited, resulting in a lack of comparative evaluation studies on a common benchmark. To address this scientific gap and encou...
Preprint
Full-text available
Every year, thousands of people suffer from skull damage and require personalized implants to fill the cranial cavity. Unfortunately, the waiting time for reconstruction surgery can extend to several weeks or even months, especially in less developed countries. One factor contributing to the extended waiting period is the intricate process of perso...
Preprint
The skull segmentation from CT scans can be seen as an already solved problem. However, in MR this task has a significantly greater complexity due to the presence of soft tissues rather than bones. Capturing the bone structures from MR images of the head, where the main visualization objective is the brain, is very demanding. The attempts that make...
Preprint
Full-text available
The automatic registration of noninvasive second-harmonic generation microscopy to hematoxylin and eosin slides is a highly desired, yet still unsolved problem. The task is challenging because the second-harmonic images contain only partial information, in contrast to the stained H&E slides that provide more information about the tissue morphology....
Article
Full-text available
The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The man...
Preprint
Full-text available
The increasing availability of biomedical data is helping to design more robust deep learning (DL) algorithms to analyze biomedical samples. Currently, one of the main limitations to train DL algorithms to perform a specific task is the need for medical experts to label data. Automatic methods to label data exist, however automatic labels can be no...
Preprint
Full-text available
Modeling and manufacturing of personalized cranial implants are important research areas that may decrease the waiting time for patients suffering from cranial damage. The modeling of personalized implants may be partially automated by the use of deep learning-based methods. However, this task suffers from difficulties with generalizability into da...
Preprint
Full-text available
Automatic prediction of fluorescently labeled organelles from label-free transmitted light input images is an important, yet difficult task. The traditional way to obtain fluorescence images is related to performing biochemical labeling which is time-consuming and costly. Therefore, an automatic algorithm to perform the task based on the label-free...
Preprint
Registration of longitudinal brain Magnetic Resonance Imaging (MRI) scans containing pathologies is challenging due to dramatic changes in tissue appearance. Although there has been considerable progress in developing general-purpose medical image registration techniques, they have not yet attained the requisite precision and reliability for this t...
Preprint
Full-text available
The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The man...
Chapter
Full-text available
Automatic aorta segmentation from 3-D medical volumes is an important yet difficult task. Several factors make the problem challenging, e.g. the possibility of aortic dissection or the difficulty with segmenting and annotating the small branches. This work presents a contribution by the MedGIFT team to the SEG.A challenge organized during the MICCA...
Article
Full-text available
The analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that physicians can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on su...
Article
Full-text available
The aim of this study was to develop and test an artificial intelligence (AI)-based algorithm for detecting common technical errors in canine thoracic radiography. The algorithm was trained using a database of thoracic radiographs from three veterinary clinics in Italy, which were evaluated for image quality by three experienced veterinary diagnost...
Chapter
Each year thousands of people suffer from various types of cranial injuries and require personalized implants whose manual design is expensive and time-consuming. Therefore, an automatic, dedicated system to increase the availability of personalized cranial reconstruction is highly desirable. The problem of the automatic cranial defect reconstructi...
Article
Full-text available
An algorithm based on artificial intelligence (AI) was developed and tested to classify different stages of myxomatous mitral valve disease (MMVD) from canine thoracic radiographs. The radiographs were selected from the medical databases of two different institutions, considering dogs over 6 years of age that had undergone chest X-ray and echocardi...
Chapter
Full-text available
Background segmentation is an important step in analysis of histopathological images. It allows one to remove irrelevant regions and focus on the tissue of interest. However, background segmentation is challenging due to the variability of stain colors and intensity levels across different images, modalities, and magnification levels. In this paper...
Preprint
Full-text available
The design of personalized cranial implants is a challenging and tremendous task that has become a hot topic in terms of process automation with the use of deep learning techniques. The main challenge is associated with the high diversity of possible cranial defects. The lack of appropriate data sources negatively influences the data-driven nature...
Preprint
Full-text available
Each year thousands of people suffer from various types of cranial injuries and require personalized implants whose manual design is expensive and time-consuming. Therefore, an automatic, dedicated system to increase the availability of personalized cranial reconstruction is highly desirable. The problem of the automatic cranial defect reconstructi...
Article
Cranial implants are commonly used for surgical repair of craniectomy-induced skull defects. These implants are usually generated offline and may require days to weeks to be available. An automated implant design process combined with onsite manufacturing facilities can guarantee immediate implant availability and avoid secondary intervention. To a...
Article
Full-text available
The structure and topology of the pulmonary arteries is crucial to understand, plan, and conduct medical treatment in the thorax area. Due to the complex anatomy of the pulmonary vessels, it is not easy to distinguish between the arteries and veins. The pulmonary arteries have a complex structure with an irregular shape and adjacent tissues, which...
Preprint
Full-text available
The alignment of tissue between histopathological whole-slide-images (WSI) is crucial for research and clinical applications. Advances in computing, deep learning, and availability of large WSI datasets have revolutionised WSI analysis. Therefore, the current state-of-the-art in WSI registration is unclear. To address this, we conducted the ACROBAT...
Preprint
Full-text available
Analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that practitioners can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on sup...
Preprint
Full-text available
The aim of this study was to develop and test an artificial intelligence (AI)-based algorithm for detecting common technical errors in canine thoracic radiography. The algorithm was trained using a database of thoracic radiographs from three veterinary clinics in Italy, which were evaluated for image quality by three experienced veterinary diagnost...
Article
Full-text available
Computational pathology targets the automatic analysis of Whole Slide Images (WSI). WSIs are high-resolution digitized histopathology images, stained with chemical reagents to highlight specific tissue structures and scanned via whole slide scanners. The application of different parameters during WSI acquisition may lead to stain color heterogeneit...
Article
Full-text available
The digitalization of clinical workflows and the increasing performance of deep learning algorithms are paving the way towards new methods for tackling cancer diagnosis. However, the availability of medical specialists to annotate digitized images and free-text diagnostic reports does not scale with the need for large datasets required to train rob...
Preprint
Full-text available
Registration of brain scans with pathologies is difficult, yet important research area. The importance of this task motivated researchers to organize the BraTS-Reg challenge, jointly with IEEE ISBI 2022 and MICCAI 2022 conferences. The organizers introduced the task of aligning pre-operative to follow-up magnetic resonance images of glioma. The mai...
Article
Full-text available
Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed. However, only a few studies have comprehensively compared medical image registration approaches on a wide range of clinically relevant tasks. This limits the development of registration methods, the adoption of research advances int...
Article
Background and objective: This article presents a robust, fast, and fully automatic method for personalized cranial defect reconstruction and implant modeling. Methods: We propose a two-step deep learning-based method using a modified U-Net architecture to perform the defect reconstruction, and a dedicated iterative procedure to improve the impl...
Preprint
Full-text available
The goal of this work is to propose a robust, fast, and fully automatic method for personalized cranial defect reconstruction and implant modeling. We propose a two-step deep learning-based method using a modified U-Net architecture to perform the defect reconstruction, and a dedicated iterative procedure to improve the implant geometry, followed b...
Conference Paper
Full-text available
Malignant lesions in breast tissue specimen whole slide images (WSIs), may lead to a dangerous diagnosis, such as cancer. However, WSIs analysis is time-consuming and expensive, requiring the work of expert pathologists. This paper aims to present a method for the 2022 BRIGHT Challenge, that involves the analysis of breast WSIs. The organizers prov...
Chapter
This paper describes a contribution to the second edition of the Learn2Reg challenge organized jointly with the MICCAI 2021 conference, more specifically, to the OASIS MRI task that is related to the registration of whole brain magnetic resonance images. The proposed algorithm is a multi-level, learning-based, and semi-supervised procedure. The alg...
Preprint
Full-text available
To date few studies have comprehensively compared medical image registration approaches on a wide-range of complementary clinically relevant tasks. This limits the adoption of advances in research into practice and prevents fair benchmarks across competing approaches. Many newer learning-based methods have been explored within the last five years,...
Chapter
The automatic design of cranial implants is an important and challenging task. The implants must be designed according to the individual characterization of the patient’s defect. This makes the process tedious and time consuming. However, if possible, the personalized implants should be designed and fabricated during the surgical procedure that req...
Article
Full-text available
An artificial intelligence (AI)-based computer-aided detection (CAD) algorithm to detect some of the most common radiographic findings in the feline thorax was developed and tested. The database used for training comprised radiographs acquired at two different institutions. Only correctly exposed and positioned radiographs were included in the data...
Article
Full-text available
Inverting a deformation field is a crucial part for numerous image registration methods and has an important impact on the final registration results. There are methods that work well for small and relatively simple deformations. However, a problem arises when the deformation field consists of complex and large deformations, potentially including f...
Chapter
One of the most frequent tumors in the central nervous system is glioma. The high-grade gliomas grow relatively fast and eventually lead to death. The tumor resection improves the survival rate. However, an accurate image-guidance is necessary during the surgery. The problem may be addressed by image registration. There are three main challenges: (...
Article
Full-text available
Breast-conserving surgery requires supportive radiotherapy to prevent cancer recurrence. However, the task of localizing the tumor bed to be irradiated is not trivial. The automatic image registration could significantly aid the tumor bed localization and lower the radiation dose delivered to the surrounding healthy tissues. This study proposes a n...
Article
Background and objective Skin cancer is one of the most common types of cancer and its early diagnosis significantly reduces patient morbidity and mortality. Reflectance confocal microscopy (RCM) is a modern and non-invasive method of diagnosis that is becoming popular amongst clinical dermatologists. The frequent occurrence of artifacts in the ima...
Chapter
This paper presents a contribution to the Learn2Reg challenge organized jointly with the MICCAI 2020, more specifically, to the task related to inter-patient hippocampus registration in magnetic resonance images. The proposed algorithm is a multi-step, learning-based, and semi-supervised procedure. The method consists of a sequentially stacked U-Ne...
Article
Full-text available
The interpretation of thoracic radiographs is a challenging and error-prone task for veterinarians. Despite recent advancements in machine learning and computer vision, the development of computer-aided diagnostic systems for radiographs remains a challenging and unsolved problem, particularly in the context of veterinary medicine. In this study, a...
Article
Full-text available
The use of multiple dyes during histological sample preparation can reveal distinct tissue properties. However, since the slide preparation differs for each dye, the tissue slides are being deformed and a nonrigid registration is required before further processing. The registration of histology images is complicated because of: (i) a high resolutio...
Article
Background and objective The use of several stains during histology sample preparation can be useful for fusing complementary information about different tissue structures. It reveals distinct tissue properties that combined may be useful for grading, classification, or 3-D reconstruction. Nevertheless, since the slide preparation is different for...
Article
Full-text available
Devices and systems secured by biometric factors became a part of our lives because they are convenient, easy to use, reliable, and secure. They use information about unique features of our bodies in order to authenticate a user. It is possible to enhance the security of these devices by adding supplementary modality while keeping the user experien...
Chapter
Full-text available
The use of different dyes during histological sample preparation reveals distinct tissue properties and may improve the diagnosis. Nonetheless, the staining process deforms the tissue slides and registration is necessary before further processing. The importance of this problem led to organizing an open challenge named Automatic Non-rigid Histologi...
Article
Full-text available
The use of different dyes during histological sample preparation reveals distinct tissue properties and may improve the diagnosis. Nonetheless, the staining process deforms the tissue slides and registration is necessary before further processing. The importance of this problem led to organizing an open challenge named Automatic Non-rigid His-tolog...
Conference Paper
Full-text available
Using medical images recorded in clinical practice has the potential to be a game-changer in the application of machine learning for medical decision support. Thousands of medical images are produced in daily clinical activity. The diagnosis of medical doctors on these images represents a source of knowledge to train machine learning algorithms for...
Conference Paper
Skin cancers are the most common cancers with an increased incidence, and a valid, early diagnosis may significantly reduce its morbidity and mortality. Reflectance confocal microscopy (RCM) is a relatively new, non-invasive imaging technique that allows screening lesions at a cellular resolution. However, one of the main disadvantages of the RCM i...
Chapter
Full-text available
The use of different stains for histological sample preparation reveals distinct tissue properties and may result in a more accurate diagnosis. However, as a result of the staining process, the tissue slides are being deformed and registration is required before further processing. The importance of this problem led to organizing an open challenge...
Article
Automatic Non-rigid Histological Image Registration (ANHIR) challenge was organized to compare the performance of image registration algorithms on several kinds of microscopy histology images in a fair and independent manner. We have assembled 8 datasets, containing 355 images with 18 different stains, resulting in 481 image pairs to be registered....
Conference Paper
We propose an approach based on a convolutional neural network to classify skin lesions using the reflectance confocal microscopy (RCM) mosaics. Skin cancers are the most common type of cancers and a correct, early diagnosis significantly lowers both morbidity and mortality. RCM is an in-vivo non-invasive screening tool that produces virtual biopsi...
Conference Paper
This study presents an approach to Parkinson's disease detection using vowels with sustained phonation and a ResNet architecture dedicated originally to image classification. We calculated spectrum of the audio recordings and used them as an image input to the ResNet architecture pre-trained using the ImageNet and SVD databases. To prevent overfitt...
Preprint
Full-text available
In this paper, we present a short description of the method proposed to ANHIR challenge organized jointly with the IEEE ISBI 2019 conference. We propose a method consisting of preprocessing, initial alignment, nonrigid registration algorithms and a method to automatically choose the best result. The method turned out to be robust (99.792% robustnes...
Chapter
A tumor resection introduces a problem of missing data into the image registration process. The state-of-the-art methods fail while attempting to recover the real deformations when the structure of interest is missing. In this work, we propose an empirical, greedy regularization term which promotes the tumor contraction. The proposed method is simp...
Conference Paper
Estimation of a resected tumor lodge localization after a breast cancer surgery is a demanding task for the radiotherapy planning. The image registration techniques can be used to improve the radiotherapy. The initial alignment of two volumes is an important aspect of medical image registration procedure. We propose usage of the iterative closest p...
Article
Full-text available
Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer...
Article
Full-text available
This paper presents an alternative approach to the sequential data classification, based on traditional machine learning algorithms (neural networks, principal component analysis, multivariate Gaussian anomaly detector) and finding the shortest path in a directed acyclic graph, using A* algorithm with a regression-based heuristic. Palm gestures wer...

Network

Cited By