
Marek Szczepanczyk- University of Warsaw
Marek Szczepanczyk
- University of Warsaw
About
318
Publications
247,799
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
96,618
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (318)
We present a methodology based on the implementation of a fully connected neural network algorithm to estimate the temporal evolution of the high-frequency gravitational wave emission for a core collapse supernova (CCSN). For this study, we selected a fully connected deep neural network (DNN) regression model because it can learn both linear and no...
We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed...
Multi-messenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with Advanced LIGO (aLIGO)'s, Advanced Virgo (AdVirgo)'s and KAGRA's fourth observing run...
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availabil...
We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed optically within 30 Mpc during the third observing run of Advanced LIGO and Advanced Virgo. No gravitational wave associated with a core-collapse supernova has been identified. We then report the detection efficiency for a variet...
We present a methodology based on the implementation of a fully connected neural network to estimate the gravitational wave (GW) temporal evolution of the gmode fundamental resonant frequency for a Core Collapse Supernova (CCSN). To perform the estimation, we construct a training data set, using synthetic waveforms, that serves to train the ML algo...
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run...
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron st...
This paper presents a search for generic short-duration gravitational-wave (GW) transients (or GW bursts) in the data from the third observing run of Advanced LIGO and Advanced Virgo. We use a coherent WaveBurst (cWB) pipeline enhanced with a decision-tree classification algorithm for more efficient separation of GW signals from noise transients. T...
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five mo...
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coh...
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false a...
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant flares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and long-duration ($\sim$ 100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Vi...
This paper presents a search for generic short-duration gravitational-wave (GW) transients (or GW bursts) in the data from the third observing run of Advanced LIGO and Advanced Virgo. We use coherent WaveBurst (cWB) pipeline enhanced with a decision-tree classification algorithm for more efficient separation of GW signals from noise transients. The...
Results are presented for a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-Wave Observatory data by including the orbital period in the search t...
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a speci...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs....
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_{⊙} and 1.0 M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for...
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more u...
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches ca...
We studied the detectability and reconstruction of gravitational waves from core-collapse supernova multidimensional models using simulated data from detectors predicted to operate in the late 2020s and early 2030s. We found that the detection range will improve by a factor of around two with respect to the second-generation gravitational-wave dete...
This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use...
We study the properties of the gravitational-wave (GW) emission between 10−5 and 50 Hz (which we refer to as low-frequency emission) from core-collapse supernovae, in the context of studying such signals in laser interferometric data as well as performing multimessenger astronomy. We pay particular attention to the GW linear memory, which is when t...
We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British–German laser interferometer with 600m arms, and located near Hannover, Germa...
We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the WEAVE semicoherent method, which sums matched-filter detection-...
We present a follow-up method based on supervised machine learning (ML) to improve the performance in the search of gravitational wave (GW) bursts from core-collapse supernovae (CCSNe) using the coherent WaveBurst (cWB) pipeline. The ML model discriminates noise from signal events by using a set of reconstruction parameters provided by cWB as featu...
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to...
We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs....
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to...
We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in th...
We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Ger...
The origin of black hole mergers discovered by the LIGO¹ and Virgo² gravitational-wave observatories is currently unknown. GW1905213,4 is the heaviest black hole merger detected so far. Its observed high mass and possible spin-induced orbital precession could arise from the binary having formed following a close encounter. An observational signatur...
jats:p>Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5 M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first tw...
As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles in addition to the dominant (2, 2) multipole. These higher multipoles can be detected with different approaches, s...
Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the...
Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilit...
The advent of sensitive gravitational wave (GW) detectors, coupled with wide-field, high cadence optical time-domain surveys, raises the possibility of the first joint GW-electromagnetic (EM) detections of core-collapse supernovae (CCSNe). For targeted searches of GWs from CCSNe optical observations can be used to increase the sensitivity of the se...
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic)...
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24–4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal...
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches ca...
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed durin...
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed durin...
High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point...
We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Advanced Virgo during O3a, the first half of their third observing run. We study: (1) the expected rate of lensing at current detector sensitivity an...
This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20~Hz to 610~Hz, over a small frequency derivative range around zero, and...
This paper describes the first all-sky search for long-duration, quasi-monochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 Hz to 610 Hz, over a small frequency derivative range around zero, and...
We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO data from the first six months of the third Advanced LIGO and Virgo observing run, using the Weave semi-coherent method, which sums matched-filter detection-statist...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) a...
We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l=m=2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and...
DOI:https://doi.org/10.1103/PhysRevD.104.109903
We present a follow-up method based on supervised machine learning (ML) to improve the performance in the search of gravitational wave (GW) burts from core-collapse supernovae (CCSNe) using the coherent WaveBurst (cWB) pipeline. The ML model discriminates noise from signal events using as features a set of reconstruction parameters provided by cWB....
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signal...
We performed a detailed analysis of the detectability of a wide range of gravitational waves derived from core-collapse supernova simulations using gravitational-wave detector noise scaled to the sensitivity of the upcoming fourth and fifth observing runs of the Advanced LIGO, Advanced Virgo, and KAGRA. We use the coherent WaveBurst algorithm, whic...
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signal...
We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze...
The third Gravitational-wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019...
The third Gravitational-wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019...
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are...
We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due...
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are...
We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing r...
We report on an all-sky search for continuous gravitational waves in the frequency band 20–2000 Hz and with a frequency time derivative in the range of [−1.0, +0.1] × 10⁻⁸ Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six mo...
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow...
We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_⊙ and 1.0 M_⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more une...
Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilit...
High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The poin...
Gravitational wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus...
We study the properties of the gravitational wave (GW) emission between $10^{-5}$ Hz and $50$ Hz (which we refer to as low-frequency emission) from core-collapse supernovae, in the context of studying such signals in laser interferometric data as well as performing multi-messenger astronomy. We pay particular attention to the GW linear memory, whic...
The second gravitational-wave transient catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final...
The second gravitational-wave transient catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final...
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s durat...
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called pystoch on data folded over one sidereal day. We...
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consi...
The sensitivity of the advanced LIGO detectors to gravitational waves can be affected by environmental disturbances external to the detectors themselves. Since the transition from the former initial LIGO phase, many improvements have been made to the equipment and techniques used to investigate these environmental effects. These methods have aided...
The sensitivity of the advanced LIGO detectors to gravitational waves can be affected by environmental disturbances external to the detectors themselves. Since the transition from the former initial LIGO phase, many improvements have been made to the equipment and techniques used to investigate these environmental effects. These methods have aided...
The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO de...
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal...
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24-4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal...
We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with prop__erties consistent with neutron star–black hole (NSBH) binaries. The two events are named G_W200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and...
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the f...
We search for gravitational-wave transients associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC-2019 October 1 15:00 UTC). A total of 105 GRBs were analyzed using a search for generic gravitational-wave transie...
We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Vir...