
Marek HamplMasaryk University | MUNI · Department of Experimental Biology
Marek Hampl
PhD
palatogenesis, odontogenesis, craniofacial neurogenesis
About
13
Publications
3,139
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
216
Citations
Citations since 2017
Introduction
Additional affiliations
February 2021 - present
September 2018 - March 2019
September 2016 - December 2016
Education
September 2016 - December 2016
January 2014 - May 2014
September 2010 - June 2015
Publications
Publications (13)
Congenital heart defects, facial dysmorphism and intellectual development disorder (CHDFIDD) is associated with mutations in CDK13 gene which encodes a transcription regulating Cyclin-dependent kinase 13 (CDK13). Here we analyzed early embryonic stages of CHDFIDD mouse models with hypomorphic mutation in Cdk13 gene with very similar phenotypic mani...
Secondary palate development is characterized by the formation of two palatal shelves on the maxillary prominences, which fuse in the midline in mammalian embryos. However, in reptilian species, such as turtles, crocodilians, and lizards, the palatal shelves of the secondary palate develop to a variable extent and morphology. While in most Squamate...
Background:
In mammals, odontogenesis is regulated by transient signaling centers known as enamel knots (EKs), which drive the dental epithelium shaping. However, the developmental mechanisms contributing to formation of complex tooth shape in reptiles are not fully understood. Here, we aim to elucidate whether signaling organizers similar to EKs...
Congenital heart defects, dysmorphic facial features and intellectual developmental disorders (CHDFIDD) syndrome in humans was recently associated with mutation in CDK13 gene. In order to assess the loss of function of Cdk13 during mouse development, we employed gene trap knock-out (KO) allele in Cdk13 gene. Embryonic lethality of Cdk13-deficient a...
In humans, neurosecretory chromaffin cells control a number of important bodily functions, including those related to stress response. Chromaffin cells appear as a distinct cell type at the beginning of midgestation and are the main cellular source of adrenalin and noradrenalin released into the blood stream. In mammals, two different chromaffin or...
Cilia project from almost every cell integrating extracellular cues with signaling pathways. Constitutive activation of FGFR3 signaling produces the skeletal disorders achondroplasia (ACH) and thanatophoric dysplasia (TD), but many of the molecular mechanisms underlying these phenotypes remain unresolved. Here, we report in vivo evidence for signif...
A broad spectrum of human diseases called ciliopathies is caused by defective primary cilia morphology or signal transduction. The primary cilium is a solitary organelle that responds to mechanical and chemical stimuli from extracellular and intracellular environments. Transmembrane protein 107 (TMEM107) is localized in the primary cilium and is en...
Tyrosine kinase inhibitors are being developed for therapy of malignancies caused by oncogenic FGFR signaling but little is known about their effect in congenital chondrodysplasias or craniosynostoses that associate with activating FGFR mutations. Here, we investigated the effects of novel FGFR inhibitor, ARQ 087, in experimental models of aberrant...
Primary cilium is a solitary organelle that emanates from the surface of most postmitotic mammalian cells and serves as a sensory organelle, transmitting the mechanical and chemical cues to the cell. Primary cilia are key coordinators of various signaling pathways during development and maintenance of tissue homeostasis. The emerging evidence impli...
Objective: Statins are widely used drugs for cholesterol lowering, which were recently found to counteract the effects of aberrant FGFR3 signaling in cell and animal models of FGFR3-related chondrodysplasia. This opened an intriguing therapeutic possibility for human dwarfing conditions caused by gain-of-function mutations in FGFR3, although the me...
MORN5 (MORN repeat containing 5) is encoded by a locus positioned on chromosome 17 in the chicken genome. The MORN motif is found in multiple copies in several proteins including junctophilins or phosphatidylinositol phosphate kinase family and the MORN proteins themselves are found across the animal and plant kingdoms. MORN5 protein has a characte...