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2 Università degli Studi di Verona - Dipartimento di Informatica

Strada le Grazie 15, 37134, Verona, Italy
name.surname@iit.it

http://iit.it/en/research/departments/pattern-analysis-and-computer-vision.html

In computer vision, an object can be modeled in two main ways: by explicitly mea-
suring its characteristics in terms of feature vectors, and by capturing the relations which

link an object with some exemplars, that is, in terms of similarities. In this paper, we pro-

pose a new similarity-based descriptor, dubbed Structural Similarity Cross-Covariance
Tensor (SS-CCT), where self-similarities come into play: here the entity to be measured

and the exemplar are regions of the same object, and their similarities are encoded in

terms of cross-covariance matrices. These matrices are computed from a set of low-level
feature vectors extracted from pairs of regions that cover the entire image. SS-CCT

shares some similarities with the widely used covariance matrix descriptor, but extends

its power focusing on structural similarities across multiple parts of an image, instead of
capturing local similarities in a single region. The effectiveness of SS-CCT is tested on

many diverse classification scenarios, considering objects and scenes on widely known
benchmarks (Caltech-101, Caltech-256, PASCAL VOC 2007 and SenseCam). In all the

cases, the results obtained demonstrate the superiority of our new descriptor against

diverse competitors. Furthermore, we also reported an analysis on the reduced compu-
tational burden achieved by using and efficient implementation that takes advantage

from the integral image representation.

Keywords: object recognition; scene classification; covariance; cross-covariance.

1. Introduction

The modeling of an ”object” in computer vision can be pursued by adopting two

main paradigms: feature-based and similarity-based. The former aims at encoding

an object by collecting and storing in a given descriptor visual cues such as color or

more complex visual information (e.g. Scale-Invariant Feature Transform (SIFT)8,

Histogram of Oriented Gradients (HOG)10, Local Binary Pattern (LBP)9, to quote

some). In the latter case, the goal is to extract stable relations which characterize

an object class with respect to a set of models or exemplars4,3.

The similarity-based paradigm can be naturally extended to the concept of self-

similarity, where the roles of “entity to be measured” and “exemplar” are shared
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among the parts of an image. In the simplest form, self-similarity can be evalu-

ated among neighboring pixels2, eventually estimating bag of self-similarities to

compactly describe an entire image.

While the self-similarity relation is computed on top of feature descriptors (and

not based on the raw pixel values), we propose an approach which fuses together

the two paradigms, potentially joining their advantages. An explicative example

of such idea, applied to the pedestrian detection task, can be found in the SST

model11: here the feature-based descriptors are the HOG features, which describe

image regions whose similarities are estimated by Euclidean pairwise distances.

This approach, even if it shows good performance and fast calculation, suffers of

practical problems; the most critical issue is the alignment of the entities, which

is a requirement that, especially in the case of structured objects, is hard to be

satisfied. In fact, with misaligned parts, Euclidean distances are computed between

diverse regions, failing to capture the visual structure of an object. In addition, the

relations between parts are collapsed into scalar values (a vector), which become

unstable in the case of high intra-class variations, or even worse, when in presence

of noisy conditions. Our aim in this work is to overcome these limitations.

Our solution substitutes the analysis of linear distances between regions with

their covariances, no more analyzing how similar two regions are, but how they

correlate considering a particular low-level feature. This leads to a richer description

of the local similarity between parts of an object.

Covariances of low-level features, in the form of covariance matrices, bear several

advantages when used as single region descriptors, as pointed out in5,6,7; actually,

they provide a natural way of fusing multiple features that might be correlated.

Due to the analysis of statistics of pixels values, instead of considering a single

gray value, the per-pixel noise management is more effective: pixels values affected

by clutter are filtered out with the average operation intrinsic to the covariance

calculation. For the same reason, covariance matrices exhibit a certain robustness

against scale change, since their calculation do not depend from the number of

elements used to build it. Finally, when compared to other statistical descriptors,

such as multi-dimensional histograms, covariances are intrinsically low-dimensional

as their size is only O(N2), with N being the number of features.

So far, covariances of low-level features have been used to describe single entities

(images, regions, etc. )5,6,7. The original contribution here is to employ covariances

to measure statistical similarities across different entities, in this case, different

image regions. For this reason, covariance matrices have been properly general-

ized with the cross-covariance matrices, which capture the variations among two

generally different feature vectors.

In particular, the Structural Similarity Cross-Covariance Tensor (SS-CCT) is

proposed here, encoding all the similarities among regions by means of Cross-

Covariance matrices, each one capturing all the pairwise relationships between

the single features extracted in a given couple of regions. The SS-CCT inherits

the versatility of the covariance; furthermore, other than the advantages above
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listed, relations among regions can be encoded when these are modeled by what-

ever state of the art descriptor: HOG10, SIFT 8, LBP9, etc. . This represents one

of the most important differences with the approach of 1, where similarities among

image patches are considered by evaluating the raw pixels values, without resort-

ing to more expressive appearance descriptors. In addition, SS-CCT embeds in the

same model multiple features, while1 is constrained to refer to a single one. Finally,

the encoding provided by 1 is expensive in terms of memory, requiring thus more

compact additional representations, like bag of words. This introduces other issues

associated to vector quantization, dictionary learning, sparsity, etc. . In our case,

self-similarities are collected in a compact descriptor, without requiring higher-level

descriptors.

As a proof of concept and for computational reasons, the proposed method is

applied using the well-known HOG feature descriptor10, and tested on two main

classification scenarios: object and scene classification. The results witness signif-

icant performance improvements with respect to both the simple feature-based

descriptors (HOG, LBP, SIFT) and the point-wise similarity based SST approach

in 11.

The present work considerably extends the study presented in 12, by detailing

how the SS-CCT can be quickly computed through integral images5, and show-

ing numerical experiments. We also revise the experimental protocol for the scene

recognition, obtaining results that are more generalizable. Finally, we consider the

PASCAL VOC 2007 as further object recognition benchmark. All the new experi-

ments confirm the effectiveness of our method.

The rest of the paper is organized as follows. In Section 2, the SS-CCT descriptor

is introduced; in Section 3 some information on the object model is provided. In Sec-

tion 4 the SS-CCT performances on Caltech-10113, Caltech-25614, PASCAL VOC

200715 and SenseCam16 datasets are reported and compared with other methods

in the literature. Finally, in Section 4 conclusions and future work are envisaged.

2. Proposed method

Let I be a gray scale or color image of size H × V , and let B ⊂ I a bounding

box defining an area of interest in the image. We subdivide B into N generally

overlapped rectangular regions Ri, i = 1, . . . , N , with N = Nh × Nv (respectively

the number of horizontal and vertical regions), each one of size n = nh × nv pixels

(see Fig. 1). The stride of two adjacent regions is Sh and Sv, along horizontal

and vertical direction respectively. The size of the bounding box B is given by

[(Nh − 1)Sh + nh]× [(Nv − 1)Sv + nv]. By such relation it is clear that the union of

the N regions perfectly covers the bounding box and no region portion lies outside

B. The degree of overlap between the regions depends both on the region size and

on the strides. In general not every region pair share common pixels in B.

Let z(x, y) be the D-dimensional vector of features extracted at a pixel with

image coordinates (x, y).The global Feature Level descriptor (FL) of the bounding
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Fig. 1. Building process of the SS-CCT: each region Ri inside a bounding box B is described
by a set of local feature descriptors; the pairwise similarity among two regions is encoded by a

cross-covariance matrix of the feature descriptors.

box B is obtained stacking together the feature vectors whose coordinates belong

to the bounding box itself:

FL = {z(x, y) : (x, y) ∈ B} (1)

The proposed Similarity Level (SL) structural descriptor is built on top of

FL, encoding the similarity among each couple of regions. In order to achieve a

statistically robust and highly invariant description of this similarity, we calculate

the covariance among each couple of features, using the feature values z(x, y) as

spatial samples

In detail, given two regions Ri and Rj , we calculate the D×D cross-covariance

matrix CcovRi,Rj
among the feature vectors z(x, y) in the following way:

CcovRi,Rj =
1

n− 1

∑
(x,y)∈R1

(zRi(x, y)− z̄Ri)(zRj (x, y)− z̄Rj )>, (2)

with

zRi
(x, y) = z(x + ∆XRi

, y + ∆YRi
) (3)

where the pixel differences ∆XRi
, ∆YRi

define the distance of the i-th region from

the first region at the upper left corner of the bounding box (see Fig.2). They can

assume the following set of discrete values:

∆XRi
= hi · Sh hi = 0, . . . , Nh − 1 (4)

∆YRi
= vi · Sv vi = 0, . . . , Nv − 1

z̄Ri
in (2) is the mean of z(x, y) inside the region Ri defined as:

z̄Ri
=

1

n

∑
(x,y)∈R1

zRi
(x, y) (5)
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In practice the a, b-th element of CcovRi,Rj is the spatial covariance of feature

a in region Ri and feature b in region Rj .

Notice that Cross-Covariance matrices do not share the same properties of co-

variance matrices. In particular, CcovRi,Rj are not symmetric and, consequently,

not semi-definite positive. Therefore cross-covariance matrices do not lie on a Rie-

mannian manifold defined by the set of semi-definite positive matrices 5, and the

only known modality to use these descriptors in a machine learning framework is

to vectorize them.

Calculating (2) across all the possible region pairs inside the bounding box B,

we obtain a block matrix CcovBlock of size DN ×DN , defined as follows:

CcovBlock(B) =

CcovR1,R1 · · · CcovR1,RN

...
. . .

...

CcovRN ,R1 · · · CcovRN ,RN

 . (6)

It can be noticed from Eq. (6) that this matrix is block-symmetric, i.e.

CcovRi,Rj = Ccov>Rj ,Ri
. Therefore the final structural descriptor, named

Structural-Similarity Cross Covariance Tensor (SS-CCT), is built vectorizing

CcovBlock(B) in the following manner:

SS-CCT = [Vec(CcovR1,R1) Vec(CcovR1,R2) . . . (7)

Vec(CcovR1,RN
) Vec(CcovR2,R2

) . . . Vec(CcovRN ,RN
)]

where Vec is the standard vectorization operator.

The length of the SS-CCT descriptor is therefore (N +1)(N/2)D2. The final de-

scriptor is obtained joining together the Feature Level of Eq. (1) and the Similarity

Level of Eq. (7) descriptors, with a final length equal to (N + 1)(N/2)D2 + DM

where M is the number of pixels in the bounding box (in general M is not equal

to Nn because the regions can be overlapped, as shown in Fig. 1).

2.1. Efficient Implementation

An efficient way to calculate the SS-CCT over multiple bounding boxes can be

devised exploiting the concept of integral images17. Each pixel of the integral image

is the sum of all the pixels inside a rectangle bounded by the upper left corner of

the image and the pixel of interest:

IntI(x′, y′) =
∑
x<x′

y<y′

I(x, y). (8)

The cross-covariance, Eq. (2), among two regions Ri, Rj can be rewritten, ex-

panding the means and rearranging the terms, as follows:
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CcovRi,Rj =
1

n− 1
·

·

 ∑
(x,y)∈R1

(zRi(x, y)zRj (x, y)>)− 1

n

∑
(x,y)∈R1

zRi(x, y)
∑

(x,y)∈R1

zRj (x, y)>

 . (9)

To find the cross-covariance for a given couple of rectangular regions (Ri, Rj),

we have to compute the sum of each D × D matrix zRi
(x, y)zRj

(x, y)> and each

D vector zRi
(x, y). To do this, we build a set of integral tensors: let P (x′, y′) a 3D

tensor of size H × V ×D defined as follows:

P (x′, y′) =
∑
x<x′

y<y′

z(x, y) (10)

and Q(x′, y′,∆X,∆Y ) a 6D tensor of size H×V × (2Nh−1)×Nv×D×D defined

as follows:

Q(x′, y′,∆X,∆Y ) =
∑
x<x′

y<y′

z(x, y)zT (x + ∆X, y + ∆Y ) (11)

where

∆X = hhSh hh = −Nh + 1, . . . , Nh − 1

∆Y = hvSv hv = 0, . . . , Nv − 1. (12)

Now consider a bounding box whose first region R1 in the upper left corner is

bounded by pixels (1, 1) (upper left) and (x′, y′) (lower right) of the whole image.

In such a case the formula of the Cross-Covariance, Eq. (9), can be expressed as

follows:

CcovRi,Rj
(1, 1, x′, y′) =

=
1

n− 1

∑
x<x′

y<y′

(zRi
(x, y)zRj

(x, y))> − 1

n

∑
x<x′

y<y′

zRi
(x, y)

∑
x<x′

y<y′

zRj
(x, y)>

 . (13)

Now, recalling the definition of zRi(x, y) in Eq. (3), it is easy to see that the

three sums in Eq. (13) can be expressed in term of the integral tensors, Eq. (10)

and Eq. (11). In detail, defining the following quantities,

Px′y′Ri
= P (x′ + ∆XRi

, y′ + ∆YRi
) (14)

Qx′y′RiRj = Q(x′ + ∆XRi , y
′ + ∆YRi ,∆XRj −∆XRi ,∆YRj −∆YRi) (15)

we can express Eq.(13) as:

CcovRi,Rj
(1, 1;x′, y′) =

1

n− 1
[Qx′y′RiRj

− 1

n
Px′y′Ri

P>x′y′Rj
]. (16)
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Fig. 2. Absolute and relative displacements of the regions inside the bounding box.

In practice, the displacements ∆XRi
, ∆YRi

, ∆XRj
, ∆YRj

defining the regions

Ri, Rj can be encoded into the relative displacements ∆X = ∆XRi
− ∆XRj

and

∆Y = ∆YRi
−∆YRj

(see Fig.2). In this way the number of possible displacement

combinations equal to N2
hN

2
v is reduced to a much smaller number of relative dis-

placements (2Nh−1)(2Nv−1). Moreover considering that CcovRiRj
= Ccov>RjRi

,

just the quantities CcovRi,Rj (1, 1;x′, y′) with j ≥ i need to be computed. Assuming

to sort the regions in a row wise manner, i.e. the first Nh regions have ∆XRi
= 0,

it holds that ∆YRj
≥ ∆YRi

for each j ≥ i and consequently ∆Y ≥ 0, allowing

to reduce the number of possible relative displacements to (2Nh − 1)Nv, as previ-

ously defined in (12). Overall the computation of Eq. (13) for each (x′, y′) and each

(Ri, Rj) with the above described integral tensors is O(D2HV (2Nh − 1)Nv)

Let’s consider now a generic bounding box whose first region is bounded by the

upper left and lower right corners, (x′, y′) and (x′′, y′′) respectively. It is easy to see

that the cross-covariance among two regions related to this bounding box, denoted

with CcovRi,Rj
(x′, y′;x′′, y′′), can be calculated as:

CcovRi,Rj (x′, y′;x′′, y′′) =
1

n− 1
[QRi,Rj

− 1

n
PRi

PRj

>], (17)

where QRi,Rj
and Ri are linear combinations of the integral tensors defined as

follows (see Fig.3):

QRi,Rj
= Qx′′y′′RiRj

+ Qx′y′RiRj
−Qx′′y′RiRj

−Qx′y′′RiRj
(18)

PRi
= Px′′y′′Ri

+ Px′y′Ri
− Px′y′′Ri

− Px′′y′Ri
(19)

Denoting with NB the total number of bounding boxes in the image, the com-

putational cost of the global descriptor SS-CCT for all the bounding boxes is

O(NBD
2N(N + 1)/2 + MD2(2Nh − 1)Nv). The first term O(NBD

2N(N + 1)/2)

does not depend on the region size n and accounts for the operations involved

in Eq. (17), Eq. (18) and Eq. (19). The second term MD2(2Nh − 1)Nv accounts

for the operations involved in 10 and 11 which have to be computed once inde-

pendently of the number of bounding boxes. If B = 1, i.e. the bounding box
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Fig. 3. Cross-Covariance calculation in an arbitrary region by the combination of integral tensors.

coincides with the whole image, then M = [(Nh − 1)Sh + nh] [(Nv − 1)Sv + nv].

In general, M = NB(1 − Oh)(1 − Ov) [(Nh − 1)Sh + nh] [(Nv − 1)Sv + nv], where

Oh and Ov are the degree of overlap (in the range [0, 1]) between adjacent bound-

ing boxes in horizontal and vertical directions. Differently, the computational cost

associated to a naive procedure would be O(NBnD
2N(N + 1)/2). The computa-

tional saving is significative and it is due to two factors: firstly sum over pixels

are performed just once for the integral tensors and don’t need to be repeated for

each bounding box. Secondly integral tensors are function of just the (2Nh − 1)Nv

relative displacements while in naive calculation each possible region couple, i.e.

N(N + 1)/2 = NhNv(NhNv + 1)/2, must be taken into account.
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Fig. 4. Run times in seconds for SS-CCT evaluation over a (a) QVGA and (b) VGA image,

varying the number of regions and the region size. SS-CCT denotes the naive implementation and
SS-CCT-EI the efficient implementation. Run-time gain is displayed on top of the histogram bins

In order to appreciate the computational advantage of the efficient implementa-

tion, its run-time is compared with the standard naive implementation considering

different image resolutions, varying the number of regions in the image, their size

and stride. In particular, in Fig.4 (a), run-times are displayed for SS-CCT evalu-
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Fig. 5. Run times in seconds for SS-CCT evaluation over a QVGA image, varying the region
stride and the number of regions. SS-CCT denotes the naive implementation and SS-CCT-EI the

efficient implementation. Run time gain is displayed on top of the histogram bins

ated over a single image at QVGA resolution. It can be seen that increasing the

number of regions, while decreasing the region size and keeping fixed the degree of

overlap, results in an increase of the computational cost for both methods, but our

efficient implementation guarantees a speed-up factor of about 3 to 13.5.Only in the

limit case when just one region covers the entire image, the integral representation

run-time is comparable with the standard one. Increasing the image resolution, the

benefit in terms or run-time is even larger as reported in Fig. 4 (b). For a VGA

image the computational saving increases from 2.5 to 24.5 times.

More evident advantages of using the integral image implementation can be ob-

served fixing the region size and increasing the number of regions, while decreasing

the region stride, as can be seen in Fig.5. Here the computational saving is even

bigger with a significant speed-up of about 30 times.

Such comparisons are carried out considering just one bounding box. If a greater

number of bounding boxes partially overlapping is considered, the computational

advantage increases even more. Concerning the absolute run-times, which in some

cases are relevant, one has to consider that the implementation of both methods

are in MATLAB R©.

3. Object Model

The adopted object model depends on the size of the images considered and on

the general characteristics of the dataset. In general, given an image, containing

the object of interest, we calculate the low-level descriptor on a uniformly sampled

set of patches, of size w × w, whose overlap is w/2 in both horizontal and vertical

dimensions. For every patch, we encoded the appearance of an object through the

use of Histograms of Oriented Gradients descriptor, as defined in 10. We adopted

this descriptor since it is relatively fast to compute and still considered one of

the most expressive ones. Since each patch is mapped to a feature vector z(x, y)
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related to a single pixel location, i.e. the patch center, the original image should be

considered as decimated with a rate equal to w/2. In practice, the image I of size

H × V , introduced at the beginning of Section 2, is a down-sampled version of the

original image, of size Hw/2× V w/2, on which HOGs are evaluated.

Since the experiments have been carried out on classification tasks, and not

detection or localization ones, we considered a single bounding box coincident with

the decimated image. After that, we defined a set of N regions. The region size is

defined considering the following criteria: 1) each region should contain a number

of pixels sufficient to yield a significant statistic in the cross-covariance matrix

calculus; 2) the patch size, determining the number of pixels over which z(x, y) is

evaluated, should be sufficiently large so as to retain the descriptor expressiveness;

3) finally, the region size should match the size of significant parts of the objects to

be detected or classifieda.

We calculate the SS-CCT descriptor evaluating the cross-covariance between all

the couples of regions as formalized in Eq.(6) and Eq.(7). The final descriptor, here

dubbed SS-CCT(HOG), is given by the concatenation of SS-CCT and the HOG

descriptors.

4. Experiments

In this section, we report experimental results obtained on two different tasks,

using four datasets: Caltech-10113, Caltech-25614 and PASCAL VOC 200715(object

classification), and SenseCam Dataset16(scene classification). In all the experiments,

we employ a multi-class one-vs-all linear Support Vector Machine classifier, using

LIBLINEAR18, which is designed for linear classification of a large amount of data.

The proposed SS-CCT(HOG) is compared with a set of widespread descriptors

including SIFT8, LBP histograms9, HOG10 and the Self-Similarity Tensor described

in 11. The latter, named SST(HOG), is built joining together the HOG descriptor

and the pairwise Euclidean distances between all the patches, sharing the mixed

feature-based and similarity-based philosophy of SS-CCT. In order to focus the

comparison on the capabilities of the descriptors, the same baseline classifier and

the same object model are adopted for all the tests.

4.1. Object classification

Caltech-101 and Caltech-256

In the object classification community, Caltech-10113 dataset represents an impor-

tant benchmark. It consists of 102 classes (101 object categories plus background)

with a number of images per class ranging from 31 to 800. Despite its importance,

Caltech-101 has some cues, notably the presence of strongly aligned object classes,

aIt is important to distinguish between patch and region: the patch is the portion of the original
image over which a single HOG descriptor is evaluated; the region is a portion of the decimated
image over which covariance or cross-covariance of HOG descriptors is calculated.
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which significantly ease the classification process. To overcome such limitation, the

larger Caltech-256 dataset was subsequently introduced. It consists of 257 classes

(256 + Clutter class) with a minimum of 80 images per class and a total number of

images equal to 30607. In Caltech-256, objects position inside the image is signifi-

cantly varying for a lot of classes, as can be seen observing the average images for

the 256 classes in Fig. 6, so making the classification task more challenging with

respect to Caltech-101.

Fig. 6. Average of the images of the Caltech-256 dataset.

To test our descriptor, the object model introduced in Sec. 3 is adopted. The

HOG, LBP and SIFT descriptors are calculated on dense patches of size 32 × 32

with an overlap of 16 pixels. The number of regions N is set to N = 9, with Nh = 3

and Nv = 3; the region size is set to nh = nv = 3; finally the stride is set to

Sh = Sv = 3. For Caltech-101 we considered 15 images per class for training and

15 images per class for testing, repeating the experiments with five different splits

according to the standard procedure 19. The same was done for Caltech-256, we

train our system on {5, 10, 15, 20, 25, 30} images per class and test on 15 images, in

5 random splits each.

Table 1. Classification results on the Caltech-101 dataset.

SIFT HOG LBP SST(HOG) SS-CCT(HOG)
Accuracy % 38.44% 41.32% 43.17% 47.67% 47.77%
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Experimental results on the Caltech-101 are displayed in Table 1. As can be

seen both SS-CCT(HOG) and SST(HOG) outperform HOG, LBP and SIFT with

at least a 6% increment in the overall accuracy. On the other hand, SS-CCT(HOG)

and SST(HOG) yield roughly the same performance: this is easily explainable con-

sidering that in Caltech-101 images are strongly aligned, reducing the need for

robustness against position variation.

Results on the Caltech-256 in terms of accuracy v.s. the number of training

images per class, are displayed in Fig. 7. As figure shows, our method outperforms

HOG, LBP, SIFT and SST(HOG) in all the cases and the gap between our method

and the others increases when the training set size is larger. Differently from the

Caltech-101 case, the higher complexity of the dataset highlights the superiority of

our method with respect to SST(HOG).

5%

10%

15%

20%

25%

5 10 15 20 25 30

SS-CCT
SST
HOG
LBP
SIFTAc

cu
ra

cy

# Training Examples

Fig. 7. Results obtained on the Caltech-256 dataset.

In order to assess statistical significance of the obtained results a paired T-test20

has been run for both Caltech-101 and Caltech-256 taking the different splits as

different realizations of the same process and considering as null hypothesis the

statistical equivalence of SS-CCT(HOG) and the other descriptors. The obtained

p-values for each couple [SS-CCT(HOG), other descriptor] are all lower than 0.006

except for [SS-CCT(HOG), SST(HOG)] in Caltech-101 (p-value = 0.14) and [SS-

CCT(HOG), SST(HOG)] in Caltech-256 when 5 examples per class are used in

training phase (p-value = 0.12). Overall the reliability of the improvement obtained

with SS-CCT(HOG) is confirmed with a high degree of significance.

The parameters defining the patch size, the overlap and the region number, size

and stride were tuned trying a wide set of combinations of values and retaining the

ones providing the best result. The tuning procedure was not extremely demanding

from a computational point of view, as many parameters are mutually dependent

(e.g. the region number and size). Interestingly, if the value of each parameter is

chosen within a reasonable range, according to the criteria exposed in Section 3,
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the performance variation is not very large, and the method was found to be quite

robust to parameter tuning. To support this statement in Fig.8 the performance on

Caltech-101 is displayed varying the patch size w×w, namely 16× 16 and 32× 32

pixels, and the number of regions, namely N = 2×2, N = 3×3 and N = 4×4. The

patch overlap was fixed to half of the patch size while the region size was roughly

inversely proportional to the number of regions, and the region stride was changed

to keep roughly the same degree of region overlap. Results are visualized in terms

of mean and standard deviation evaluated on five different splits of Caltech-101. As

can be seen, the range of variability between the best and the worst result is about

5% in terms of accuracy, confirming the robustness of the method to the parameter

tuning.

HOG 16x16 HOG 32x320%

10%

20%

30%

40%

50%

A
cc

ur
ac

y

 

 

2x2 Regions
3x3 Regions
4x4 Regions

Fig. 8. Results obtained on the Caltech-101 dataset, varying the patch size (16 × 16 and 32 × 32

pixels) and the number of regions Nh = Nv = 2, 3, 4.

Pascal VOC 2007

The PASCAL VOC 2007 dataset15 consists of 9.963 images from 20 classes. These

images range between indoor and outdoor scenes, close-ups and landscapes, and

strange view-points. This dataset is extremely challenging, because all the images

are daily photos obtained from Flicker with significant variations in the appearence

of the objects (size, viewing angle, illumination, etc. ), with frequent occlusions (see

Fig.9).

To test our descriptor, the object model introduced in Sec. 3 is adopted. The

HOG descriptor is calculated on dense patches of size 32 × 32 with an overlap of

16 pixels. The number of regions N is set to 36 (the images are bigger than the

previous datasets), 6 along both the horizontal and vertical image direction, with

a stride of Sh = Sv = 2. We considered the training/testing split available with the

PASCAL VOC 2007 Challenging15.

The classification performance is evaluated using the Average Precision (AP)

measure, a standard metric used by PASCAL challenge. It computes the area under

the Precision/Recall curve, and the higher the score, the better the performance.
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Fig. 9. Example images from Pascal VOC 2007 dataset.

Table 2. Classification results on the Pascal VOC 2007 dataset.

Aero Bicycle Bird Boat Bottle Bus

HOG % 43.76% 12.33% 14.58% 19.53% 7.46% 17.88%

SST(HOG) % 39.67% 15.26% 14.86% 16.81% 9.11% 15.38%
SS-CCT(HOG) % 43.86% 12.42% 14.35% 19.78% 7.21% 18.05%

Car Cat Chair Cow Dining Table Dog

HOG % 36.84% 13.43% 9.68% 5.85% 14.53% 17.74%
SST(HOG) % 33.88% 10.09% 8.65% 7.41% 18.06% 14.78%

SS-CCT(HOG) % 37.42% 13.84% 9.68% 5.72% 14.76% 22.29%

Horse MBike Person Plant Sheep Sofa
HOG % 35.16% 18.12% 53.26% 6.66% 5.21% 14.32%

SST(HOG) % 35.63% 8.22% 54.13% 9.56% 6.67% 15.06%
SS-CCT(HOG) % 35.92% 18.36% 54.52% 6.63% 5.27% 14.54%

Train TV AVG

HOG % 22.71% 25.76% 19.74%
SST(HOG) % 18.31% 13.44% 18.48%

SS-CCT(HOG) % 23.89% 25.87% 20.22%

In Table 2 we reported the average over all the 20 classes.

As table shows, our SS-CCT(HOG) outperforms both HOG and SST(HOG)

with an overall average improvement that goes from 0.6% to 2%, respectively. Al-

though the percentage increase is lower than in Caltech experiments, it demon-

strates the goodness of our descriptor. As already demonstrated in the previous

scenarios, our descriptor reaches the best performance when the intra-class vari-

ability is very high, i.e. Cars and Trains, whereas in other classes where objects

are more aligned in the image, SST(HOG) may sometimes outperform our method.

This behavior accounts for the complementarity of SS-CCT(HOG) and SST(HOG)

and suggests that their combination could achieve even superior performance.
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4.2. Scene Classification

In the second experiment, the proposed framework is tested on the SenseCam

Dataset16. This dataset consists of images acquired with a SenseCam, a wearable

camera which automatically shoots a photo every 20 secs. It consists of 3962 images

labeled according to 32 classes (e.g. Bathroom Home, Car, Garage Home, Biking...).

The images are divided into 30 random splits and in each round we extracted 480

images for training (15 images per class) and and no more than 15 images for

testing, for a total of 432. The dataset is challenging because most images present

dramatic viewing angle, translational camera motions and large variations in illu-

mination and scale: Fig. 10 shows four images belonging to two classes extracted

from the dataset.

As done in 12, The HOG descriptor has been calculated on dense patches of

size 32 × 32 with an overlap of 16 pixels. The number of regions was set to 15 : 5

along the x axis and 3 along the y axis, with a stride of Sh = Sv = 3. Experimental

results are displayed in Table 3, with standard deviations in brackets.

(a)

(b)

Fig. 10. Four images extracted from the SenseCam Dataset: (a) Bathroom Home and (b) Kitchen.

Table 3. Classification results for the SenseCam dataset.

HOG SST(HOG) SS-CCT(HOG)
Accuracy % 35.23% (±1.92%) 40.07% (±2.22%) 41.68% (±2.53%)

Our method outperforms both HOG and SST(HOG) with a difference in ac-

curacy of about 6% (p-value < 10−4) and 2% p-value < 10−10 respectively, so

confirming its effectiveness in classifying images containing objects with an high

degree of position variability.

Finally, as a complement to the run-time analysis carried out in Section 3, the

three methods HOG, SST and SS-CCT are compared taking into account the image

size and the object model considered in the four datasets previously described. In

Table 4 run-times for a single image are reported: for SST and SS-CCT run-times

do not include HOG computation which is common to the three approaches. The
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comparison is not completely fair because HOG has been implemented in C++

whereas the other descriptors have been implemented in MATLAB. However, con-

sidering that a reasonable speed up with a C++ implementation would be around

5-10 it can be concluded that the additional computational complexity related to

SS-CCT has a limited impact with respect to HOG and does not indent a practical

application.

Table 4. Run-times for HOG, SST(HOG) and SS-CCT(HOG) descriptors on a single
image

HOG (C++) SST (Matlab) SS−CCT(Matlab)

Caltech-101 and Caltech-256 0.014 sec. 0.0070 sec. 0.0084sec.
Pascal-VOC 2007 0.026 sec. 0.383 sec. 0.390sec.

SenseCam 0.021 sec. 0.173 sec. 0.167sec .

5. Conclusions and future work

This paper proposes a novel similarity-based descriptor for image classification.

The idea is to encode similarities among different image regions by means of cross-

covariance matrices calculated on low level feature vectors, obtaining a robust and

compact representation of structural (dis)similarities of a given entity. The result-

ing descriptor SS-CCT can be efficiently calculated exploiting Integral Images, by

means of an ad hoc procedure. The final descriptor, obtained joining together the

low-level features (HOG in our case) and their structural similarities, has proven

to outperform all the other descriptors, on four challenging datasets. Despite the

encouraging results obtained, further study will be devoted to find the best ob-

ject model (number, shape and displacement of the parts) and the best features in

a given context to improve the effectiveness of the proposed descriptor. This will

allow the comparison with popular state-of-the-art approaches for detection and

classification.
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