
Security challenges
for Enterprise Java
in an e-business
environment

by L. Koved
A. Nadalin
N. Nagaratnam
M. Pistoia
T. Shrader

As e-business matures, companies require
enterprise-scalable functionality for their
corporate Internet and intranet environments.
To support the expansion of their computing
boundaries, businesses have embraced Web
application servers. These servers support
servlets, JavaServer PagesTM, and Enterprise
JavaBeansTM technologies, providing simplified
development and flexible deployment of Web-
based applications. However, securing this
malleable model presents a challenge.
Successful companies recognize that their
security infrastructures need to address the
e-business challenge. They are aware of the
types of attacks that malevolent entities can
launch against their servers and can plan
appropriate defenses.

The Java** technology has established itself in
the enterprise realm, both for the ease with

which developers can create component software and
for the platform-independence of the language. The
Java 2 Platform, Standard Edition (J2SE**) intro-
duced a fine-grained, policy-based security model
that is customizable and configurable into numer-
ous protection domains, which are well-suited to
component-based software. To provide security for
e-business, the Java platform builds upon a core set
of technologies.

Enterprise security requires authentication to iden-
tify a principal user based on the enterprise user reg-
istry, authorization to enforce the enterprise secur-
ity policies, encryption to keep information
confidential, and pliable management of informa-
tion. In the Java environment, these technologies
manifest themselves through the J2SE security archi-
tecture, Java Authentication and Authorization Ser-
vice (JAAS), Java Cryptography Architecture (JCA),

Java Cryptography Extension (JCE), Java Secure
Socket Extension (JSSE), Public-Key Cryptography
Standards (PKCS), and support for the Public Key
Infrastructure (PKI).

This paper describes the infrastructure and the se-
curity considerations that companies deploying a
Web application server (WAS) must consider. We
delve into the set of Java security technologies that
can be applied. In addition, this paper discusses the
current J2SE security architecture and security for the
WAS environment, focusing on the challenges that
lie ahead as these architectures evolve to address en-
terprise e-business needs.

Web application servers

Web application servers have recently come of age,
supplementing and often surpassing traditional Web
servers in their use and functionality in enterprise
environments. A WAS differs from a traditional Web
server because it provides a robust and flexible foun-
dation for dynamic transactions and objects. Tradi-
tional Web servers are constrained to servicing stan-
dard HTTP (HyperText Transfer Protocol) requests,
returning the contents of static HTML (HyperText
Markup Language) pages and images or the output
from executed CGI (Common Gateway Interface)
scripts. Some Web servers have tried to extend their
functionality by including Java servlet1 support. Serv-

rCopyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

KOVED ET AL. 0018-8670/01/$5.00 © 2001 IBM IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001130

lets allow Java applications to be executed on the
server side and return dynamically generated infor-
mation, in much the same way that a CGI script can
dynamically generate information. However, graft-
ing servlet support onto a Web server does not pro-
vide a complete solution to meet e-business require-
ments.

A WAS provides a more scalable environment for
modeling enterprise solutions, partly through the ex-
ploitation of Java technology. A WAS supports Java
objects in their simple and compound manifestations.
Servlet support plays an important role, but a WAS
also supports Enterprise JavaBeans** (EJB) and
JavaServer Pages** (JSP) technologies.2 EJB technol-
ogy provides an architecture for distributed trans-
action-based objects, allowing developers to concen-
trate on business logic, rather than its interaction with
infrastructure. Similarly, JSP technology provides de-
velopers and administrators with a convenient way
to generate HTML or XML (Extensible Markup Lan-
guage) via Java programming to generate dynamic
information.

A WAS supports other functionality, but the blend
of EJB, servlets, and JSP provides the foundation for
representing a model-view-controller (MVC)3,4 archi-
tecture to developers. The modularity and focus of
purpose in EJB represents the model. JSP and serv-
lets represent the view through their ability to dynam-
ically generate information (e.g., HTML, XML). The
client system represents the controller.

WAS security environment

A WAS is more than just a grouping of Java objects.
In the multiuser enterprise environment, a WAS also
provides integrated authentication and authorization
support for user transactions, whether they originate
from Web browsers, client applications, or another
WAS. This complex environment of both friendly and
potentially malicious entities requires answers to a
number of questions:

● How can users be authenticated to a WAS?
● After authentication, to which objects and actions

are the users authorized?
● How can the details of users’ transactions remain

hidden from unauthorized entities?

These questions fundamentally deal with the secur-
ity issues of authentication, authorization, and en-
cryption.

Objects that play a major role in the WAS environ-
ment are client objects and server objects. Client
objects include Web clients and application clients.
Server objects include Web servers, WASs, security
servers, and user registry servers.

The physical WAS executing the supported Java ob-
jects plays an important role, but it is just one mem-
ber of the entire ensemble of processes that com-
plete the WAS environment. Note the distinction
between the WAS and the WAS environment. The WAS
represents the server that handles requests for EJB
objects, servlets, and JSP pages. The WAS environ-
ment encompasses all of the client and server ob-
jects that have a direct or indirect interaction with
the WAS, including the WAS itself.

Clients to a WAS include Web browsers, Java client
applications or applets, and pervasive devices, such
as mobile appliances. Client objects can originate
from many different sources, but they can be cate-
gorized into those from traditional Web browsers and
those from stand-alone applications.

A WAS typically does not directly service client re-
quests. Web servers respond to HTTP requests for
HTML pages or to execute CGI scripts. For more com-
plex tasks, such as the manipulation of EJB objects,
Web servers pass the service requests to the WAS.

Playing a quiet but essential role in the WAS envi-
ronment, the security server maintains a consistent
security schema. It arbitrates user authentication and
authorization access to objects. To authenticate
users, as well as obtain the user’s authorization at-
tributes and digital certificate information, the se-
curity server obtains the information from an enter-
prise user registry (e.g., LDAP server, OS/390* RACF*,
and SecureWay* Policy Director).5

Security in the WAS environment is not limited to
authentication and authorization. Between the dif-
ferent server and client objects, security also comes
into play through the use of encryption technologies.

Role of Java security technologies in a WAS
enterprise environment

This paper describes a set of Java security technol-
ogies and how each of them plays a vital role in se-
curing a WAS environment. This section describes the
general flows within the WAS environment. Later sec-
tions discuss the role of security technologies within
these flows in further detail.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 131

Invoking a secure servlet from a Web client. In a typ-
ical scenario, the user submits a request to a Web
resource, such as a Java servlet, by specifying the uni-
form resource locator (URL) corresponding to that
resource. Since it does not internally process serv-
lets, the target Web server receives the request and
forwards it on to the WAS (see Figure 1). The WAS
determines that the requested resource is protected
and the security collaborator must authenticate the
user. The security collaborator resides at the serv-
er’s entry point to help broker requests with the se-
curity server, based on security policies. If the policy
requires a user ID (identifier) and password, the Web
server may issue an HTTP basic challenge or post an
HTML form to request authentication data from the
user. Tighter security policies may dictate a PKI-based
authentication, where the user is required to present
a client digital certificate.

An administrator may configure a WAS with policies
based on security specifications for Java servlets and
manage authentication and authorization with Java
Authentication and Authorization Service (JAAS)
modules. An authentication and authorization ser-
vice may be written in Java code or interface to an
existing authentication or authorization infrastruc-
ture. For a cryptography-based security infrastruc-

ture, the security server may exploit the Java Cryp-
tography Architecture (JCA) and Java Cryptography
Extension (JCE). To present the user with a usable
interaction with the WAS environment, the Web
server may employ a form of “single sign-on” to avoid
redundant authentication requests. A single sign-on
preserves user authentication across multiple HTTP
requests so that the user is not prompted many times
for authentication data (i.e., user ID and password).

Invoking a secure EJB object from a Java client. Java
client applications may invoke EJB methods by sub-
mitting a request to the WAS that hosts an EJB con-
tainer. As with Web clients, Java security technol-
ogies can play a role in the security decisions made
during this request flow from a client application (see
Figure 2).

Based on the security policies, JAAS may be employed
to handle the authentication process with the iden-
tity of the Java client. After successful authentica-
tion, the WAS security collaborator consults with the
security server. Based on the result of the authen-
tication process and EJB security policies, the secur-
ity collaborator will make an EJB authorization de-
cision. If the authorization succeeds, the collaborator
will enforce the delegation policy associated with that

Figure 1 Secure servlet invocation scenario

SERVLET ENGINE

WEB APPLICATION SERVER (WAS)

(JAVA SERVLET SECURITY, JAAS, JSSE)

(JCA/JCE, JAAS)

SECURITY CHECKS

PLUG-IN CONNECTIONS

SERVLET REQUEST

WEB SERVER

(SINGLE SIGN-ON, JSSE)

AUTHENTICATION
AND AUTHORIZATION

AUTHENTICATION CHALLENGE

j_username, j_password

WEB SERVER
PLUG-IN

SECURESERVLET

SECURITY
COLLABORATOR

SECURITY
SERVER

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001132

method. For example, if the delegation policy on a
method on SecureBean is set to enforce imperson-
ation, when that method invokes a downstream
NextIncBean method, the method call will be per-
formed under the client’s identity.

The WAS environment must ensure the confidenti-
ality of information exchanged between the client
and the environment, as well as between servers, by
maintaining a mutually authenticated, secure com-
munications channel for information flow. JSSE can
be used to establish these secure channels. EJB ob-
jects can additionally exploit various security tech-
nologies, such as those available with JCA, JCE, PKCS,
and S/MIME (Secure Multipurpose Internet Mail Ex-
tensions).

The environment and security flows just described
are relevant to any enterprise. It is left to the im-
plementation of such an environment to enforce var-
ious security policies at relevant checkpoints
throughout the flow. The rest of this paper will de-
scribe these security technologies and how they can
be used individually or combined to present a se-

cure Java environment for the WAS enterprise. In
particular, this paper will cover the following tech-
nologies:

● Enterprise JavaBeans (EJB)
● Java Authentication and Authorization Service

(JAAS)
● Servlet security
● Java Cryptography Architecture (JCA) and Java

Cryptography Extension (JCE)
● Java Secure Socket Extension (JSSE)
● Public-Key Cryptography Standards (PKCS) and

Secure/Multipurpose Internet Mail Extensions
(S/MIME)

Enterprise JavaBeans

Although they can service many heterogeneous ob-
jects, WASs specialize in providing EJB containers. As
e-business applications progress from small-scale en-
deavors to the demands of enterprise-wide solutions,
most incorporate EJB objects to model the business.
This section introduces the EJB security model and

Figure 2 Secure EJB invocation scenario

WEB APPLICATION SERVER

SECURITY CHECKS

EJB METHOD
INVOCATION
AUTHENTICATION
AND AUTHORIZATION

NEXTINCBEAN

DELEGATION

AUTHORIZATION

JAVA CLIENT
APPLICATION

(JCA/JCE, JAAS)

(EJB SECURITY JSSE, JAAS)

SECURITY
COLLABORATOR

SECURITY
SERVER

SECUREBEAN

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 133

its support for authentication, authorization, and del-
egation.

EJB is a server-side component-programming model
for distributed transaction processing.6,7 The EJB 1.1
specification6 prescribes a number of roles, includ-
ing enterprise bean provider, application assembler, de-
ployer, system administrator, EJB server provider, and
EJB container provider. Each of these roles takes on
specific responsibilities in managing and implement-
ing security.

As shown in Figure 3, the EJB component program-
ming model aggregates multiple EJB objects to cre-
ate functionality for applications requiring transac-
tion-oriented characteristics. Written by enterprise
bean providers, these components are aggregated by
application assemblers who associate transactional,
security, and other properties with the components.
These aggregated components are stored in an EJB
Java archive (JAR) file. Included in the EJB JAR file
is a deployment descriptor that describes the various
properties of the EJB objects stored in the JAR file.

To execute an EJB object, an EJB JAR must be de-
ployed. An EJB container provider is an organization
that supplies an implementation of an EJB run-time
environment (e.g., middleware). The EJB container

provider is also responsible for providing tools that
allow the deployer to:

● Process an EJB JAR file
● Configure an EJB server to install and execute an

EJB object
● Configure the network environment to contain the

Remote Method Invocation (RMI) stubs needed
by the client to communicate with the EJB object
via the EJB container

● Provide directory services, such as Java Naming
and Directory Interface (JNDI)8 to locate the de-
ployed EJB bean

In addition, the EJB container provider supplies tools
for security management at deployment time, as well
as for the system administrator for ongoing security
administration of the EJB object and container run-
time environment.

Another key element of the EJB programming and
run-time model is that it is a distributed program-
ming model. In fact, the only architected means for
communicating with an EJB object is through its
HomeInterface object via an RMI call. That is, the EJB
programming model is a distributed programming
model where components and applications commu-
nicate with each other via remote method calls. The

Figure 3 Relationship of EJB providers, application assembler, deployer, and system administrator

ENTERPRISE BEAN
PROVIDERS

APPLICATION
ASSEMBLER

DEPLOYER/
SYSTEM
ADMINISTRATOR

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001134

EJB container mediates all communication between
an EJB client and the EJB instance (see Figure 4).

Authentication. The EJB specification does not di-
rectly address the issue of authentication and the au-
thentication process. Most of the specification deals
with authenticated principals and the actions they
can perform, such as invoking methods specified in
an EJB HomeInterface or RemoteInterface object.
In most respects, the execution model follows a sim-
plified version of the Common Object Request Bro-
ker Architecture** (CORBA**) security model.9,10

Authentication is the responsibility of the EJB con-
tainer and could be implemented using JAAS.

In the Object Request Broker (ORB) authentication
model, an ORB, such as RMI over Internet Inter-Orb
Protocol (RMI-IIOP),11,12 receives a method invoca-
tion request and examines the security attributes of
the request prior to method dispatch.13 If the prin-
cipal(s) are authenticated, then the process moves
on to the authorization phase.

Aside from the authentication process, the result of
authentication appears in several places. In partic-
ular, EJB includes a notion of a security role. The se-
curity role is a grouping of principals to make it eas-
ier for the deployer and system administrator to
administer authorization. When a principal is au-

thenticated, the principal is logically assigned to zero
or more security roles defined by the application (as
configured by the deployer). Further details of se-
curity roles are covered later, in the subsection on
authorization.

For the enterprise bean provider, authenticated user
information is available in two methods in the
EJBContext class. The first is the getCallerPrinci-
pal¼ method, which returns a Principal object rep-
resenting the authenticated principal on whose be-
half the EJB object is executing. The result of
getCallerPrincipal¼ is implementation-specific and
will be discussed later in the subsection on delega-
tion. The second method containing user informa-
tion is the method isCallerInRole¼, which accepts
a String object as an argument. After the requesting
principal is authenticated and authorized, an EJB
method is invoked. During the execution of the EJB
method, the application code can determine if the
calling principal possesses a specific EJB security role.
The role name passed in the isCallerInRole¼
method call is compared to the security roles assigned
to the authenticated user. If that name is one of the
roles, the method returns true, otherwise, false.

From an authentication perspective, the EJB con-
tainer provider is responsible for supplying tools and
run-time support for:

Figure 4 The EJB programming and run-time model as a distributed run-time environment

EJB SERVER

HOME
INTERFACE

CLIENT

HOME
STUB

REMOTE
INTERFACE

EJB OBJECT
STUB

HOME
INTERFACE

EJB
HOME

REMOTE
INTERFACE

EJB
OBJECT

BEAN
CLASS

EJB CONTAINER

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 135

● The javax.ejb.EJBContext methods getCallerPrin-
cipal¼ and isCallerInRole¼

● Security role name mappings as defined in the EJB
deployment descriptor

● Tools for the deployer and system administrator
to perform security administration, including se-
curity role mapping and assignment of roles to
principals or user groups

● Principal authentication and delegation support in
the ORB

Authorization. Much of EJB security is concerned
with authorization. As previously noted, EJB autho-
rization is based on a simplified CORBA security
model, which asks whether an authenticated prin-
cipal (or group of principals) is authorized to invoke
a method accessible via the ORB. Also, EJB security
is about the process of deploying an application so
that it can be secure. As such, EJB authorization will
be discussed from the perspective of each EJB secur-
ity role.

Enterprise bean provider. An enterprise bean provider
writes business logic in Java code. The intent of the
EJB architecture is to allow these providers to write
application code without having to understand or be
involved in security. Aside from the javax.ejb.EJB-
Context methods described above, there are no other
methods or operations that an EJB object can use to
influence EJB security.

However, if the EJB uses the isCallerInRole¼
method call, then the EJB deployment descriptor will
need to contain entries that enumerate the security
role names used in these method calls.

Application assembler. An EJB JAR file delivered to
a deployer may contain EJB objects from multiple
enterprise bean providers. It is the responsibility of
the application assembler to aggregate objects and
create the deployment descriptor that goes into this
EJB JAR file. A deployment descriptor is written in
XML and provides the road map for deploying the
objects in an EJB JAR file. In particular, the appli-
cation assembler defines security role names that ap-
ply to all EJB objects in the EJB JAR. Since the se-
curity role names used in each of the EJB objects may
not be the same as those defined for the EJB JAR file,
the application assembler must provide a mapping
of the EJB object-specific security role names to the
security role names used for the entire EJB JAR. The
security role names defined by the application as-
sembler will be the security role names that will be
visible to the deployer.

The application assembler is also responsible for as-
sociating the EJB JAR security role names with each
EJB method that is to be made accessible via the ORB.
Each method can be assigned individually to a se-
curity role, or all methods in a class can be assigned
to a security role. Also, methods can be associated
with multiple security roles. This allows an authen-
ticated principal associated with any of the assigned
security roles to invoke the method. The method se-
curity role assignments are intended to be a hint to
the deployer. It is the responsibility of the deployer
to either accept the security role mappings or mod-
ify them as appropriate for the deployment environ-
ment.

Deployer and EJB container provider tools. A deployer
receives an EJB JAR file from an application assem-
bler and uses tools provided by the EJB container pro-
vider to process the deployment descriptor, includ-
ing the security attributes (e.g., role names and
mappings). Also, the deployment tools allow the de-
ployer to modify any of the default method or se-
curity role mappings found in the EJB JAR file, and
to assign enterprise-specific principals the EJB
security roles. In addition, the deployer may adjust
any method and security role mappings to suit the
target environment.

The ability to modify mappings of roles to methods
is required to adhere to the organization structure
and security policies of the environment into which
the beans are deployed. For example, teller and cash-
ier may be two declared roles in an EJB JAR file. The
organizational structure of the financial organization
in which they are deployed may have one role, fi-
nance assistant, responsible for performing both the
teller and the cashier tasks. In this case, the deploy-
ment tool should allow the deployer to modify both
the role names, teller and cashier, to become finance
assistant. As a result of this modification, all the
methods related to teller and cashier will be asso-
ciated with finance assistant.

EJB container provider. A WAS is responsible for en-
forcing the authorization constraints specified by the
deployer on an EJB container. This includes the se-
curity role name mappings, method authorization,
etc. Note that if any method in a deployed EJB JAR
file is not associated with a security role, or if a se-
curity role is not associated with any principals in
the deployed system, the WAS will prohibit access to
the method. The implementation of an authoriza-
tion mechanism is outside the scope of the EJB spec-
ification and will vary depending on the implemen-

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001136

tation of the WAS, EJB container, and RMI ORB.
Implementations typically exploit existing infrastruc-
ture, such as OS/390 RACF, SecureWay Directory, or
the Windows NT** Active Directory.

Delegation. Delegation is the process of forwarding
a principal’s credentials along with associated tasks
that the principal originated or is having performed
on its behalf.14 The EJB specification does not de-
fine how delegation is to be handled since it is tied
to a specific container implementation. In fact, there
is nothing in the EJB JAR deployment descriptor to
help a deployer manage delegation. Largely, dele-
gation is an issue for the WAS environment and ad-
ministration.

When a deployer configures an EJB object for a con-
tainer, the container tools provide any necessary in-
terfaces to configure delegation. One notable prob-
lem with delegation is that the javax.ejb.EJBCon-
text.getCallerPrincipal¼ method is ill-defined. In
general, the enterprise bean provider cannot know
the delegation configuration in the deployment envi-
ronment. Also, the EJB specification does not indi-
cate who the “caller principal” really is—it could
be the client that initiated the original call to the
WAS, or it could be the immediate caller to the
EJB instance. If delegation is enabled, the result of
getCallerPrincipal¼ may not be the principal that
the enterprise bean provider expected.

If administrators enable delegation,15,16 they must
configure their delegation policies so that the WAS
environment conforms to security policies of the en-
terprise. Therefore, the identity of the initiator of
the call is often closer to the desired semantics of the
getCallerPrincipal¼ method than that of the imme-
diate caller to the EJB instance.

Along with authentication, it is the responsibility
of the EJB container implementation in a WAS to
enforce the policies defined and supported within
the environment. The WAS environment can use the
JAAS technology to implement delegation policies.
As later described in the JAAS section, the Sub-
ject.doAs¼ method can be used to execute a set of
actions under the identity of the specified principal.
Because this is not a part of the EJB specification,
one cannot expect the same behavior when the EJB
objects are deployed in different WAS environments,
since they may have different authentication mech-
anisms and delegation support.

Security considerations. While not specifically a se-
curity consideration, the EJB programming model
constrains an EJB object to a limited set of resources.
Specifically, in a J2SE environment, an EJB object is
prohibited from using many Java resources as a re-

sult of the EJB isolation architecture. This architec-
ture scales well in a multiprocess and multithreaded
WAS environment. Each EJB object is designed to run
by itself and not interfere with other EJB objects. For
example, EJB objects cannot include native method
calls since the native code may not be portable and
could adversely affect other EJB objects. Note that
since the EJB container is middleware and acts as a
broker, it can make these native calls or use restricted
Java resources.

Given the isolation architecture of EJB components,
each EJB object needs to interact with other EJB ob-
jects using remote method calls. Because the inter-
action will be location-independent and may cross
machine boundaries, it is important to define and
enforce a secure association mechanism between EJB
components. The channel of communication should
provide data confidentiality and integrity. Using SSL
(secure sockets layer) communication between the
EJB containers may address these requirements. It
is also important that the security context associated
with the invoking EJB object be passed on to the tar-
get EJB object, so that the identity of invocation gets
propagated. A mechanism that achieves secure as-
sociation between the source and target EJB com-
ponents needs to address the quality of the service
requirements. Some of these issues are addressed
in the Java 2 Platform, Enterprise Edition (J2EE**)
specification.2

Java Authentication and Authorization
Service

The WAS environment authentication requirements
can be fairly complex. In a given deployment envi-
ronment all applications or solutions may not orig-
inate from the same vendor. In addition, these ap-

It is important to define
and enforce a secure

association mechanism
between EJB components.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 137

plications may run on different operating systems.
Java is the language of choice for portability between
platforms, but it needs to marry its security features
with those of the containing environment. This sec-
tion describes how JAAS accomplishes this union, and
how it can be exploited in the WAS environment.

Authentication and authorization are key elements
in any secure information handling system. Since the
inception of Java technology, much of the authen-
tication and authorization issues have been with re-
spect to downloadable code running in Web brows-
ers. In many ways, this had been the correct set of
issues to address, since the client’s system needs to
be protected from mobile code obtained from ar-
bitrary sites on the Internet. As Java technology
moved from a client-centric Web technology to a
server-side scripting and integration technology, it
required additional authentication and authorization
technologies.

Traditional computing systems perform authentica-
tion on a principal or accountable entity, typically
through some sort of challenge-response mechanism.
The most salient of these is a user ID and password
combination that is often used for server or Web re-
sources, such as HTTP basic authentication. However,
the challenge may be more complex, including the
encryption of information, the possession of a spe-
cific physical token (e.g., a key for a physical locking
mechanism), or possession of specific information
(e.g., mother’s maiden name or value from a one-
time keypad). The response must be valid based on
the type of the challenge.

Similarly, most computing systems base authoriza-
tion on an authenticated principal and a list of re-
sources authorized for use by the principal. Most of-
ten, the authenticated principal is associated with an
operating system process or thread of execution.
When protected resources are accessed, the autho-
rization mechanism verifies whether the currently ex-
ecuting principal is authorized for the resource.

Before JAAS, existing Java mechanisms did not pro-
vide the structure needed to support traditional au-
thentication and authorization. Security in J2SE was
based on the use of public key cryptography (digital
signatures) on the code executing in the Java virtual
machine (Jvm), not the principal making a request
for computing or data resources. Similarly, autho-
rization was based on the code attempting to use the
computing or data resources.17,18 JAAS was designed

to address these shortcomings in a manner consis-
tent with the existing J2SE infrastructure.

JAAS is divided into two major components: authen-
tication and authorization. The authentication part
is based on Pluggable Authentication Modules
(PAMs),19 with a framework designed to be used both
on clients and servers. The authorization aspects
were designed to be an extension of the authoriza-
tion mechanisms already found in J2SE.

Authentication: LoginModule objects. The kind of
proof required for authentication may depend on the
security requirements of a particular resource and
enterprise security policies. To provide such flexi-
bility, the JAAS authentication framework is based
on the concept of configurable authenticators. This
architecture allows system administrators to config-
ure, or plug in, the appropriate authenticators to meet
the security requirements of the deployed applica-
tion. The JAAS architecture also allows applications
to remain independent from underlying authentica-
tion mechanisms. So, as new authenticators become
available or as current authentication services are
updated, system administrators can easily replace au-
thenticators without having to modify or recompile
existing applications.

The JAAS LoginContext class represents a Java im-
plementation of an enhanced PAM framework. A
LoginContext object consults a configuration table
to determine the authenticators, or LoginModule ob-
jects, that are to be employed by an application.

JAAS, like the PAM framework, supports the notion
of stacked authenticators. The JAAS authentication
framework ensures that either all log-in modules suc-
ceed or none succeed. It is the responsibility of the
LoginContext object performing the authentication
to ensure this “all or nothing” behavior. This is
achieved in two phases:

1. In the first phase of authentication, or the log-in
phase, the LoginContext object invokes the spec-
ified log-in modules and instructs each to attempt,
but not commit, the authentication. If all the re-
quired log-in modules successfully pass the first
phase, the LoginContext object then can proceed
to the second phase.

2. In the second phase, each configured LoginMod-
ule object is instructed to formally commit to the
authentication process. During this phase, each
LoginModule object associates the appropriate

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001138

authenticated Principal and Credential objects
with the Subject object.

If either phase fails, the LoginContext object instructs
the configured LoginModule object to abort the en-
tire authentication process. Each LoginModule ob-
ject is then required to clean up (e.g., discard) any
state that had been associated with the attempted
authentication.

An important feature in JAAS is the mechanism by
which an authenticated context is established. Or-
dinarily, authentication is not part of the normal Java
method dispatch path. Thus, if a Java program wishes
to request authentication, it should construct a Log-
inContext object and call its login¼ method. The
login¼ method will construct and annotate a Sub-
ject object with appropriate authenticated Principal
and Credential objects. Subsequently, to assume the
identity of that Subject object, the program calls the
Subject.doAs(Subject, PrivilegedAction) method.
This method call runs the specified PrivilegedAction
object’s run¼ method with the security attributes of
the specified Subject object. After the PrivilegedAction.
run¼ method terminates, the program returns to the
security state in effect prior to the Subject.doAs¼
call. When the program no longer needs the authen-
ticated identities, it can simply call the LoginCon-
text object’s logout¼ method.

To allow selection of an appropriate set of Login-
Context objects, a java.lang.String object is passed
to the LoginContext constructor. This string is used
as an index into the configuration file, which selects
the appropriate log-in module(s) to be used for au-
thentication. Naming conventions for this index are
entirely up to the Java program.

An important feature of JAAS is that it can be con-
figured to support a wide variety of authentication
mechanisms and the arguments that they might take.
For example, authentication could require:

● An account name (or user name) and a password
● A distinguished name (DN) and the ability to prove

identity through a digital signature
● A fingerprint or a retinal scan

Since one of the goals of JAAS is to have a pluggable
authentication mechanism, the framework methods
are generic enough to allow all authentication mech-
anisms to work, and simple enough to avoid com-
plexity for authentication mechanism providers. This
is handled by having the four authentication meth-

ods visible at the LoginModule application program-
ming interface (API). The login¼, commit¼, abort¼,
and logout¼ methods have no parameters, and a
Java return type of boolean (true if the method
succeeded, false if the log-in module should be ig-
nored). This approach does not require authentica-
tion providers to add constraints to their current in-
terfaces, but still leaves unresolved the issue of how
to provide the additional configuration information
when needed.

The mechanism for providing additional informa-
tion is to have an initialize¼ method in each Log-
inModule object, where an optional CallbackHan-
dler object can be specified. When employed, these
objects can provide implementation- and environ-
ment-specific information needed to satisfy a par-
ticular LoginModule object. So, if a LoginModule
object needs environment information to authenti-
cate the user, it can examine the array of instanti-
ated Callback objects to extract the necessary infor-
mation. For example, if a user ID and password are
needed, the LoginModule object can examine the
callback array to see if it contains a NameCallback
object and a PasswordCallback object. If so, it will
use them to obtain the necessary information.

In addition to JAAS, the Generic Security Services
Application Programmer’s Interface (GSS-API)20 and
Simple Authentication and Security Layer (SASL)
Application Programmer’s Interface21 define frame-
works that provide additional support for pluggable
authentication. Specifically, the GSS and SASL authen-
tication frameworks were designed for network com-
munication protocols.22 As such, they provide
additional support for securing network communi-
cations after authentication has completed. While
JAAS accommodates general network-based authen-
tication protocols, it also addresses the need to sup-
port pluggable authentication in stand-alone and
nonconnection-oriented environments.

Authorization. J2SE authorization17,18 is based on the
notion of classes being members of protection do-
mains, threads of execution each having an Access-
ControlContext object, and an authorization policy
that is enforced by an AccessController object.

The Jvm loads classes and associates each class with
a CodeSource object, which contains the base URL
from which the code was loaded and the array of cer-
tificates associated with the entities that signed the
code. Each class is loaded into the Jvm via an in-
stance of the SecureClassLoader class, or one of its

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 139

subclasses, and is assigned to a ProtectionDomain
object based on its CodeSource object. The Protec-
tionDomain object contains a set of Permission ob-
jects, and these objects indicate which resources the
class is authorized to use. These resources include
file and network access and the ability to print and
execute code outside of the Jvm.16,17

The AccessControlContext object is a snapshot of
all of the ProtectionDomain objects currently asso-
ciated with a thread of execution (see Figure 5). That
is, when a method is called, a new activation record
is placed on the Java run-time stack. Each new
method call results in a new activation record being
placed on the stack, and when the method returns,
the activation record is removed. When AccessCon-
troller.getContext¼ is called, a search is made of the
run-time stack to locate the Java class for each of
the activation records. Since each Java class is as-
sociated with a ProtectionDomain object, a set is con-
structed that contains all of the unique Protection-
Domain objects associated with the classes in the
current thread of execution. The AccessControlCon-
text object is this set of ProtectionDomain objects.

To determine whether a thread of execution is al-
lowed to access a protected resource, a call is made
to AccessController.checkPermission¼, which

creates an instance of an AccessControlContext ob-
ject based on the activation records in the current
thread. The AccessControlContext object is then
given the Permission object passed to the Access-
Controller.checkPermission¼ call and asked whether
all of the ProtectionDomain objects that it contains
are authorized for the specified Permission object.
If any ProtectionDomain in the AccessControlCon-
text object fails to contain the specified Permission
object, the authorization test fails. A successful test
of the Permission object indicates that all of the
classes currently executing in the thread are autho-
rized to use the resource.6,17

JAAS authorization. The challenge for JAAS design-
ers was to add principal-based authorization to J2SE
in a way that would not disturb the existing autho-
rization mechanisms. They met the challenge by ex-
tending the J2SE authorization mechanism, associ-
ating a Subject object and its set of Principal objects
with a thread of execution and logically extending
the ProtectionDomain objects of executing code to
include associated Permission objects.

To associate a Subject object with a thread of ex-
ecution, the Subject.doAs¼ method is called with
a Subject object containing authenticated Principal
objects and a PrivilegedAction object containing the

Figure 5 Graphical representation of a ProtectionDomain object

Certificate 1

CodeBase
URL

Certificate 2

Certificate n

• • •

Permission 1

Permission 2

Permission m

PermissionCollectionCodeSource

Protection Domain

• • •

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001140

code to be executed with the Subject object’s Per-
mission object(s). The PrivilegedAction interface is
the same as that used for passing privileged code to
an AccessController.doPrivileged¼ call. 17,18

In J2SE version 1.3, the AccessControlContext ob-
ject accepts a java.security.DomainCombiner object,
which is called during the authorization process. The
purpose of the DomainCombiner object is to mod-
ify, in some suitable fashion, the ProtectionDomain
objects associated with the classes on the thread’s
activation stack. In the case of JAAS, a SubjectDo-
mainCombiner object is used, which logically extends
each ProtectionDomain object found on the stack
so that it includes the ProtectionDomain objects of
all of the Principal objects in the currently active Sub-
ject object in the thread.23

Security considerations. Developers have exploited
JAAS in WAS environments to bridge their applica-
tions to a native authentication and authorization
platform, such as an operating system or database
application. By allowing a user to log in as a par-
ticular identity, JAAS can call upon its log-in mod-
ules to ensure that the authentication information
is valid and thus use the Java security policy to de-
termine for which resources the user’s principal is
authorized.23

In the Subject.doAs¼ method and SubjectDomain-
Combiner class, the J2SE authorization mechanism
was extended, rather than replaced. Code that had
previously been written to work with J2SE security
continues to work, and new code designed to use
JAAS can use the new authentication and authori-
zation frameworks.

An EJB container can use JAAS for both authenti-
cation and method-level authorization. By using the
JAAS subject and principal structures, it is possible
to accommodate the EJB role-based authorization
scheme in a straightforward manner.

For example, when a client requests an action on an
EJB object, the WAS receives the request and the EJB
container extracts principal identity information. Af-
ter the EJB container performs a JAAS log in with the
Principal object, the EJB container receives one or
more authenticated Subject objects’ Principal objects
and credentials. The EJB container issues a Subject.
doAs¼ call to establish the credentials before in-
voking the EJB object. Through the EJB object’s
internal actions (e.g., through the ORB), AccessCon-

troller.checkPermission¼ is called to determine
whether the caller is authorized for the method.

The Subject.doAs¼ method can execute a privileged
action under a desired identity. This method, though
useful for delegation, should be used with caution

by enforcing a principle of “least privilege.” The ac-
tions associated with the method should be limited
to the ones requiring the privilege of the associated
subject and should not be extended to perform more.
If the subject represents a privileged user (e.g., the
root), the action associated should be limited to that
requiring the privileged authority.

Servlet security

Servlets have come of age as Java-based alternatives
to CGIs and have become essential objects in the WAS
environment. Servlets provide the same functional-
ity as CGIs, such as creating HTML layouts or servic-
ing queries, but do so by exploiting Java technolo-
gies. As servlets become more general-purpose,
administrators must consider their security aspects.

Servlets are platform-independent Java classes
loaded dynamically into and run by a Web server.24

Thus servlets interact with Web clients to provide
access to enterprise back-end services. To secure
back-end applications and enterprise data, it is es-
sential to protect the entry point from security at-
tacks. As servlet invocations are based on the HTTP
request/response protocol, any security policy for
protecting Web resources (servlets, JSP pages, and
HTML files) should consider the HTTP security infra-
structure as well.

The servlet container determines which server to in-
voke based on its internal configuration, calling the
servlet with objects representing the request and re-
sponse.24 Security can be handled either by the serv-
let container or by the servlet itself. Declarative
security policies are handled by the servlet container
based on the WAS security configuration. Servlet writ-

Servlets have come
of age as Java-based

alternatives to CGIs
and are essential objects

in the WAS environment.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 141

ers can handle application-level security using secur-
ity APIs provided by the servlet run-time environment.

In a typical scenario, a Web client (e.g., a Web
browser) accesses a Web server and makes an HTTP
request. If the request is for a servlet, the Web server
delegates the request to the servlet container to han-
dle and to send back a response. The container de-
termines the level of protection required, and invokes
a servlet if the requesting user has the required per-
missions to invoke the requested method. If the serv-
let is protected, the container will manage the au-
thentication process based on the authentication
policies. Once the user is authenticated, authoriza-
tion policies are checked to verify that the user has
the necessary privilege to invoke the requested
method.

Authentication. A Web client can authenticate a user
to a Web server using HTTP (basic or digest), HTTPS,
or form-based authentication.

HTTP basic authentication. HTTP basic authentica-
tion is a widely used authentication mechanism. The
servlet container issues an HTTP “401” authentica-
tion challenge and the user is prompted for a user
ID and password by the Web browser. The WAS con-
siders the authentication to be successful if the user
registry confirms that the password is associated with
the user ID provided. For example, if an LDAP di-
rectory is the user registry, then authentication suc-
ceeds if an LDAP bind request to the directory using
the user’s DN is successful and the password matches.

HTTP digest authentication. HTTP digest authentica-
tion ensures that a clear text password does not flow
with the request. In this mode, a digest version (one-
way hash) of the password is provided to the Web
server. The WAS must be able to obtain the original
password so that it can compute the hash and com-
pare it with the digest. This may not always be pos-
sible, because the user registry dictates whether the
clear text password can be accessed.

HTTPS client authentication. This mechanism makes
use of the public key infrastructure in authenticat-
ing a user. A Web server can be configured to re-
quire mutual authentication when a request is issued
over HTTPS (secure HTTP). Not only will the Web
server provide its server-site digital certificate, but
it can also require the Web client to present its cli-
ent digital certificate. When such a session is estab-
lished, it proves that the Web server trusts the cer-

tificate authority (CA) that issued the certificate and
that the client digital certificate belongs to the user.

It is left to the WAS to perform any mapping from
the digital certificate contents to a user in its user
registry. WAS could utilize LDAP, an operating sys-
tem registry, or another representation (such as a
SecureWay directory) for its user registry. There are
some basic ways in which this mapping can be ac-
complished:

1. The certificate can be compared to the one stored
for the user in the registry.

2. The contents of the certificate can be matched
against the attributes of the user entry in the reg-
istry.

Form-based authentication. In the case of basic au-
thentication, a Web browser prompts the user for
ID and password using a dialog window. However,
for usability it is often desirable to present the user
with an HTML form where the authentication values
can be entered and the request submitted. When the
form is submitted, the WAS will extract these values
and perform appropriate authentication.

The Java Servlet API Specification version 2.2 stan-
dardizes this approach by specifying the names of
the form fields and the associated action. The log-in
form must contain fields for the user to specify user
name and password. These fields must be named
j_username and j_password, respectively.24 For the
authentication to proceed appropriately, the value
of the action field on the log-in form must always be
j_security_check.

At the end of a successful authentication, the request
is associated with a user in the WAS user registry. The
WAS associates the user with the security context of
the servlet invocation.

Authorization. After a successful authentication, the
WAS consults security policies to determine if the user
has the required permissions to complete the re-
quested action on the servlet. This policy can be en-
forced using the WAS configuration (declarative
security) or by the servlet itself (programmatic
security), or a combination of both.

In the case of declarative security, the WAS will per-
form an authorization check to determine if the user
has the permission to perform the requested action
on the servlet. This process takes into account the
user’s privilege attribute information, such as user

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001142

ID or group memberships. It will also take into ac-
count any security policies declared from the servlet
container, such as the role relationships and the per-
missions granted to these roles. The authorization
policy may be defined at the granularity of the Web
application of which the servlet is a part.

The J2EE authorization model is based on security
roles.2 A user or a user group is associated with one
or more roles in the application domain. The WAS
determines the authorization policy for a user based
on the authorization associated with a security role
and the association between the user and the secur-
ity role.

In the case of programmatic security, a servlet can
obtain information about the authenticated user us-
ing the servlet APIs. The servlet can then make bus-
iness decisions based on the user’s name or the as-
sociated role. Programmatic security consists of the
following methods of the HttpServletRequest inter-
face:24

● getRemoteUser¼. This method returns the au-
thenticated user name, if the user is authenticat-
ed; otherwise it returns the keyword anonymous. 25

● isUserInRole¼. This method queries the under-
lying security mechanism of the container to de-
termine if a particular user is in a given security
role.

● getUserPrincipal¼. This method returns a java.
security.Principal object.

Delegation. All method invocations “downstream”
from a servlet are performed on behalf of the user
invoking the servlet. The WAS may provide a set of
programmatic APIs where the servlet can set up an
identity on the security context programmatically, so
that the downstream method requests can be per-
formed under that identity. JAAS may be used to han-
dle such delegation requirements if the downstream
calls can be made using the Subject.doAs¼ method.

Security considerations. HTTP basic authentication
is a popular way to authenticate servlets. However,
the user ID and password flows “over the wire” in
(near) clear text. Anyone who can obtain the data
flowing over the wire can also obtain the password
with minimal effort by decoding the base64-encoded
user ID and password pair.26 Also, the target Web
server is not authenticated. Therefore, if basic au-
thentication is the desired mechanism, access to the
protected resource should occur over HTTPS to en-
sure that the target server is authenticated and that

no “man-in-the-middle” attacks will be able to ob-
tain the confidential data flowing between the
browser and the Web server.

Java Cryptography Architecture and Java
Cryptography Extension

The public key infrastructure has solved many vex-
ing problems for today’s enterprise environments,
from authentication to the publication of user infor-
mation. Just as with other successful standards, Java
technology needed to incorporate public key tech-
nologies into its functionality in a standard and ex-
tendable way.

From the Java 2 Platform, Standard Edition, version
1.2 onward, Java technology has provided general-
purpose APIs for cryptographic functions, collectively
known as the Java Cryptography Architecture (JCA)
and Java Cryptography Extension (JCE). This sec-
tion introduces the JCA and JCE and shows how these
layers can be exploited at a higher level by JSSE, PKCS,
and S/MIME in the WAS environment.

Java Cryptography Architecture framework. JCA is
a framework for accessing and developing core cryp-
tographic functionality for the Java platform. It en-
compasses the parts of the J2SE security API related
to cryptography. JCA was designed around two prin-
ciples. The first principle is implementation indepen-
dence and interoperability. The second principle is
algorithm independence and extensibility.

Implementation independence is achieved using a pro-
vider-based architecture. For each cryptographic ser-
vice, such as message digest and digital signature,
JCA supplies a service provider interface (SPI) ab-
stract class as part of the API. Examples of SPI classes
are MessageDigestSpi and SignatureSpi. The term
cryptographic service provider (CSP) refers to a pack-
age or a set of packages that supply a concrete im-
plementation of a subset of the SPI classes that are
part of the Java security API. In other words, these
packages must implement one or more cryptogra-
phy services. This allows providers to be updated or
replaced in a manner that is transparent to appli-
cations. This allows faster or more secure versions
to be installed when they become available.

Implementation interoperability means that various
implementations can work with each other, use each
other’s keys, or verify each other’s signatures. This
means, for example, that for the same algorithms,

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 143

a key generated by one provider is usable by another,
and a signature generated by one provider is veri-
fiable by another.

Algorithm independence is achieved by defining types
of cryptographic services and classes that provide the
functionality of these cryptographic services. Such
classes are called engine classes. Examples include
the MessageDigest, Signature, and KeyFactory
classes. For each engine class, there is a correspond-
ing SPI class.

Algorithm extensibility means that new algorithms that
fit in one of the supported engine classes can easily
be added.

The security-related classes of JCA shipped with J2SE
provide for only message digest and digital signature.
This allows developers to provide their own classes
for public key pairs, certificates, and other primary
security objects. Developers can also perform reli-
able authentication, which, in turn, can be used as
a basis for implementing access controls that relax
restrictions. However, J2SE does not provide the gen-
eral-purpose encryption needed to send confiden-
tial data.

JCE extends the cryptography-related classes shipped
with J2SE. The JCE package uses the same structure
as JCA, with engine classes that expose the algorithms
in a generic way and SPI abstract classes that are sub-
classed to provide a concrete implementation of the
cryptographic service they represent. JCE provides
engine classes for symmetric key encryption and for
generating and manipulating the secret keys that such
algorithms require.

Java cryptography standard API. JCE extends the
JCA API to include classes for encryption, key ex-
change, and message authentication code (MAC). To-
gether, JCE and the cryptography aspects of J2SE pro-
vide a platform-independent cryptography API.

Fundamentals of JCA. The JCA framework is based
on the concepts of engine, algorithm, and provider.

Engine is the term used to depict an abstract rep-
resentation of a cryptographic service that does not
have a concrete implementation. A cryptographic
service is always associated with a particular algo-
rithm or type, and it can have one of the following
functions:

● To provide cryptographic operations (like those
for digital signatures or message digests)

● To generate or supply the cryptographic material
(keys or parameters) required for cryptographic
operations

● To generate data objects (key stores or certificates)
that encapsulate cryptographic keys (that can be
used in a cryptographic operation) in a secure fash-
ion

Message digests and signatures are examples of en-
gines. JCA encompasses the cryptography-related
classes of the J2SE security package, including the en-
gine classes. Users of the JCA API request and utilize
instances of the engine classes to carry out corre-
sponding operations.

An algorithm can be looked upon as an implemen-
tation of an engine. For instance, the Message Di-
gest 5 (MD5) algorithm is one of the implementa-
tions of the message digest engine. The internal
implementation of the MD5 algorithm can differ de-
pending on the vendor that provides the MD5 algo-
rithm class.

Each set of algorithm classes from a particular source
(a provider) is managed by an instance of the java.se-
curity.Provider class. Installed providers are listed
in the java.security properties file, which contains
Java security configuration entries.17 A provider does
not know the actual implementation of the crypto-
graphic algorithms. Rather, a provider knows which
algorithm class can provide a particular algorithmic
implementation.

Java Cryptography Extension. JCE has been provided
as an extension to the Java platform. It supplies a
framework and implementations for encryption, key
generation, key agreement, and MAC to supplement
the interfaces and implementations of message di-
gests and digital signatures provided by J2SE.

The provider architecture of JCA aims to allow al-
gorithm independence. The design principles behind
JCE share this philosophy of implementation and al-
gorithm independence. In addition to making it pos-
sible to use newer algorithms for generating keys,
JCE also introduces new interfaces and classes that
facilitate the implementation of these concepts.

JCE provides for symmetric bulk key encryption
through the use of secret keys. With a secret key,
the sender and receiver share the same key to en-
crypt as well as to decrypt data. Associated concepts
of MAC and key agreements support symmetric bulk
encryption and symmetric stream encryption.

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001144

Security considerations. Within the WAS environ-
ment, the security server is the primary user of JCA
to validate signatures on transactions and certificates.
However, all primary and secondary objects within
the WAS environment can exploit the capabilities of
JCA and JCE. For example, an EJB object could sign
data using a JCA Signature instance or encrypt data
using a JCE Cipher instance. The JSSE and PKCS sec-
tions demonstrate how JCA and JCE functionality can
be combined to create more complex technologies.
JCA plays a fundamental role to any Java applica-
tion that implements public key security.

Export control restrictions by the United States Com-
merce Department currently prohibit such a cryp-
tography framework from being exported outside the
United States or Canada, unless appropriate mech-
anisms have been implemented in the framework
that allow the framework to control the type of en-
cryption algorithms and their cryptographic strength
available to applications. The lack of exportability
has significantly affected the usability and deploy-
ment of JCE.

Exportability has been accorded to the new version,
JCE version 1.2.1, in which JCE, not its CSPs, enforces
export restrictions. IBM’s distribution of J2SE contains
an implementation of JCE with a suite of commonly
used cryptographic functions.27

Java Secure Socket Extension

Through the cryptographic APIs provided in J2SE and
in the standard JCE package, developers can invoke
cryptographic functions from within Java code. How-
ever, most developers and application designers
would prefer to use ready-built cryptographic pro-
tocols, rather than having to create them from the
basic elements of encryption and digital signatures.
Secure sockets layer (SSL) is the most widely used pro-
tocol for implementing encrypted channels over the
Web.28 Almost all e-business Web sites use SSL to
ensure that their own or their clients’ personal in-
formation, such as a credit card number, can flow
securely over the unsecured Internet. This section
describes SSL, its implementation in Java code
through JSSE, and its use among objects and entities
in the WAS environment.

What is SSL? SSL is a standard protocol proposed
by Netscape Communications Corporation for en-
abling secure transmission on the Web.29 The pri-
mary goal of the SSL protocol is to provide privacy
and integrity between two communicating parties.

As the name suggests, SSL provides a secure form
of the standard TCP/IP (Transmission Control
Protocol/Internet Protocol) sockets protocol. In fact,
SSL is not a drop-in replacement because the appli-
cation has to specify additional cryptographic infor-
mation. Nonetheless, it is not a large step for an ap-
plication that uses regular sockets to convert to SSL.
Although the most common implementation of SSL
is for HTTP, several other application protocols have
also been adapted.

SSL has two security aims:

1. To authenticate the server and the client using
public key signatures and digital certificates as re-
quired

2. To provide an encrypted connection for the cli-
ent and server to exchange messages securely

The SSL connection is private and reliable, using en-
cryption after an initial handshake to define a secret
key. The SSL connection also maintains message in-
tegrity checks. Note that in SSL, symmetric cryptog-
raphy is used for data encryption, while asymmetric
or public key cryptography is used to authenticate
the identities of the communicating parties and en-
crypt the shared encryption key when an SSL session
is established. This way, the shared encryption key
can be exchanged in a secure manner, and client and
server can be sure that only they know the shared
secret key. In addition, the client and server have
the advantage of encrypting and decrypting the com-
munication flow with a single encryption key, which
is much faster than using asymmetric encryption.

In this way, SSL is able to provide:

● Privacy. The connection is made private by encrypt-
ing the data to be exchanged between the client
and the server. In other words, only they can de-
crypt and make sense of the data. This allows for
secure transfer of private information such as credit
card numbers, passwords, secret contracts, and the
like.

● Data integrity. The SSL connection is reliable. The
message transport includes a message integrity
check based on a secure hash function. There is
practically no possibility of data corruption with-
out detection.

● Authentication. Optionally, the client can authen-
ticate the server and an authenticated server can
authenticate the client. This means that, when
authentication is required, the information is guar-
anteed to be exchanged only between the intended

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 145

parties. The authentication mechanism is based on
the exchange of digital certificates.

● Nonrepudiation. Digital signatures and certificates
together imply nonrepudiation. This establishes ac-
countability of information about a particular event
or action to its originating entity, and the commu-
nications between the parties can be proved later.

The SSL protocol can use different digital signature
algorithms for authenticating the communicating
parties. SSL provides various key exchange mecha-
nisms that allow the sharing of secret keys used to
encrypt the communicated data. Furthermore, SSL
can make use of a variety of algorithms for encryp-
tion and hashing. SSL cipher suites describe the cryp-
tographic options defined by SSL and whether or not
the cipher strength can be exported outside the
United States or imported to other countries.

JSSE package. Fetching data using the URL tech-
nique is a very simple approach, but it limits the Java
program capabilities, because client/server commu-
nications can exploit only the capabilities offered by
CGI (or another, similar, server interface). Even if
this is adequate for the function, it imposes some
performance overhead. A direct SSL socket connec-
tion between client and server allows more sophis-
ticated and responsive applets to be created. This
can be done by using a package that provides SSL
function.

Java Secure Socket Extension (JSSE) is a standard
extension to the Java platform. It consists of a set
of packages that enable secure Internet communi-
cations. JSSE implements a Java version of SSL and
Transport Layer Security (TLS) protocols and in-
cludes functionality for data encryption, server au-
thentication, message integrity, and optional client
authentication. Using JSSE, developers can provide
for the secure passage of data between a client and
a server running any application protocol (such as
HTTP, Telnet, NNTP [Network News Transfer Pro-
tocol] and FTP [File Transfer Protocol]) over TCP/IP.

Once an extension providing SSL support, such as
JSSE, has been installed on a Java system, an
SSL-protected client/server communication can be
implemented in Java code using the SSL protocol with
the SSL Java APIs.17

JSSE in a WAS environment. In the WAS environ-
ment, JSSE has an immediate application—to pro-
vide enhanced authentication. For example, if a dig-
ital certificate is the authentication data and if the

user can establish an SSL connection between the
Web client and Web server, the WAS trusts that the
certificate belongs to the user. The user information
present in the certificate (for example, the distin-
guished name) is then mapped onto the user reg-
istry to find a matching user entry. The certificate
challenge implies that the Web server is configured
to perform mutual authentication over SSL.30,31 In
other words, both the client and the server must
present a certificate to establish the connection. In
other circumstances, the authentication policy can
include a secure channel constraint. In other words,
an SSL session may be required along with a chal-
lenge mechanism to provide data confidentiality and
integrity for the information flowing between the
server and a client.32

SSL may also be used when single sign-on is required.
A way to implement single sign-on in a WAS envi-
ronment is by setting a “cookie” on the client sys-
tem.33 The safest approach in this case is to ensure
that an SSL connection is established every time the
cookie is created and stored in the browser. An SSL
connection prevents anyone from acquiring the
cookie from the network flow.

The SSL API provided by the JSSE standard extension
allows the creation of a direct SSL socket connection
between a Java client and a Java server.17 This way,
client and server applications do not need to rely on
the support of a Web browser and a Web server to
exploit the advantages offered by SSL in terms of se-
curity. In particular, SSL support is useful when the
client application is the WAS itself. Many times, two
application servers need to exchange confidential in-
formation. For example, there may be clustered WASs
sharing the same Web contents and “load balanced”
by a dispatcher machine, as shown in Figure 6.34–36

In this case, client session information needs to be
shared across the nodes or authentication informa-
tion will be lost. To obtain data confidentiality and
integrity on untrusted networks, SSL can be turned
on.30,31

Security considerations. The history of the World
Wide Web is based on pragmatism. For example, no
one would argue that sending uncompressed ASCII
(American National Standard Code for Information
Interchange) text data on sessions that are set up
and torn down for every single transaction is effi-
cient in any way. However, this is what HTTP does,
and it is very successful. The reason for its success
is that it is simple enough to allow many different
systems to interoperate without problems of differ-

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001146

ing syntax. The cost of simplicity is in network over-
head and a limited transaction model.

Using cryptography in Java code offers a similar di-
lemma. It is possible to write secure applications us-
ing a toolkit of basic functions. Such an application
can be very sophisticated, but it will also be com-
plex. Alternatively, SSL URL connections offer a way
to simplify the application, but at the cost of appli-
cation function. SSL Java packages, such as JSSE, pro-
vide a middle way, retaining simplicity but allowing
more flexible application design for applications in
the WAS environment.

When using JSSE and cookies to implement a single
sign-on solution, the WAS administrator should spec-
ify a time period after which the user should be re-
quired to reauthenticate. This restricted time period
prevents replay attacks using the cookie. To ensure
that cookies are not persistent, so that off-line at-
tacks can be prevented, the cookie should be set to
expire at the end of the browser’s session. A WAS
should also provide a mechanism by which the sin-
gle sign-on cookie can expire programmatically so
that in a kiosk scenario a user leaving a terminal can
explicitly log out and not worry about the session be-

ing used by subsequent users. Indicating that a cookie
should be stored only for the session also eliminates
the security risk of having the cookie values stored
on a hard drive, for example.

To prevent replay attacks that retrieve the cookie
from the network flow, developers should restrict the
cookie to flow only over HTTPS protocol. Setting the
“secure” field of the cookie ensures that the cookie
will flow only over SSL connections, which are used
by HTTPS.

PKCS and S/MIME

Just as JSSE leveraged JCA and JCE to create and
maintain secure connections between entities, there
must also be a way for developers to represent ob-
jects that use public key technologies in a standard
fashion. The industry has adopted PKCS and S/MIME
as the standard techniques through which these types
of security objects can be created, packaged, and de-
livered.37 Many Java implementations of these stan-
dards have emerged, but what are they, and how can
they address the security needs of the WAS environ-
ment? This section introduces those elements of the

Figure 6 Using SSL to exchange private information in a load-balancing scenario

CLIENT NETWORK
DISPATCHER

ENTERPRISE
FILE SYSTEM
SERVER(S)

WEB SERVERS

APPLICATION SERVERS

ENTERPRISE FILE SYSTEM CLIENTS

INTERNET

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 147

standards that can be exploited by objects in the WAS
environment.

First developed by RSA Data Security, Inc. and a con-
sortium of companies in 1991, PKCS has evolved to
encompass a wide set of functionality from encryp-
tion to the use of smart cards and object packaging.
At the core of the standards is the use of public key
technologies, whether these technologies are explic-
itly used in signing data or implicitly used in the bun-
dling of certificate information within a token, for
example.

By overlaying PKCS over the WAS environment, the
Cryptographic Message Syntax Standard (PKCS #7)
consolidates the transactions and objects used by
WAS and its associated servers. RFC 2315 contains
information about PKCS #7 version 1.538 with en-
hancements to the standard detailed in RFC 2630.39

Earlier sections of this paper have identified the im-
portance of signing and encryption for transactions
from objects, such as EJB objects within the WAS, and
between client and server entities in a WAS environ-
ment, such as a Java client and a Java server using
JSSE. Recipients of a signed message or transaction
can verify the contents and gain assurance that the
message was not changed in transit and that it ac-
tually originated from the sender. Encryption helps
protect the message from prying eyes and ensures
that only the intended recipient can unlock its con-
tents. Signing and encrypting can be used alone or
in combination to provide a transaction hardened
against security threats.

When using JCA and JCE objects, developers are com-
pelled to maintain different initialization attributes
and objects to accomplish their tasks, such as the sig-
nature algorithm, the contents to be signed, and sig-
nature bytes. These objects can become scattered and
do not lend themselves to a free and standard ex-
change across a heterogeneous environment. PKCS
#7 defines how objects, such as SignedData objects,
should be packaged so that the creator of the object
includes all of the subobjects and attributes that are
needed for the recipient to verify, decrypt, or per-
form some other action upon the aggregate object.

The PKCS standards use the Abstract Syntax Nota-
tion (ASN.1)40 to formally describe the objects, for
example, whether or not an attribute is optional or
if it should consist of a set of other objects. ASN.1 is
an international standard for specifying data used
in communication protocols. It is a powerful and

complex language—its features are designed to de-
scribe accurately and efficiently communications be-
tween homogeneous or heterogeneous systems.
Since Java PKCS implementations model objects that
represent the ASN.1 notation, these objects need to

be encoded in a standard form that senders and re-
cipients agree upon. For PKCS, encoding is performed
using the Distinguished Encoding Rules (DER), a
subset of the Basic Encoding Rules (BER) described
in ASN.1.

Two classes of objects in PKCS #7 play an active role
in WAS environments, SignedData and Envel-
opedData. As the name suggests, SignedData ob-
jects represent a signed message and consist of a
number of essential objects, including the signature
algorithm, signer’s certificate, encapsulated contents,
and signer information, such as the signature bytes
and the time the signer generated the signature. Sig-
nature algorithms include MD5withRSA and
SHA1withDSA.41 PKCS cleverly represents Signed-
Data objects; the object definition allows only a sin-
gle instance of the encapsulated contents to be in-
cluded, whereas the contents can have many signers
with information for each signer stored as a sepa-
rate subobject.

The EnvelopedData object hides the specified con-
tents by introducing encryption into the mix. Java
PKCS implementations first generate a secret key for
the designated cipher algorithm as part of construct-
ing an EnvelopedData object. Cipher algorithms in-
clude RC2, DES, and TripleDES.41 Both the contents
to be encrypted and the secret key are passed into
the cipher object, which calculates and returns the
encrypted bytes. Since the secret key cannot be sent
“in the clear” with the encrypted contents, the En-
velopedData object goes one step further, encrypt-
ing the secret key with the public key of each recip-
ient. It uniquely encrypts the secret key for each
recipient, since each recipient’s public key is dif-
ferent. When each recipient receives the Envel-

Signing and encrypting
can be used, alone or

in combination, to
harden a transaction

against security threats.

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001148

opedData object, the private key is used to decrypt
the secret key and the decrypted secret key is used
to decipher the encrypted message.

The introduction and progression of the S/MIME42

standards helps marry the benefits of encapsulated
PKCS objects with a popular mechanism for repre-
senting different content types across the Internet.
For example, MIME messages with a content type of
text/plain are a popular way for users to send general
messages to each other. Since these messages travel
across an unsecured network—the Internet—MIME
messages lacked uniform security until the incorpo-
ration of S/MIME. The S/MIME standards bring to
MIME the security benefits of PKCS—protecting mes-
sage integrity, authenticating the originator of mes-
sages, and enciphering the content of messages. All
of the popular e-mail applications support S/MIME,
ensuring that users can send messages securely with
all the benefits of authentication, integrity, and en-
cryption.

S/MIME allows senders to encode PKCS #7 Signed-
Data and EnvelopedData objects within the mes-
sage.43 Since DER-encoded binary data cannot be
sent in their raw form, the binary data are base64
encoded, which results in 7-bit US-ASCII text44 that
can be sent in an Internet message. S/MIME recip-
ients take the message and work backward, decod-
ing the base64 message, decoding the DER-encoded
message, and instantiating the encoded object. In
addition to the PKCS #7 SignedData and Envel-
opedData objects, S/MIME also supports PKCS #10
CertificationRequest objects, which allow entities to
request a certificate from a CA. The SignedData ob-
ject is versatile enough that CAs can respond to a PKCS
#10 request by sending back the issued certificate
in a SignedData object contained within a S/MIME
message.

PKCS and S/MIME in the WAS environment. PKCS
and S/MIME play a key role in guaranteeing the au-
thenticity of a message and hiding sensitive contents
between client and server and between server and
server entities within the WAS environment. As part
of the authentication architecture, every entity has
a certificate associated with it, whether a client whose
certificate was retrieved by the security server from
the LDAP database or a Web server with an embed-
ded certificate. This certificate forms the foundation
for sending and receiving secure messages or trans-
actions.

Transactions within the WAS environment can be di-
vided into two levels, primary and secondary. Primary-
level transactions occur between the major entities,
such as between client and server or server and
server. Security between the major entities can in-
volve the security server and could be initiated by
a security plug-in in a Web browser or security col-
laborator in a WAS. JSSE is a major component of
security at the primary level. Transactions at the sec-
ondary level occur within a major entity, such as
within an EJB object that is invoked by a WAS. The
secondary objects still interact with the security server
for authentication and authorization, but they are
able to invoke the security requests at their level.
PKCS can play roles at either level, but it is especially
important within the secondary level.

Consider a secondary security example. A WAS Java
application client sends a request to the WAS to in-
voke an EJB object. The security collaborator within
the WAS ensures that the client has the authoriza-
tion to utilize the EJB object. In this example, the
EJB object requires secondary security to add to the
user registry the set of certificates that were passed
by the client to the EJB object.

Signing transactions with PKCS. The EJB object en-
capsulates the request as part of a PKCS #7 Signed-
Data object. To create the object, the EJB object con-
structs a SignedData object with the EJB object’s
certificate, private key, signature algorithm, and the
attributes of the request as input. The resulting
SignedData object contains the contents, the EJB ob-
ject’s certificate, and signer information containing
the signature. (The signature algorithm requires the
private key to compute the signature bytes, but the
SignedData object never bundles the private key as
part of its attributes.) With a socket to the security
server, the EJB object can DER-encode the Signed-
Data object and send it to the security server as part
of the request.

Upon receipt, the security server decodes the
DER-encoded SignedData object to prepare for ver-
ification. Before the verification method can be
called, however, the security server must first ensure
that the signing certificate can be trusted. The se-
curity server performs this check by tracing the EJB
object’s certificate to a trusted root CA, stored within
the user registry. Assuming the certificate path holds
true and the signing certificate is still valid, the se-
curity server provides the signing certificate as an in-
put to the verification method. The original con-
tents—the set of certificates to add—need not be

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 149

passed to the method since they are already part of
the SignedData object.

In reply, the verification method returns a Boolean
response. A positive response gives the security
server the confidence that the message was not
changed in transit from the EJB object and that it
truly originated from that object. The security server
can now add each of the content certificates within
the SignedData object to the user registry.

Encrypting transactions with PKCS. In the scenario
just described, it would have been just as easy for
the EJB object to encrypt the message. In this case,
the EJB object would require access to the security
server’s certificate. To construct an EnvelopedData
object, the EJB object would use the message alone
or the SignedData object along with the security serv-
er’s certificate and the encryption parameters. The
encryption parameters would include the algorithm
and the key size so that construction of the Envel-
opedData object would automatically generate the
secret key “under the covers.” As described earlier,
the secret key is encrypted with the public key from
the security server’s certificate. The EJB object would
send the created EnvelopedData object through the
same routes that were described earlier for the
SignedData object.

The security server receives the EnvelopedData ob-
ject and decodes it. The security server passes its cer-
tificate and private key to the decrypt method of the
EnvelopedData object. The decrypt method uses the
security server certificate to determine which en-
crypted secret key should be decrypted, since the En-
velopedData object may contain many uniquely en-
crypted secret keys, one for each recipient. The
decrypt method uses the private key associated with
the security server certificate to unlock the encrypted
secret key associated with the certificate. Next, the
method uses the secret key to decrypt the cipher text
of the message.

Note that inclusion of the SignedData object within
the EnvelopedData object provides the additional
benefit of signing the primary contents, which are
encapsulated within the SignedData object. After de-
crypting the message, the security server could ver-
ify the contents of the message using this compound
object. Thus with an EnvelopedData object wrapped
around a SignedData object, the sender and receiver
gain the benefits of three main security facets—in-
tegrity, authentication, and encryption.

Asynchronous transactions with S/MIME. Instead of
sending the request and the DER-encoded PKCS #7
object as binary data across a socket, S/MIME pro-
vides a standard way for these objects to be sent us-
ing a universal format. As a standard extension to
the Java run-time environment (JRE), the JavaMail45

package could be extended to provide security to
MIME messages. With S/MIME, clients and servers,
as well as secondary objects (like EJB objects) within
the WAS environment can readily send and queue
up asynchronous requests.

Security considerations. As they have matured over
the years, the PKCS and S/MIME standards have been
examined for completeness and security. Although
powerful, they do not address authorization, an im-
portant part of security. Entities that hide private
keys are the only ones with authorization to the key,
and this controlled access provides an explicit au-
thorization to decrypt an encrypted message. How-
ever, PKCS does not address who can receive a signed
message, for example, or who can act upon the con-
tents of a signed message. A WAS or a secondary en-
tity, using responses from the security server, must
determine whether or not the client has authoriza-
tion to perform the signed action, and authorization
typically stems from a policy established by a phys-
ical entity, such as an administrator. Additionally,
administrators and developers must determine the
appropriate type of cryptography for their WAS envi-
ronment.46

The blend of JCA and JCE technologies gives rise to
key agreement algorithms within the SSL protocol.
Within the Java environment, the JSSE implements
SSL and allows two parties to authenticate and send
secure transactions to each other. As discussed ear-
lier, JSSE provides a sanctioned and secure commu-
nication link between two entities, and this technol-
ogy is the fundamental way in which signed and
encrypted communication can occur synchronously
between primary entities in the WAS environment.
However, if the overhead of SSL is not needed and
if communication can occur asynchronously, PKCS
and its companion S/MIME can readily fill the secu-
rity needs of a WAS environment. The encapsulation
of PKCS objects allows these objects to be easily stored
and retrieved for later evaluation or processing.

Conclusion

The WAS environment pulls together many differ-
ent technologies to service the enterprise. Because
of the heterogeneous nature of the client and server

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001150

entities, Java technology is a natural choice for ad-
ministrators and developers. However, to service the
diverse security needs of these entities and their
tasks, many Java security technologies must be used,
not only at a primary level between client and server
entities, but also at a secondary level, from served
objects, such as EJB objects. By using a synergistic
mix of the various Java security technologies, admin-
istrators and developers can make not only their Web
application servers, but their WAS environments se-
cure as well.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Object Management Group, or Microsoft Corporation.

Cited references and notes

1. J. Hunter and W. Crawford, Java Servlet Programming,
O’Reilly & Associates, Sebastapol, CA (1998).

2. B. Shannon, M. Hapner, V. Matena, J. Davidson, E. Pelegri-
Llopart, and L. Cable, Java 2 Platform, Enterprise Edition: Plat-
form and Component Specifications, Addison-Wesley Publish-
ing Co., Reading, MA (2000).

3. A. Goldberg and D. Robson, Smalltalk-80: The Language and
Its Implementation, Addison-Wesley Publishing Co., Read-
ing, MA (1983).

4. G. Krasner, Smalltalk-80: Bits of History, Words of Advice, Ad-
dison-Wesley Publishing Co., Reading, MA (1983).

5. Acronym definitions: LDAP is Lightweight Directory Access
Protocol; RACF is Resource Access Control Facility.

6. EJB 1.1 specification, http://java.sun.com/ejb.
7. R. Monson-Haefel, Enterprise JavaBeans, O’Reilly & Asso-

ciates, Sebastapol, CA (1999).
8. Java Naming and Directory Interface specifications, http://

java.sun.com/products/jndi/.
9. CORBA security specification, http://www.omg.org.

10. B. Blakley, CORBA Security: An Introduction to Safe Com-
puting with Objects, Addison-Wesley Publishing Co., Read-
ing, MA (1999).

11. Java language mapping to Object Management Group’s In-
terface Definition Language, http://www.omg.org/technology/
documents/formal/java_language_mapping_to_omg_idl.htm.

12. RMI over IIOP, http://java.sun.com/products/rmi-iiop/.
13. OMG Common Secure Interoperability, version 2 specifica-

tions, http://www.omg.org/.
14. WebSpheresecurityoverview,http://www-4.ibm.com/software/

webservers/appserv/security.pdf.
15. N. Nagaratnam and D. Lea, “Secure Delegation for Distrib-

uted Object Environments,” Proceedings, USENIX Confer-
ence on Object-Oriented Technologies and Systems, Santa Fe,
NM (April 27–30, 1998), pp. 101–116.

16. N. Nagaratnam, Practical Delegation for Secure Distributed Ob-
ject Environments, Ph.D. dissertation, computer engineering
degree program, Syracuse University (April 1998).

17. M. Pistoia, D. F. Reller, D. Gupta, M. Nagnur, and A. K.
Ramani, Java 2 Network Security, Prentice Hall, Englewood
Cliffs, NJ (2000).

18. L. Gong, Inside Java 2 Platform Security: Architecture, API De-
sign, and Implementation, Addison-Wesley Publishing Co.,
Reading, MA (1999).

19. V. Samar and C. Lai, “Making Login Services Independent
of Authentication Technologies,” http://java.sun.com/security/
jaas/doc/pam.html/.

20. GSS-API Security Attribute and Delegation Extensions, The
Open Group.

21. RFC 2222, Simple Authentication and Security Layer (SASL).
22. N. Nagaratnam, B. Maso, and A. Srinivasan, Java Network-

ing and AWT API SuperBible: The Comprehensive Reference
for the Java Programming Language, Macmillan USA, Indi-
anapolis, IN (1996).

23. B. Rich, A. Nadalin, and T. Shrader, “All that JAAS: An Over-
view of the Java Authentication and Authorization Services,”
IBM Developer Connection (March 2000); http://www.
developer.ibm.com/devcon/mag.htm.

24. Java Servlet API Specification version 2.2, http://java.sun.com/
products/servlet.

25. IBM WebSphere Standard/Advanced 3.02 Security Overview,
http://www-4.ibm.com/software/webservers/appserv/security.
pdf.

26. MIME (Multipurpose Internet Mail Extensions), http://
www.ietf.org/rfc/rfc1521.txt?number51521.

27. IBM J2SE specifications, http://www.ibm.com/java/.
28. A. O. Freier, P. Karlton, and P. C. Kocher, SSL 3.0 Spec-

ification, Technical Report, Netscape Communications Cor-
poration (November 1996); available at http://home.netscape.
com/eng/ssl3/index.html.

29. SSL 3.0 Specifications, http://home.netscape.com/eng/ssl3/.
30. B. Nusbaum, M. Pistoia, G. Rochester, and T. Liu, Network

Computing Framework Component Guide, SG24-2119-00,
IBM Corporation (1997).

31. B. Nusbaum, M. Pistoia, G. Rochester, and T. Liu, IBM Net-
work Computing Framework for e-business Guide, SG24-5296-
00, IBM Corporation (1998).

32. M. Pistoia, K. Kojima, and N. Raghu, Internet Security in the
Network Computing Framework, SG24-5220-00, IBM Corpo-
ration (1998).

33. RFC 2109, HTTP State Management Mechanism, http://
www.ietf.org/rfc/rfc2109.txt?number52109.

34. M. Pistoia and C. Letilley, IBM WebSphere Performance Pack:
Load Balancing with IBM SecureWay Network Dispatcher,
SG24-5858-00, IBM Corporation (1999).

35. M. Pistoia, T. Menner, C. Milligan, and B. G. Pham, IBM
WebSphere Performance Pack: Web Content Management with
IBM AFS Enterprise File System, SG24-5857-00, IBM Corpo-
ration (1999).

36. M. Pistoia, V. Iovine, and S. Pischedda, IBM WebSphere Per-
formance Pack Usage and Administration, SG24-5233-00, IBM
Corporation (1998).

37. T. Shrader, B. Rich, and A. Nadalin, Java and Internet Se-
curity, iUniverse, http://www.iuniverse.com (2000).

38. RFC 2315, PKCS #7: Cryptographic Message Syntax Ver-
sion 1.5, ftp://ftp.isi.edu/in-notes/rfc2315.txt.

39. RFC 2630, Cryptographic Message Syntax, ftp://ftp.isi.edu/in-
notes/rfc2630.txt.

40. B. S. Kaliski, Jr., A Layman’s Guide to a Subset of ASN.1, BER,
and DER, RSA Laboratories (November 1993).

41. B. Schneier, Applied Cryptography: Protocols, Algorithms, and
Source Code in C, 2nd Edition, John Wiley & Sons, Inc., New
York (1995).

42. RFC 2311, S/MIME Version 2 Message Specification, ftp://
ftp.isi.edu/in-notes/rfc2311.txt.

43. T. Shrader, A. Nadalin, and B. Rich, “Understanding Cryp-
tographic Messages in e-business,” IBM DeveloperToolbox
Technical Magazine (March 2000); http://www.developer.
ibm.com/devcon/mag.htm.

44. ASCII was first defined by the American National Standards

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 KOVED ET AL. 151

Institute (ANSI) in ANSI Standard X3.4 in 1968. The ASCII
code is also described in ISO 636 (1973) and CCITT V.2,
which calls the standard IA5 (International Alphabet #5).
ASCII is a 7-bit code, resulting in a maximum of 128 char-
acters.

45. JavaMail version 1.1.3 specifications, http://www.javasoft.
com/products/javamail/index.html.

46. T. Shrader, “Choosing the Right Cryptography for Your e-
business Application,” IBM DeveloperToolbox Technical Mag-
azine, on-line edition at http://www.developer.ibm.com/
devcon/mag.htm.

General references

For information on the Pluggable Authentication Module, see
http://java.sun.com/products/jaas/.
RFC 1510, The Kerberos Authentication System, http://
info.internet.isi.edu/in-notes/rfc/files/rfc1510.txt.
C. Neuman and T. Ts’o, “Kerberos: An Authentication Service
for Computer Networks,” IEEE Communications 32, Number 9,
33–38 (September 1994).

Accepted for publication October 10, 2000.

Larry Koved IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: koved@us.ibm.com). Mr. Koved is a research staff
member in the Network Security and Cryptography department
and a Java security architect for IBM. His primary interests are
the security of mobile code, component software, and object-ori-
ented languages. He is a member of ACM’s SIGSAC and SIG-
CHI and of the IEEE Computer Society.

Anthony Nadalin Tivoli SecureWay Business Unit, 9442 Capital
of Texas Highway North, Arboretum Plaza One, Suite 500, Austin,
Texas 78759 (electronic mail: drsecure@us.ibm.com). Mr. Nada-
lin is the lead architect for the IBM Java Security project. As sen-
ior architect, he is responsible for infrastructure design and de-
velopment across IBM. He serves as the primary security liaison
to Sun Microsystems’ JavaSoft Division for Java security design
and development collaboration.

Nataraj Nagaratnam IBM Application & Integration Middleware
Division, P.O. Box 12195, 3039 Cornwallis Drive, Research Triangle
Park, North Carolina 27709-2195 (electronic mail: natarajn@
us.ibm.com). Dr. Nagaratnam is the technical lead for the IBM
WebSphereTM security team. He received his Ph.D. degree from
Syracuse University; his thesis addresses secure delegation in dis-
tributed object environments. He has authored and edited books
on Java networking and JavaBeansTM and has published in nu-
merous journals and conferences.

Marco Pistoia IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: pistoia@us.ibm.com). Mr. Pistoia is an advisory
Java security specialist in the Network Security and Cryptogra-
phy department. He has written nine books and taught classes
worldwide on all areas of Java, WebSphere, and e-business se-
curity. His latest book, Java 2 Network Security, was published by
Prentice-Hall. Mr. Pistoia’s interests are in mobile code security
and object-oriented technology.

Theodore Shrader IBM Software Group, 11400 Burnet Road,
Austin, Texas 78758 (electronic mail: tshrader@us.ibm.com). Mr.
Shrader was a feature lead on the IBM Java Security project and
currently is the Editor-in-Chief of the IBM DeveloperToolbox mag-
azine. He has written numerous patents and technical articles deal-
ing with Internet and Java development, distributed computing,
object-oriented design, database architecture, and Web design.
He also is a coauthor of an operating systems programming guide
published by John Wiley & Sons and the lead author of the Java
and Internet Security book published by iUniverse and cited in
this paper.

KOVED ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001152

