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Abstract. This paper deals with the automatic classification of Drones using a 

surveillance radar signal. We show that, using state-of-the-art feature-based ma-

chine learning techniques, UAV tracks can be automatically distinguished from 

other object (e.g. bird, airplane, car) tracks. In fact, on a collection of real data, 

we measure an accuracy higher than 98%. We have also exploited the possibility 

of using the same features to distinguish the type of the wing of drone, between 

Fixed Wing and Rotary Wing, reaching an accuracy higher than 93%. 

Keywords: Surveillance Radar, Drone, Counter Unmanned Aerial Vehicle, 

Classification, Support Vector Machines. 

1 Introduction 

Nowadays Unmanned Aerial Vehicles (UAVs) make possible to imagine a multitude 

of previously unavailable and non-cost-effective applications, such as safeguard of hu-

man life, security and environmental monitoring. However, the exponential growth of 

those platforms poses new problems, making the updating of the current Aerial Traffic 

Management systems inevitable to maintain the same high levels of safety in presence 

of any aerial platform, manned or unmanned, cooperative or non-cooperative.  

To this end, it is important to have an air surveillance system specifically designed 

to deal with UAVs. In recent years, IDS (Ingegneria dei Sistemi) has released a multi-

sensorial counter-drone system (Black Knight) capable of detecting, tracking and, if 

needed, neutralizing potential UAV threats to critical infrastructures and sensitive pub-

lic and private areas.  

Within the ALADDIN (Advanced hoListic Adverse Drone Detection, Identification, 

Neutralization) H2020 project, IDS proposed to improve radar capability, in terms of 

detection range (up to 5Km for mini-UAVs@-3dBsm Radar Cross Section (RCS)), and 

the ability to classify drones in an automatic fashion up to the maximum distance of 

detection. 

This paper deals with the design of an algorithm to automatically distinguish the 

tracks describing the Drones (i.e. UAVs) from those describing other objects (such as 

birds, airplanes, walking humans), and to distinguish between Fixed Wing (FW) and 

Rotary Wing (RW) Drone. 

In the following §2, we describe the radar signal processing chain necessary to detect 

and track multiple targets at the same time, the available pieces of information which 
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can be exploited for the classification, the radar configurations and the measurement 

campaign performed to train the classifier. In §3 we describe the machine learning tech-

niques adopted to design the classifier and evaluate its performance. In §4 we show the 

experimental results obtained on the available data. 

 

2 Radar Signal Processing 

This work aims to design a technique able to distinguish drones from other objects, and 

FW from RW, using the signal received by a surveillance X-band radar working with 

a Linearly Frequency Modulated Continuous Wave (LFMCW) transmitted waveform.  

A surveillance radar operates with a rotating antenna to discover, detect and track 

multiple targets at the same time [1] – [2]. As a surveillance radar is designed to con-

stantly seek the space to find new targets, the Time on Target (ToT), i.e. the time for 

which the target is illuminated by the radar, is usually very small, in the order of 10 ms. 

The most widely used radar architecture for classification and identification of 

drones is the tracking radar, which illuminates a single target for a fairly longer time, 

in the order of 1 s. The tracking radar holds the antenna in the direction of the designed  

target, and allows the analysis of features describing the intrinsic movements of the 

target through the analysis of the time variations of the Fourier spectra of received sig-

nals, which is called the micro-Doppler analysis [5] – [6].  

In counter-drone application, the necessity to detect and track multiple targets at the 

same time can only be met by a surveillance radar. For this reason, only techniques to 

classify the received radar signal from a surveillance radar can be applied.  

 

2.1 Signal Processing and Available Pieces of Information 

The radar processing chain to detect and track multiple targets is shown in Fig. 1. Using 

the same notation of [1] – [2] – [6], the received raw radar signal can be seen as a matrix 

of values defined in the Fast Time (FT)/Slow Time (ST) domain. FT samples identify 

the range sampling of the received echo (sweep) for a specific azimuth location, while 

ST samples identify the azimuth coordinates corresponding to the consequential trans-

mitted radar pulses. Each sample is a complex value, identified by the I (In-phase) and 

Q (Quadrature) received channels. 

High pass filter, 1D (along the FT direction) Fast Fourier Transform (FFT) and a 

calibration procedure is applied to the raw signal to obtain a Range Profile Matrix 

(RPM) of Radar Cross Section (RCS) values in the Range / Slow Time domain [1]. 

This is the first piece of information which can be used for drone classification. How-

ever, we resort to the anomalies detected by the classical radar signal processing chain 

of Fig. 1. The RPM are processed with 1D FFT along the Doppler direction, by taking 

a number of slow time samples which identifies the Coherent Integration Time (CIT) 

[1]. In our case, the CIT is of around 30 ms, and it identifies a radar azimuth cell of 
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4.5°. A high pass filter is also used to kill the zero-velocity components, removing the 

stationary clutter from the radar detections.  

Finally, the Range Doppler Matrix (RDM) is obtained, which represents the RCS 

w.r.t. Range and Doppler (or, equivalently, radial velocity [6]) dimensions. The RDM 

could be directly fed to a Neural Network (NN) based algorithm for drone classifica-

tion, as in [8]. In our application, RDM is used to find the local maxima points with 

fairly high RCS values. Those points identify the targets and are called Detections. The 

row and column of the Detection identify respectively the Range and the radial Velocity 

of the target. 

 

 

Fig. 1. Radar signal processing (blue boxes) to detect and track multiple targets, and available 

pieces of information (orange boxes) which can be exploited for drone classification 

For each Detection, the RDM can be used to define a set of signature features. For 

example, the Detection amplitude describes the RCS, and the ratio between the ampli-

tude of the Detection vs the mean amplitude of pixels in the same row describes the 

Signal to Noise Ratio (SNR). Several other ratios can be defined in the RDM, describing 

maximum and average amplitudes between regions around the Detection and its sur-

roundings [3] – [4] – [7].  

Detections are then clustered using the Range/Azimuth/Radial Velocity domain. 

Two or more Detections very close to each other in all the three domains are grouped 

together in a cluster called Plot [7], and assigned to the same observation [10].  

Finally, using a Kalman filter [9] designed to work in Range/Azimuth domain, the 

Plots are associated to one or more Tracks describing the trajectory and the velocity of 

the targets, and to predict their future positions. Tracks can be used to evaluate kine-

matic features of the target, and are useful for classification.  

2.2 Features Definition 

In this paper, we define Detections, Plots and Tracks (Fig. 2), according to the same 

notation shown in [7]. 

For each Detection, a set of descriptors derived from RDM has been defined, includ-

ing RCS and SNR. Detections are clustered into Plots, and the number of Detections in 

the Plot also constitutes an useful feature which can be used for classification. 

The Plots are observations for the tracking algorithm, which groups them into tracks 

describing the trajectory of the target. This allows the definition of the kinematic fea-

tures. They can be evaluated by considering a Segment of track, which is a part of the 

track obtained after a fixed number of observations. Each observation of Kalman filter 



4 

(i.e. each Plot) can be obtained after one full antenna rotation, which is the time after 

which the radar antenna will be again in the direction of the target. 

 

 

Fig. 2. The Detections from the radar are clustered into Plots, and Plots are used to define the 

track of the target. A Segment of track is a set of a fixed number of Plots in a track [7]. 

In this study, the classification performance has been analyzed w.r.t. the length of 

the Segment of track, in the range (4 – 10). We call this parameter NTREF. 

In each Segment of track, a set of kinematic features [7] is defined to describe the 

target trajectory in the segment. For the NTREF Plots in the Segment, the mean and the 

standard deviation of the above mentioned signature features are considered. The total 

number of features for each Segment of Track is 50, of which 30 are signature-based 

and 20 kinematic-based. 

 

2.3 Radar Parameters and Configurations 

The radar operates in the X-band (9.35 GHz), with a Transmitted Power of 4 W and a 

LFMCW.  Its Bandwidth can vary with the configuration, with a maximum of 100 

MHz. It performs a 2D scan in Range/Azimuth domain. The central elevation angle 

must be set by the operator, and the antenna elevation beam is 22.8°. The Pulse Repe-

tition Frequency (PRF) is set to 3.3 KHz. 

Table 1. Radar parameters used by the three main configurations 

Configuration Operative_600m Operative_2km Operative_4km 

Parameter Value 

Signal Start Frequency 9.3625 GHz 9.3625 GHz 9.3625 GHz 

Band 75 MHz 18.867 MHz 9.75 MHz 

Antenna rounds per minute 20 20 20 

Max Range 624 m 2100 m 4200 m 

Range Resolution 2 m 7.95 m 15.9 m 

Max Target Speed 96 Km / h 96 Km / h 96 Km / h 

Pulse Repetition Frequency 3339 Hz 3339 Hz 3339 Hz 

Samples in a Sweep 624 624 624 
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In the measurement campaigns, mainly three radar configurations have been consid-

ered, each characterized by the maximum range of the radar: 624 m, 2.1 Km and 4.2 

Km. They are named respectively Operative_600m, Operative_2km and Opera-

tive_4km.  

Table 1 summarizes the main parameters of the three radar configurations. The clas-

sification algorithms have been designed for each configuration separately. Finally, a 

classification algorithm has been trained for all the data in all the configurations. 

 

2.4 Measurement Campaign 

The measurement campaign was performed by acquiring a set of UAVs:  

 Commercial RW as Phantom3 Pro (DJI), Typhoon 4K (Yuneec), Jetson 

(NVIDIA), Bebop2 (Parrot), 

 Commercial FW as Disco (Parrot), 

 IDS RW as FlySmart 2.0, Colibrì, Nik, FlyNovex, 

 IDS FW as FlyFast, FlySecur. 

 

When possible, GPS position and time of the drone flight was saved, to help the 

necessary labelling process of the radar signal. A semi-automatic procedure was devel-

oped to label radar data whether GPS information of the target is available or not.  

A very high number of non-drone objects were recorded during the measurement 

campaign. They were non-cooperative targets, such as birds, airplanes, cars, helicop-

ters, walking people. Even without GPS information, in many cases, it was possible to 

label them as “false alarms” (FA) using the knowledge of the position of the drone 

during the acquisition.  

Table 2 shows the number of acquired samples for FA and Drone classes, and Table 

3 for FW and RW classes, w.r.t. configuration and NTREF parameter. Of course, the 

higher NTREF is, the lower the number of samples to train the classifier. The number 

of recorded samples of the FA class is much higher for the 2km and 4km configurations 

than for the 600m one, because the space exploited by the radar is much bigger. 

 

Table 2. Number of acquired samples for Drone vs FA classification, for each configuration 

and values of the number of antenna rotations to define a Segment of track 

 NTREF 4 6 8 10 

Operative_600m 
FA 8914 5512 3419 2200 

Drone 2463 2007 1658 1364 

Operative_2km 
FA 81824 56822 41446 31525 

Drone 3243 2819 2454 2170 

Operative_4km 
FA 40833 30128 23423 18837 

Drone 1470 1258 1078 918 
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Table 3. Number of samples for Fixed Wing vs Rotary Wing discrimination 

 NTREF 4 6 8 10 

Operative_600m 
FW 689 539 419 328 

RW 1774 1468 1239 1036 

Operative_2km 
FW 1496 1275 1097 961 

RW 1747 1544 1357 1209 

Operative_4km 
FW 398 303 225 153 

RW 1072 955 853 765 

 

3 Classification Algorithm 

3.1 Training Process 

Given an object under test, the purpose of the algorithm is to decide whether the object 

is a Drone or not, and if it is a Drone, to distinguish between FW and RW Drone.  

Many classification algorithms have been compared to this purpose, not only in 

terms of performance, but also in terms of computational time for training, and overfit-

ting avoidance. Classical algorithms from Machine Learning (ML) theory [12] have 

been taken into consideration, including KNN (K Nearest Neighbors), Adaboost, Gra-

dient boost, Support Vector Machines (SVM) and Multi-Layer Perceptron.  

The comparison between different ML techniques goes beyond the purpose of this 

paper. We choose to use SVM with radial basis kernel [11], because it obtained an 

acceptable trade-off between performance, training time and overfitting avoidance. 

The training process of the SVM classifier has been performed trough the s-fold 

cross validation scheme [12]. The samples acquired during the measurement campaign 

have been split into s subsets. Each subset includes a number of samples such that the 

ratio between samples from different classes is the same as in the original dataset. The 

samples from the same acquisition are always included into the same subset. All exper-

iments during the training process are thus always performed training the classifier on 

samples from different acquisitions w.r.t. the ones in which it is tested. This allows to 

design a more robust classifier, and to give a more trustful estimate of the classification 

performance, and thus to predict its behavior when dealing with new samples. 

During the s-fold cross validation process, the hyper-parameters and the subset of 

features within the 50 are chosen.  

The optimal subset of features would be given by the exhaustive search of all possi-

ble combinations of k features, with 1≤k≤50, which is not feasible with standard hard-

ware resources. For this reason, we adopted a suboptimal search with the Sequential 

Floating Forward Feature Selection method [12], which proved to be a very good 

trade-off between computational time for training and performance.   

The radial basis kernel SVM needs the definition of the two hyper-parameters C and 

[11]. They have been searched choosing the best obtained by three different methods: 

the exhaustive search on a custom grid, the Newton-Bayes search [12] and the Auto-

matic Model Selection method from Chapelle described in [12].  
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The suboptimal subset of features and the suboptimal set of SVM hyper-parameters 

have been searched by optimizing the classifier accuracy. 

We choose to design two SVMs: the first to distinguish between Drone and FA, the 

second between FW and RW. Thus, we defined a two-stage SVM classifier. In our 

analyses, this approach has proven to be better in terms of performance and robustness 

w.r.t. the direct classification between the three classes FA / RW Drone / FW Drone. 

3.2 Performance evaluation 

The performance of the classifier has been evaluated in terms of accuracy, per-class 

recall and precision indexes, which are defined as in [12]. 

 During the s-fold cross validation process, we evaluated the mean performance (i.e. 

accuracy, recall, precision) among each of the s classification experiments. 

A small number of acquisitions were hidden to the classifier during the training pro-

cess (i.e. holdout [12] – 10% of the available data). This allows also to measure the 

performance of the classifier with a final blind test which allows to check its robustness. 

After the s-fold and the blind test, all available data are re-split into new subsets, and 

the performance is re-evaluated. This is another precaution taken against overfitting.  

Each classifier performance has been thus evaluated in three versions: the one ob-

tained during s-fold training process, the one obtained during blind test, and the one 

obtained in the final tests re-partitioning the available data. The mean of the three has 

been called Global Index (GI), and can refer to all indexes (accuracy, recall, precision). 

In this paper, results are presented only in terms of GI. 

Generally speaking, the higher the GI, the better the classifier. The comparison of 

the three indexes obtained during s-fold, blind test, and final re-partitioning, allows to 

check the robustness of the classifier. Generally speaking, the more similar the three 

indexes, the more robust the classifier. 

The performance are presented w.r.t. the radar configuration and the number NTREF 

of antenna rotations to define a segment of track. We also show the performance of a 

classifier designed for all the radar configurations. 

 

4 Experimental Results 

In the following, we present the experimental results obtained from the SVM classifiers 

with the data acquired during the measurement campaign. The following tables list the 

mean accuracy for each configuration, and for NTREF = 4, 6, 8. For NTREF = 4, we 

also present the performance in terms of mean per-class precision and recall.  Table 4 

and Table 5 list the performance for the Drone vs FA classification, and Table 6 and 

Table 7 for FW vs RW. Fig. 3 shows the trend of the accuracy for each configuration, 

w.r.t. NTREF in the range (4 – 10). All indexes are expressed in terms of GI. 

Table 4 shows that all Drone vs FA classifiers have good performance, while our 

comparison among the three accuracies show that those classifiers are also robust. Ac-

curacy is around 98% for the 2km and 4km Configurations, and for the classifier trained 
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for all the configurations (All_Conf). Accuracy is lower, around 95%, for the 600m 

configuration, but this does not mean that the overall radar performance is worst in that 

configuration. In fact, the 2km and 4km configurations are characterized by a much 

higher number of false alarms than the 600m one. Those FAs are generally well classi-

fied by the algorithm, leading to a higher accuracy.  

As a matter of fact, we observe that if we analyze the performance only for the sam-

ples belonging to the Drone class, the classification algorithm for the 600m Configura-

tion achieves the best performance. This is shown by Table 5, which lists the mean per-

class Recall and Precision indexes for NTREF = 4. The most likely error committed by 

the classifiers is the “missed detection”, i.e. samples from Drone class erroneously as-

signed to FA class, and it is more likely to occur as the range increases.  

The All_Conf classifier shows that accuracy is higher than 98%, meaning that less 

than 2 segments of tracks out of 100 are misclassified. Fig. 3 shows that the perfor-

mance of Drone / FA classifier is not afflicted by the choice of the number of antenna 

rotations to define a segment of track. In this case, it is preferable to use the lowest 

value, i.e. NTREF = 4, it is not necessary to gather more information waiting for further 

antenna rotations. The classifier proves also robustness for each NTREF parameter. 

 

Table 4. Accuracy (GI) obtained for Drone vs FA classification, w.r.t. Radar Configuration and 

NTREF parameter. Accuracy is expressed in percentage.  

Drone / FA Accuracy % 

NTREF 4 6 8 

Operative 600m 95.46 95.40 95.62 

Operative 2km 98.82 98.79 98.74 

Operative 4km 98.32 97.69 97.99 

All_Conf 98.29 98.35 98.35 

 

Table 5. Per-class Recall and Precision (GI), obtained for Drone vs FA classification, with 

NTREF = 4, w.r.t Radar Configuration. 

Drone / FA Recall % Precision % 

NTREF = 4 Drone FA Drone FA 

Operative 600m 87.59 97.60 90.86 96.65 

Operative 2km 80.86 99.53 87.32 99.24 

Operative 4km 75.48 99.23 79.93 99.02 

All_Conf 80.12 99.27 85.66 98.93 

 

The FW vs RW classifier, instead, can take advantage of using more antenna rotations 

to improve both performance and robustness, as shown in Table 6 and in Fig. 4. Accu-

racy is around 88-90% for NTREF = 4, and improves to 92-94% for NTREF = 10. 

Performance of FW / RW classifiers are good generally speaking, but not as good as 

the ones obtained by the Drone / FA classifiers. Due to the lower number of samples 

from FW class, the RW class is generally better classified, as it is shown by Table 7, 

which lists Recall and Precision indexes for the classifiers for NTREF = 4. 
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Finally, we believe that the performance of both FW / RW and Drone / FA classifiers 

could improve by increasing the number of samples for the Drone class in the database. 

Table 6. Accuracy (GI) obtained for Fixed Wing vs Rotary wing classification. 

FW / RW Accuracy % 

NTREF 4 6 8 

Operative 600m 91.43 92.67 93.69 

Operative 2km 87.17 89.92 91.97 

Operative 4km 88.96 91.96 93.26 

All_Conf 88.00 89.90 91.71 

 

Table 7. Per-class Recall and Precision (GI), obtained for FW vs RW classification, with 

NTREF = 4, w.r.t Radar Configuration. 

FW / RW Recall % Precision % 

NTREF = 4 FW RW FW RW 

Operative 600m 80.71 95.34 86.21 93.19 

Operative 2km 83.20 90.58 88.37 86.24 

Operative 4km 80.49 92.09 79.01 92.73 

All_Conf 82.67 90.94 83.44 90.48 

 

  

  

Fig. 3. Mean accuracy (GI) vs NTREF parameter, for each radar configuration  
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5 Conclusions 

In this paper, we have shown a novel radar processing algorithms designed to classify 

UAV versus non-UAV tracks and, within the UAV class, to discriminate among RW 

versus FW drone type. The multi-stage classification here proposed adheres to the SVM 

architecture and it is based on a proper selection of identifying signature and kinematics 

features.  

The different stages of classification have been trained through extensive UAV 

measurement campaigns conducted in a controlled environment, using X-band 

LFMCW IDS surveillance radar with different radar parameter settings, target and sce-

narios. Experimental results are highly promising, showing drone/no drone average 

correct classification accuracy around 98% for the 2Km and 4Km radar configuration 

and FW/RW accuracy around 92-94% taking advantage from collection of data ac-

quired by higher antenna rotations (NTREF=10).  
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