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Abstract. In this work, we present a software library which permits the
efficient usage of the Kinect One, a time-of-flight RGB-D sensor, with
the nVidia Jetson TK1, an ARM-based embedded system, for the pur-
pose of people detection. Our software exploits nVidia CUDA to obtain
all the data necessary for robust people detection and other perception
algorithms by parallelizing the generation of the 3D point cloud and
many pixel-wise operations on both the raw depth and the infrared im-
ages coming from the sensor. The library developed has been released
as open-source and the whole system has been tested as a people de-
tection node in an open source multi-node RGB-D tracking framework
(OpenPTrack). The results gathered show that the proposed system can
be effectively used as a people detection node, outperforming the state-
of-the-art in terms of people detection framerate not only with the nVidia
Jetson, but also with non-embedded computers.

Keywords: Kinect One, people detection and tracking, mobile robotics, nVidia
Jetson, OpenPTrack

1 Introduction

Human detection and tracking is a fundamental skill in many fields, e.g. surveil-
lance, mobile robotics, ambient assisted living (AAL), culture and arts. In re-
cent years, the advent of low cost RGB-D sensors such as the Microsoft Kinect,
boosted up the research on mobile robotics, making it possible to reach new
levels of accuracy in robot perception. Recently, Microsoft released the second
generation of the Kinect sensor, the Kinect One, both increasing image reso-
lution and improving depth smoothness and accuracy [1] by implementing the
Time-of-flight (ToF) [2] technology. Nevertheless, the Kinect One is computa-
tionally eager because of the huge amount of data generated per frame (tens of
megabytes per frame at 30 frames per second) and its Linux driver requires pro-
cessing on a dedicated graphic card to perform data acquisition at the sensor’s
maximum framerate. As a result, this sensor is not likely to be used on mobile
robotic of embedded platforms.
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In this work, we propose a new software library that could allow to use
efficiently the Kinect One sensor together with the nVidia Jetson TK1 embedded
system as a perception node for people detection and tracking from RGB-D
data. The resulting system is an ideal perception setup to be used for mobile
robotics or in networks of many nodes, given the high level processing it allows to
perform and the low power consumption of the Jetson embedded platform. This
result was made possible with the development of a new Linux library for the
Kinect One which exploits nVidia CUDA to process in parallel the operations
on the raw data coming from the sensor. We validated our work by testing the
developed system as a distributed node of a camera network which uses an open-
source tracking library: OpenPTrack[3]. This library implements state-of-the-art
algorithms to detect and track humans in heterogeneous camera networks and it
is based on the de-facto standard robotics middleware, ROS (Robot Operating
System)[4]. In summary, the contribution of this work is two-fold:

– We propose a new library which permits the usage of the Kinect One with
CUDA-capable embedded systems and we demonstrate the validity of this
work obtaining suitable frame-rates for real-world applications as people
detection and tracking.

– We release this library as open-source1 together with a ROS bridge 2 to make
it work out-of-the-box with the most popular framework for the robotics
community.

The remainder of the paper is organized as follows. Section 2 reviews the state-
of-the-art of RGB-D sensors. Section 3 explains the features of the new library
we developed. In Section 4, experiments are reported and results are shown in
terms of acquisition and people tracking frequency. Finally, Section 5 draws the
conclusions of this work.

2 State-of-the-art

2.1 RGB-D sensors

When dealing with mobile robots or complex surveillance scenarios, two dimen-
sional information is not always sufficient to obtain reliable results of detection
and tracking in real time. Furthermore, passive 3D solutions such as stereo cam-
eras require additional processing for computing depth information and they are
not able to estimate depth for lowly textured areas. For these reasons, the ad-
vent of active and low-cost 3D sensors, such as Microsoft Kinect, significantly
improved the research on autonomous mobile robotics and computer vision. The
first-generation Kinect is an RGB-D sensor that provides both color and depth
data at VGA resolution. Depth is estimated by means of an active triangulation
process[5] between an infrared pattern projector and an infrared camera, i.e.,

1 https://github.com/OpenPTrack/libfreenect2
2 https://github.com/OpenPTrack/kinect2_bridge

https://github.com/OpenPTrack/libfreenect2
https://github.com/OpenPTrack/kinect2_bridge
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the position of each 3D point is the intersection of the optical rays correspond-
ing to a dot of the projector and the one of the considered pixel in the infrared
camera. The Kinect is widely used in computer vision and robotics for Simul-
taneous Localization and Mapping (SLAM) [6], people detection and tracking
[3,7,8], short-term and long-term people re-identification [9,10,11], ambient as-
sisted living [12,13,14] and many other applications. Besides the wide usage of
this sensor, it has the drawback of not being able to estimate depth informa-
tion outdoors because the infrared component of the sunlight interfers with the
pattern projected by Kinect. Furthermore, the depth estimation error increases
quadratically with the distance[15]. To overcome these problems, in late 2013,
Microsoft released the second generation of the Kinect sensor. This new RGB-D
camera relies on the continuous wave time-of-flight [2] technology to infer depth,
that is an array of emitters sends out a modulated signal that travels to the
measured point, gets reflected and is received by the CCD of the sensor. The
sensor acquires a 512 x 424 depth map and a 1920 x 1080 color image at 15 to
30 fps depending on the lighting condition, since the sensor exploits an auto-
exposure algorithm. Kinect One outperforms its predecessor on several aspects.
In particular, it works outdoors up to four meters and depth accuracy remains
constant while increasing the distance[1]. However, since the data resolution is
higher than for Kinect v1, processing Kinect One data is computationally more
demanding and turns out to be unsuitable for embedded systems. In this work,
in order to overcome this problem, we modified the Linux driver and ROS wrap-
per for the Kinect One so that they allowed to obtain color and point cloud
data at more than 20 fps with the nVidia Jetson, a CUDA-capable embedded
system. While Kinect One is directly supported in Microsoft Windows with a
free driver and SDK provided by Microsoft, the only driver available in Linux
is unofficial and open source and is called libfreenect2 3. In this work, we also
used nVidia CUDA[16], a scalable library for exploiting the General Purpose
GPU (GP-GPU) computing on nVidia GPUs. Our work improved a first work-
ing library[17] developed in CUDA. The numerical comparisons between the
different versions of these libraries are presented in Section 4.

2.2 People detection and tracking in camera networks

The ability to autonomously detect and track humans in camera networks is
one of the most important issues in robotics and computer vision applications.
The problem can be split into two different sub-problems: (1) perform people
detection and tracking within a view of a single camera and (2) maintain the
same ID for the same person seen by different cameras[18]. For solving (1), a wide
set of works in literature relies on RGB data alone[19,20], while, recently, new
methods were developed for using RGB-D data to perform this task[3,21,22]. The
problem of associating the correct ID among different cameras (2) is often solved
based on the knowledge of camera poses and by exploiting features extracted
from the person motion and appearance. OpenPTrack is an open source software

3 https://github.com/OpenKinect/libfreenect2

https://github.com/OpenKinect/libfreenect2
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Fig. 1: High level representations of the two data flows. On the left, the state-of-
the-art data flow of the OpenPTrack system using the Kinect One and the Jet-
son embedded system. The 3D point cloud is computed outside the libfreenect2
library by the ROS nodelet cloud generation node. On the right, the pro-
posed data flow of the same system. The 3D point cloud is now directly com-
puted within the new version of libfreenect2 and streamed by the new version of
kinect2 bridge, thus the external nodelet is no longer required.

for multi-camera calibration and people tracking in RGB-D camera networks.
It allows scalable, robust and real-time person tracking using affordable off-
the-shelf components, such as Kinect One, and an open source codebase. It
constitutes a powerful tool for enabling interactive experiences for education, arts
and culture, but it is also exploited for guaranteeing people safety in industrial
environments[23]. The OpenPTrack nodes which use the Kinect One are usually
equipped with a powerful computer with a dedicated GPU because the sensor
is eager of performance. The use of these computers causes space problems,
high costs and high power consumption. Moreover, the OpenPTrack network
can potentially be made of dozens of nodes, thus amplifying these problems.
Therefore, the use of embedded systems as the nVidia Jetson can fix these issues,
allowing the building of large networks.

3 Methodology

Our objective is to acquire data from the Kinect One sensor with the nVidia
Jetson TK1 at high frame rate and integrate the camera into an OpenPTrack
network to perform people detection and tracking. The state-of-the-art Linux
driver for the Kinect One, libfreenect2, is not able to perform the operation
needed by OpenPTrack at a framerate suitable for people tracking. For this
reason, in order to improve the performance, we use nVidia CUDA, shifting
computational burden from the ARM CPU to the GPU of the embedded sys-
tem. In Fig. 1a, the overall state-of-the-art system needed to perform people
detection with Kinect One is shown. At first, the Linux driver for Kinect One,
libfreenect2, is used to obtain the raw data from the sensor. OpenPTrack is based
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on the ROS middleware, thus, in order to interface the Kinect camera with this
people tracking library, we need a ROS wrapper of the libfreenect2 driver. This
wrapper is implemented in the kinect2 bridge ROS package, that reads sensory
data obtained from the driver and streams them to ROS topics whenever a ROS
node requests them. In this work, we adapt also this wrapper to be compatible
with the proposed version of libfreenect2. The algorithm exploited by the stan-
dard version of the driver for computing depth image, infrared (IR) image and
point cloud is reported in Algorithm 1, while the one we propose in this paper
is reported in Algorithm 2 and illustrated in Fig. 2. The RGB information that
comes from the sensor does not need any additional computation, so we store it
directly without passing it to the GPU. The operations needed to transform the
raw depth and infrared data in the final data needed by the tracking library are
all pixel-wise or consist of operations on the neighborhood of each pixel. These
types of functions are implementable in CUDA, thus lowering the final compu-
tational complexity from O(N) to O(1), with N number of pixels. Furthermore,
in our approach, the generation of the point cloud from IR and depth data is
not computed any more by the ROS wrapper, but directly within the driver,
thus shifting computational burden from the ARM CPU to the GPU of the
embedded system. Each parallel function we implemented requires as input the
number of CUDA threads that will concurrently operate. Since the dimension of
the depth and infrared images is 512x424, we designed a grid of 512 threads per

block with
⌊
512∗424+(512−1)

512

⌋
= 424 blocks [24]. OpenPTrack, the library we use

for performing people detection, requires as input from the Kinect One a point
cloud filled with 3D points colored with the corresponding intensity obtained
from the infrared image. Here, the infrared is preferred to the RGB because
the former is constant also in the dark. However, to help the people detection
module, an intensity rescaling operation has to be performed on the intensity
image in order to improve its contrast, thus helping people detection. Also this
computation is performed in our version of the libfreenect2 driver by exploiting
the parallelization achievable with CUDA. In the next sections, we detail the
important steps developed in this work.

3.1 Memory management

When exploiting GPU processing, the typical bottleneck is the overhead due to
the data transfer between the central memory and the GPU memory[25]. To
prevent these passages to affect the overall performance of our algorithm, we
pre-allocate in the GPU memory the exact space needed by the infrared and
depth images and the point cloud. This way, we avoid new allocations whenever
a new frame is acquired by the sensor, thus making the GPU only overwrite the
previous frame information. The memory passages performed by our algorithm
consist of the copy of the input data from CPU to GPU (only IR and depth
raw images) and of those needed to transfer the output data from GPU to CPU
central memory at the end of GPU processing. Fig. 2 highlights the memory
transfers performed by our algorithm. In particular, the memory transfers are



6

Algorithm 1: Standard algorithm of the libfreenect2 driver for each
frame
input : a frame F = (I,D,M) where I is the raw infrared image, D is

the raw depth image and M is the camera calibration matrix
output: The final infrared image Î, the final depth image D̂ and the

point cloud P

1 foreach pixel p of D do
2 computeDepth(p,p̂)
3 foreach pixel p of I do
4 computeIR(p, p̂)

5 foreach pixel pd of D̂ and the correspondent pixel pi of Î do
6 computePoint(pd, pi, pp)

less than 500 KB for the first transfer (from CPU to GPU) and the same quantity
plus 7 MB (the point cloud) for the transfer-back. The maximum data transfer
required by the application is then 7.5∗30 = 225MB/s which is about the 1.51%
of the total Jetson GPU bandwidth and the 0.067% of a nVidia Geforce GTX
Titan Black total GPU bandwidth.

3.2 Point Cloud generation

A 3D point cloud is the typical input of several algorithms in 3D computer
and robot vision [26,27]. This data structure is needed also by OpenPTrack to
perform people detection while being robust to light changes. This data type
is built from three pieces of information: the depth map, the infrared image
and the intrinsic parameters of the sensor. The point cloud is computed at each
new frame after that the depth data have been processed and become available.
Given the equations of 3D perspective projection:xy

d

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z

 (1)

where (x, y) are the coordinates of a pixel in the depth image, d is the mea-
sured depth, fx, fy, cx, cy are the intrinsic parameters of the sensor and represent
the focal lengths and the optical centers of the camera, we can obtain (X,Y, Z),
which are the 3D coordinates of the correspondent point in the point cloud, with

X = (x−cx)d
fx

Y =
(y−cy)d

fy

Z = d

(2)

For what concerns color information, in order to maintain the same structure
as for point cloud colored with RGB information, we consider all the three R,
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Algorithm 2: Our version of the libfreenect2 driver for each frame

input : a frame F = (I,D,M) where I is the raw infrared image, D is
the raw depth image and M is the camera calibration matrix

output: The final infrared image Î, the final depth image D̂ and the
point cloud P

1 Image size ← 512 * 424;
2 Block size ← 512;

3 Grid size ←
⌊
Image size+(Block size−1)

Block size

⌋
;

4 memoryCopyFromCPUToGPU(D,I);

5 computeDepth〈〈〈Grid size, Block size〉〉〉(D, D̂);
; // pixel-wise depth computation

6 computeIR〈〈〈Grid size, Block size〉〉〉(I, Î);
; // pixel-wise IR computation

7 computePointCloud〈〈〈Grid size, Block size〉〉〉(D̂,Î,M ,P );
; /* pixel-wise point cloud generation (every pixel

corresponds to a point) */

8 memoryCopyfromGPUToCPU(D̂,Î , P );

G and B channels and fill them with i, that is the infrared intensity of the
pixel (x, y), in the IR image. Indeed, people detection performed on infrared
information is more robust to changes in visible light. We fill the three R, G and
B channels with the same i values in order to have the same algorithms working
both on real RGB-colored point clouds and intensity-colored clouds. It is worth
noting that, in this work, the additional computational burden due to the filling
and use of three identical intensity channels is actually negligible. The space
in memory allocated for the cloud is then filled in with P = (X,Y, Z,R,G,B)
points. Once the point cloud is filled, it is transferred back to the CPU (bottom
part of Fig. 2). An illustration of this process and some examples of the resulting
point cloud are shown in Fig. 3.

3.3 The kinect2 bridge wrapper

The kinect2 bridge wrapper is an executable which streams data from the
libfreenect2 driver library to the ROS topics whenever these data are re-
quested. We had to adapt this wrapper because our version of the driver directly
generates the point cloud that was computed by an external ROS node with the
standard versions of the driver and the wrapper (see Fig. 1). This choice allowed
to save time avoiding to allocate, transfer and fill each point cloud.
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Fig. 2: The processing flow performed by our library for each single frame. At
start-up, the space for the needed data is allocated once in the GPU memory,
then, for each frame, the data coming from the CPU memory are processed to
achieve the final data. The data transferred from CPU to GPU consist of the
raw IR and depth data, while the data transferred from GPU to CPU consists
of the final IR, depth and point cloud obtained after the parallel computations
have been made.

4 Experiments and Results

In this section, we present the experiments we performed to validate the im-
provements of our work with respect to the state-of-the-art and prove that the
complete system composed of Kinect One, Jetson TK1 and OpenPTrack can
work as a powerful RGB-D perception node for people detection. In Tab 1, we
quantitatively compare our work with the library in [17] in terms of frame rate
of the streamed point cloud and of the complete people detection application
when using the Jetson TK1 as processing unit. It can be noticed that the overall
frame rate doubles by exploiting this work, thus reaching 13.7 frames per second
that is enough for obtaining a continuous tracking of people. The publishing rate
of the point cloud almost triples, thus providing 22 point clouds per second to
the high-level ROS-based algorithms that could run on the Jetson. The same
test has also been performed by substituting the Jetson embedded system with
an high-end laptop, with an Intel i5-4210M CPU and a nVidia Quadro K1100M
GPU. The frame rates reported in Tab 2 prove that our work can be used also
with CUDA-enabled, non-embedded computers, increasing the overall perfor-
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and by exploiting the intrinsic parameters of the sensor. Example of six views
of the resulting cloud are reported on the right.

libraries used Point Cloud topic framerate (Hz) OpenPTrack detection framerate (Hz)
ours 22 13.7
[17] 8 7

Table 1: Frame rate comparison with a Jetson TK1 embedded system.

mance. Finally, we qualitatively compared the detection output obtained by the
embedded system and the laptop-based system when using the libraries devel-
oped in this work together with OpenPTrack. In Fig. 4, the tracks generated in
a scenario with two moving persons are reported. It can be noticed that the two
persons are correctly detected by both nodes. The trail generated by the embed-
ded node (in red) is slightly less dense than the one generated by the laptop (in
green) because of the differences in frame rate outlined in Tab 1 and 2. These
tests confirm that the work described in this paper allows to use Kinect One
together with a CUDA-enabled embedded system as a compact, powerful and
cost-efficient perception node. Furthermore, the library is useful also for mobile

libraries used Point Cloud topic framerate (Hz) OpenPTrack detection framerate (Hz)
ours 30 25.4
[17] 30 22

Table 2: Frame rate comparison with a high-end laptop.
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Fig. 4: Output of OpenPTrack obtained while two persons were freely moving in
the scene. Each person has two trails, the green one comes from a Kinect One
attached to a high-end laptop, while the pink one is generated from a Kinect One
coupled with a nVidia Jetson TK1. It can be noticed that the two persons are
correctly detected by both nodes. The trail generated by the embedded node is
slightly less dense than the one generated by the laptop because of the differences
in frame rate outlined in Tab 1 and 2. The two tracks present a small offset for
visualization purposes.

robotics where real-time performance, weight and autonomy of the equipment
are an issue. Indeed, the library outputs all the information needed to build ro-
bust navigation algorithms and it is compatible with ROS, the de-facto standard
used in the robotics community.

5 Conclusion

In this work, we presented a powerful and cost-efficient human perception system
useful for people detection purposes in camera networks and mobile robotics.
The system is composed of an embedded system, the nVidia Jetson TK1, the
Kinect One and OpenPTrack, an open-source, ROS-compatible, multi-camera
people tracking system. The main contribution of this work is the development
of a new library which exploits the GPU capabilities of the Jetson to process at
high frame-rate the rich stream of data coming from the Kinect One. Another
contribution is the development of a wrapper to make the library compatible
with the ROS middleware. To demonstrate the validity of the perception system,
we tested it while performing people detection in a network using OpenPTrack.
The results are that point cloud generation is performed at 22 Hz and people
detection is obtained at 14 Hz, thus tripling and doubling, respectively, the frame
rates that were obtained with the state-of-the-art library [17]. This work is not
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only important for systems of many nodes, where each node has to be as powerful
and cheaper as possible, but also as perception system for mobile robotics, given
its compatibility with ROS. To provide the best benefit for the computer vision
and robotics community, but also for developers of human-computer interaction
applications, we released all this work as open source within the OpenPTrack
repository4.
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