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A B S T R A C T

Contemporary neuroscience has embraced network science and dynamical systems to study the complex and self-
organized structure of the human brain. Despite the developments in non-invasive neuroimaging techniques, a
full understanding of the directed interactions in whole brain networks, referred to as effective connectivity, as well
as their role in the emergent brain dynamics is still lacking. The main reason is that estimating brain connectivity
requires solving a formidable large-scale inverse problem from indirect and noisy measurements. Building on the
dynamic causal modelling framework, the present study offers a novel method for estimating whole-brain
effective connectivity from resting-state functional magnetic resonance data. To this purpose sparse estimation
methods are adapted to infer the parameters of our novel model, which is based on a linearized, region-specific
haemodynamic response function. The resulting algorithm, referred to as sparse DCM, is shown to compare
favorably with state-of-the art methods when tested on both synthetic and real data. We also provide a graph-
theoretical analysis on the whole-brain effective connectivity estimated using data from a cohort of healthy in-
dividuals, which reveals properties such as asymmetry in the connectivity structure as well as the different roles of
brain areas in favoring segregation or integration.
1. Introduction

The study of the human brain as a complex network plays a central
role in contemporary neuroscience. It is now widely believed that
cognitive processes are not localized to a specific brain region but arise
from the interplay of several areas (Sporns et al., 2004). The study and
validation of this concept, known as functional integration, critically
relies on the analysis of the anatomical and functional relations between
brain regions, which is defined in terms of brain connectivity. The
development of non-invasive neuroimaging techniques has allowed to
identify different types of brain connectivity, ranging from anatomical
(structural) links, to statistical (functional) and directed (effective) con-
nections (see (Sporns et al., 2005; Friston, 2011; Park and Friston, 2013)
for a review). Their joint analysis appears to be crucial to understand the
complex organization of the human brain, which in turn plays a key role
in predicting the effect of brain lesions (Carter et al., 2010; Siegel et al.,
2016) as well as in studying and designing brain stimulation treatments
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(Lozano and Lipsman, 2013; Klein et al., 2015; Kahan et al., 2014; Cubo
et al., 2016). While whole-brain characterizations exist for structural (SC)
and functional connectivity (FC) (Greicius et al., 2003; Van Den Heuvel
and Pol, 2010; Zhou et al., 2006), a thorough understanding of
whole-brain directed interactions (as described by effective connectivity)
remains elusive. The main reason for this gap lies in the fact that effective
connectivity (EC) is often defined in terms of a generative model for the
blood oxygen level dependent (BOLD) signal. The latter is measured with
functional Magnetic Resonance Imaging (fMRI). Inferring EC requires
estimating a large number of parameters from a relatively small dataset
(Valdes-Sosa et al., 2011a), which turns out being an ill-posed inverse
problem.

Accordingly, inference of whole-brain effective connectivity appears
as a key open challenge for the neuroscience community (Razi and
Friston, 2016; Fr€assle et al., 2018; Bielczyk et al., 2018). Besides the
complexity of the estimation problem, validation of the estimated
effective connectivity networks is still an open issue.
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A classical approach for effective connectivity estimation relies on a
nonlinear dynamical model. The latter accounts for both the directed
dependencies among neural populations and the mapping from neural
activity to observations. This framework is known in the neuroimaging
community as Dynamic Causal Modelling1 (DCM); it was originally
developed to deal with fMRI data (Friston et al., 2003; Daunizeau et al.,
2011) and later extended to handle EEG and MEG data (David et al.,
2006; Kiebel et al., 2009). The original deterministic formulation (Friston
et al., 2003) only accounted for task-dependent fMRI data, where neural
activity is driven by known external stimuli. A stochastic DCM, driven by
endogenous random fluctuations, was later developed to deal with
resting state (Friston et al., 2014). DCM inversion is commonly per-
formed assuming a prior for the model parameters and using the Varia-
tional Bayes approach to compute an approximation of their posterior
(Friston et al., 2003, 2007). This procedure is particularly challenging for
stochastic DCMs, because it requires to infer not only the model pa-
rameters but also the latent neural activity (Friston et al., 2008, 2010).
This latter issue was solved in (Friston et al., 2014; Razi et al., 2015) by
postulating a linear model for the haemodynamic response, allowing to
reformulate the DCM in the frequency domain and simplifying the model
inversion.

Within the DCM framework, effective connectivity estimation typi-
cally starts by postulating a family of candidate network topologies and
proceeds by inverting a DCM for each topology; finally, the best hypoth-
esis is chosen using Bayesian model selection (BMS) (Friston and Penny,
2011; Stephan et al., 2009, 2010). However, the number of possible
network topologies is combinatorial in the number of network nodes (i.e.,
brain regions). This poses severe challenges due to (i) the need to invert a
huge number of competing DCMs and (ii) the need to compare a combi-
natorial number of alternatives which leaves very low statistical signifi-
cance to the final selected network topology (EC). These issues have been
partially overcome by resorting to techniques known as post-hoc model
selection (Friston and Penny, 2011) or Bayesian model reduction (Friston
et al., 2016), which allow to invert one fully connected model and to
subsequently perform a greedy selection over the nested models. Despite
the availability of these approaches, the inversion of a classical DCM re-
mains ill-posed and computationally intensive for large brain networks,
thus limiting its applicability to networks including about ten nodes (Di
and Biswal, 2014; Razi et al., 2015; Ushakov et al., 2016). More recently,
the introduction of sparsity inducing priors on the connectivity matrix has
extended the use of resting-state DCM to graphs composed of tens of nodes
(Seghier and Friston, 2013; Razi et al., 2017). Another approach, known
as regression DCM (Fr€assle et al., 2017), was recently applied to infer
task-dependent effective connectivity among 104 brain regions (Fr€assle
et al., 2018); the price to be paid in regression DCMs is that a linear and
known haemodynamics model needs to be postulated.

Outside the DCM framework, models which attempt to establish
Granger-type causality directly on observed BOLD signals have been
developed. For instance, effective connectivity was recently treated as a
parameter of the model describing brain resting-state dynamics as an
Ornstein-Uhlenbeck process. Note that this approach neglects the effect
of the haemodynamic response. Under this modelling assumption, a fast
procedure was proposed to estimate brain directed dependencies (Gilson
et al., 2016) and applied to whole-brain networks. The estimated effec-
tive connectivity profiles proved to be reliable signatures for subject
identification as well as for task/rest condition detection (Gilson et al.,
2017; Pallares et al., 2018).

While the aforementioned approaches for effective connectivity esti-
mation rely on the specification of a generative model of the available
measurements, Bayesian nets provide an alternative model-free
1 There is some debate in the literature on the use of the terms directed and
causal, see e.g. (Valdes-Sosa et al., 2011b). We prefer to avoid entering in this
debate and therefore we shall always use the term directed connections when
talking about EC.
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framework. Under the assumption that brain effective connections form a
directed acyclic graph (DAG), these methods typically evaluate condi-
tional probabilities to assess network adjacencies (Ramsey et al., 2006;
Ramsey et al., 2010; Richardson Spirteset al, 1996). Among them, the Fast
Greedy Equivalence Search (FGES) was recently applied to a voxel-wise
whole-brain network (Ramsey et al., 2017). According to the validation
study performed in (Smith et al., 2011), and more recently confirmed in
(Sanchez-Romero et al., 2018), Bayesian nets successfully detect existing
connections, but are much less powerful in estimating link directionality.

The main contribution of the present work is to offer a novel effective
connectivity estimation procedure for resting-state fMRI data, hereafter
named sparse DCM. Our method is based on a simplification of the
standard resting-state DCM (Friston et al., 2014) and can be applied to
whole-brain data. The main differences with respect to standard DCMs
are the following:

1. DCMs and the Ornstein-Uhlenbeck model adopted in (Gilson et al.,
2016) are formulated in continuous-time; our model is converted in
discrete-time while keeping a continuous-time physical parametri-
zation (effective connectivity). In this way we better exploit the low
temporal resolution of fMRI scanners so as to simplify (from the
computational point of view) the burden of model inversion without
loosing in statistical performance.

2. We propose a statistical linearization of the haemodynamic response
function (HRF), thus obtaining a linear stochastic generative model of
resting-state fMRI data. This allows to translate the priors on the
physiological parameters describing the haemodynamic model
(Buxton et al., 1998) into a prior on the HRF that can be exploited
when performing model inversion. A preliminary version of this
procedure was proposed in (Prando et al., 2017), and it is generalized
in the present study to account for the haemodynamic variability
across brain areas.

3. Following the Sparse Bayesian Learning (SBL) approach (Tipping,
2001), a sparsity-inducing prior is formulated on the matrix
describing the effective connectivity network. In addition, the itera-
tive reweighted procedure introduced in (Wipf and Nagarajan, 2010)
is adapted to our framework.

4. An expectation-maximization (EM) Algorithm (Dempster et al., 1977;
Shumway and Stoffer, 1982) is used to invert our simplified (linear)
DCM. Insights on the algorithm initialization are provided in terms of
(i) a procedure for automatic initialization and (ii) analyses on the
role of prior knowledge about effective connectivity patterns on
initialization, which might be important for clinical applications.

The second contribution of the present work is to provide a thorough
comparison of state-of-the-art methods for estimating effective connec-
tivity models, ranging from DCM-type (Friston et al., 2014) (including
our sparse DCM) to Bayesian nets (Spirtes and Glymour, 1991; Ramsey,
2015; Ramsey et al., 2017; Shimizu et al., 2006; Richardson, 1996;
Sanchez-Romero et al., 2018) and Granger causality (Barnett and Seth,
2014).

The third contribution of the current study is to offer an extensive
study on empirical fMRI data for a whole-brain parcellation (Hagmann
et al., 2008). In this real scenario, the effective connectivity pattern
inferred by sparse DCM was validated by measuring its ability to repro-
duce subject-specific functional connectivity on new data. Building on
these results, we also provide a graph-theoretical analysis on the
whole-brain effective connectivity networks estimated for a cohort of
subjects, computing metrics such as nodes strength, clustering coefficient
and path lengths (Rubinov and Sporns, 2010). This large-scale analysis is
typically performed on functional or structural networks (Bullmore and
Sporns, 2009; Fornito et al., 2015), while only few results are available
for effective connectivity graphs, see e.g. (Gilson et al., 2016; ZhouMc-
Colgan et al., 2017; Fr€assle et al., 2018).

Note that the generative model adopted here is related to that pro-
posed in (Ryali et al., 2011) and further developed in (Ryali et al., 2016).
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There are however some key differences, most notably: (i) a different
linearization strategy for the HRF and (ii) the use of the EM Algorithm
combined with an iterative-reweighted procedure (Wipf and Nagarajan,
2010) to invert the specified generative model and to obtain a sparse
connectivity pattern.

Alternative, and possibly richer, modelling frameworks could of
course be considered. For instance, in the control and system identifi-
cation community several dynamical models with an underlying network
structure have been studied (see (Yuan et al., 2011; Chiuso and Pillo-
netto, 2012; Weerts et al., 2018; Zorzi and Sepulchre, 2016) and refer-
ences therein). The sparse DCMmodel provides a good trade-off between
model complexity and the need to account for physiological insights and
computational issues, all of which should be considered when estimating
models for high dimensional data (fMRI recordings) from relatively small
(i.e., measured for short time intervals) datasets.

This article is structured to reflect its three main contributions. The
first part reviews the classical DCM framework and introduces our sparse
DCM model. The second part establishes the face, construct and predic-
tive validity of the scheme. The third part illustrates a further application
of sparse DCM by addressing a generic issue in functional integration
from the perspective of graph theory.

2. Methods and materials

2.1. Dynamic causal modelling

A Dynamic Causal Model (DCM), as proposed by Friston et al. (2003),
is a nonlinear multiple input multiple output (MIMO) dynamical system.
It is driven by experimentally designed inputs (task) and by random
neural fluctuations (resting-state). It outputs the BOLD fMRI response
yðtÞ for each of the monitored brain areas. The DCM consists of two
components: a differential equation describing the coupling among
neuronal populations, and a dynamic map from the neuronal activity to
the measured BOLD signal yðtÞ, the so-called haemodynamic response.
Let xðtÞ ¼ ½x1ðtÞ⋯ xnðtÞ�> denote the hidden neural activity of n brain
regions at time t. The DCM takes the following form:

_xðtÞ ¼ f
�
xðtÞ; uðtÞ; θf

�þ vðtÞ
yðtÞ ¼ hðxðtÞ; θhÞ þ eðtÞ; eðtÞeN ð0;RÞ; (1)

where uðtÞ denotes experimental manipulations (such as external stimuli,
task demands), vðtÞ is a stochastic term representing intrinsic brain
fluctuations, and eðtÞ accounts for observation noise with covariance
matrix R. The parameters θf describe the model at the neuronal level,
including effective connectivity, while θh are biophysical parameters
defining the haemodynamic response. The original DCM formulation
(Friston et al., 2003) assumes that the neural activity is elicited only by
external stimuli uðtÞ, thus neglecting the stochastic source vðtÞ, and
postulates a bilinear form for f:

_xðtÞ¼
�
Aþ

Xm
j¼1

ujðtÞBj

�
xðtÞ þ CuðtÞ: (2)

In this case θf :¼ fA;B1;⋯;Bm;Cg encode couplings among neural
activity and external inputs. Specifically, A represents the network con-
nectivity (effective connectivity) in the absence of external excitations, Bj

accounts for the change in the neuronal coupling due to the j-th input;
finally, C models the direct influence of experimental manipulations on
the neuronal activity.

A variant of the original DCMwas introduced by (Friston et al., 2014)
in order to deal with resting-state fMRI (rs-fMRI) data. In this setting,
external stimuli are absent, that is uðtÞ ¼ 0, and the random fluctuations
vðtÞ are responsible for driving the neural activity. Function f in (1) be-
comes linear:

_xðtÞ¼AxðtÞ þ vðtÞ (3)
3

with A representing effective connectivity.
The second component of a DCM, that is the haemodynamic response

h appearing in Eq. (1), is modelled through a nonlinear, biophysically
inspired, dynamical system. It takes the neural activity xiðtÞ as input and
outputs the corresponding BOLD signal biðtÞ (Buxton et al., 1998; Friston
et al., 2000; Stephan et al., 2007):

_riðtÞ¼ xiðtÞ� κiriðtÞ� ηiðfiðtÞ� 1Þ; i¼ 1;…; n (4)

_f iðtÞ¼ riðtÞ (5)

τi _viðtÞ¼ fiðtÞ � v1=ξii ðtÞ (6)

τi _qiðtÞ¼ ðfiðtÞ = ρiÞ
�
1�ð1� ρiÞ1=fiðtÞ

�� v1=ξi�1
i ðtÞqiðtÞ (7)

biðtÞ¼V0k1ð1� qiðtÞÞþV0k2ð1� qiðtÞ = viðtÞÞ þ V0k3ð1� viðtÞÞ: (8)

The haemodynamic states fri; fi; vi; qig are biophysical quantities: ri
denotes the vasodilatatory signal, fi is the blood inflow, vi and qi are
respectively the blood volume and the deoxyhemoglobin content. The
output equation (8) depends on the resting blood volume fraction V0

(typically V0 ¼ 0:02) and on the constants k1, k2 and k3. These have
found different characterizations in the literature, as reviewed in (Ste-
phan et al., 2007). Also the parameters θh ¼ fκi; ηi; τi; ξi; ρi; i¼ 1; ::; ng
have a biological meaning, see (Friston et al., 2003). In the latter study, a
prior distribution for θh has been specified. When adopting the DCM
framework, effective connectivity is estimated by inverting the DCM
usingmeasured fMRI data. In a Bayesian framework this inversion cannot
be computed in closed form. Most often Variational Bayes techniques
under the Laplace approximation (VBL) (Friston et al., 2007; Daunizeau
et al., 2011) are exploited. When resting-state fMRI data are considered
and neural dynamics is assumed to be described by Eq. (3), the DCM
inversion becomes more challenging than in the task-dependent domain
(that is, when Eq. (2) is used). While in the latter case, only the param-
eters θf and θh have to be inferred, in the first situation, also the neural
states xðtÞ have to be estimated. Two procedures are commonly used to
this end: Dynamic Expectation Maximization (DEM) (Friston et al., 2008)
and Generalized Filtering (GF) (Friston et al., 2010; Li et al., 2011); even if
both adopt the Variational Bayes procedure, DEM uses the mean-field
and the Laplace approximations, while GF only exploits the latter.
However, a different approach, known as spectral DCM (spDCM) (Friston
et al., 2014; Razi and Friston, 2016) has been proven superior to these
methods, both in terms of face validity and of computational complexity
(Razi et al., 2015). Differently from DEM and GF, which operate in time
domain, spDCM replaces the stochastic generative model (3)–(8) with a
deterministic model producing the cross-spectra of the original fMRI
time-series. In this way, endogenous neural states xðtÞ are no longer
estimated, but only the time-invariant parameters describing their
cross-spectra have to be inferred.Despite the widespread use of these
approaches in computational neuroscience, their applicability is limited
to small brain networks, in the order of ten nodes. Increasing the number
of regions leads to a relevant rise in the number of parameters to be
estimated and in turn to an exponential growth of the computational time
required to invert these models. These limitations particularly affect DEM
and GF, which have to estimate both the hidden neural states trajectories
xðtÞ and the parameters. On the other hand, the computational efficiency
of spDCM was recently exploited to invert large-scale DCMs, comprising
up to 36 brain regions (Razi et al., 2017). To improve the robustness and
further reduce the computational burden, we introduce below a simpli-
fication of the original DCM framework and a simplified (Expect-
ation-Maximization) procedure for its inversion.
2.2. Linear DCM

The proposed reformulation of the classical DCM for rs-fMRI (Friston
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et al., 2014) involves both a discretization and a linearization of the
original non-linear continuous-time model. The former is dictated by the
low temporal resolution of fMRI scanners: since they indirectly measure
the neuronal activity at time intervals of length TR (typically ranging
from 0.7 to 3 s), it is reasonable to adopt a discrete-time version2 of Eq.
(3). This is derived by simply observing that

xðkTR þ TRÞ ¼ eAðkTRþTR�kTRÞxðkTRÞ þ
Z kTRþTR

kTR

eAðkTRþTR�sÞvðsÞ ds

¼ eATR xðkTRÞ þ
Z TR

0
eAτvðτÞ dτ:

Using the simplified notation xðkÞ :¼ xðkTRÞ and defining wðkÞ :¼R TR
0 eAτvðτÞ dτ, the sampled version of Eq. (3) becomes

xðkþ 1Þ¼ eATR xðkÞ þ wðkÞ: (9)

Furthermore, we assume that vðtÞ, t 2 R, in (3) is white Gaussian
noise with intensity σ2In where In denotes the identity matrix of size n;
consequently, wðkÞ is white Gaussian with variance (Garnier and Wang,
2008)

Q¼ σ2
Z TR

0
eAτeA

>
τ dτ: (10)

The haemodynamic response (4)–(8) is linearized following a statis-
tical approach as follows: we consider a Finite Impulse Response (FIR)
model which takes as input a neuronal state xiðkÞ and outputs the BOLD
signal biðkÞ :¼ biðkTRÞ:

biðkÞ¼
Xs�1

l¼0

hi;l xiðk� lÞ; i¼ 1;…; n: (11)

The length s of the impulse response hi :¼ ½hi;0 ⋯ hi;s�1�> is chosen
large enough to retain the relevant temporal dependencies. The finite
impulse responses hi are assigned a Gaussian prior distribution hie N ðμh;
ΣhÞ, by exploiting the empirical priors for the parameters θh appearing in
the non-linear model (4)–(8) of the haemodynamic response. The exact
procedure we followed rests on statistical linearization techniques and is
reported in Appendix A.

Having replaced the non-linear component of the DCM for rs-fMRI
with a linear map, we can formulate the proposed DCM variant as a
stochastic linear state-space model. In particular, defining

xðkÞ :¼ ½ x>ðkÞ x>ðk � 1Þ ⋯ x>ðk � sþ 1Þ �> 2 ℝns

wðkÞ :¼ ½w>ðkÞ 0�> 2 ℝns;

model (1) with the linearization (11) can be written in the form�
xðk þ 1Þ ¼ AxðkÞ þ wðkÞ
yðkÞ ¼ HxðkÞ þ eðkÞ: (12)

Matrices A and H in (12) are defined as

A : ¼
	

eATR 0
Inðs�1Þ 0



(13)

H : ¼

2
664
h1;0 0 ⋯ 0 h1;1 0 ⋯ 0 ⋯ h1;s�1 0 ⋯ 0
0 h2;0 ⋱ ⋮ 0 h2;1 ⋱ ⋮ ⋯ 0 h2;s�1 ⋱ ⋮
⋮ ⋱ ⋱ 0 ⋮ ⋱ ⋱ 0 ⋯ ⋮ ⋱ ⋱ 0
0 ⋯ 0 hn;0 0 ⋯ 0 hn;1 ⋯ 0 ⋯ 0 hn;s�1

3
775:

To complete the model specification, in line with Eqs. (10) and (1),
2 Issues related to estimation of sparse continuous time models from low-rate
(i.e. large TR) measurements have been also recently discussed in (Yue et al.,
2016).

4

we further assume:

wðkÞeN ð0;QÞ; Q : ¼ blkdiagðQ; ςInðs�1ÞÞ (14)

eðkÞ eN ð0;RÞ; R : ¼ diag
�
λ21;…; λ2n

�
(15)

where blkdiagð�Þ and diagð�Þ respectively denote the block-diagonal and
the diagonal operators, while ς ¼ 10�15 is a scalar positive constant
chosen small enough to guarantee that Q is invertible. The bold notation
has been used to represent extended quantities. Section 2.3 will describe
how the parameters

θ : ¼fA; σ; h1;…; hn; λ1;…; λng (16)

which specify the linear model in (12), are estimated using an
Expectation-Maximization (EM) Algorithm.

For a fixed value of θ, we define the model Functional Connectivity
(FC) as

½cFC�ij ¼
�
Σy

�
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Σy

�
ii

�
Σy

�
jj

q : (17)

where Σy is the stationary output covariance matrix Σy ¼ HΣxH> þ R and
the stationary state covariance Σx is the solution of the Lyapunov equa-
tion Σx ¼ AΣxA> þ Q. The model FC (17) can be computed using the

parameters bθ estimated from a run of rs-fMRI data (according to the
procedure detailed in Section 2.3). Note that the “empirical” FC, defined
as the correlation between the empirical BOLD time-series, can be seen as
a sample estimate of the model FC in (17). A comparison between the
two, e.g. based on the Pearson Correlation Coefficient (PearsonCC) be-
tween the two matrices, will serve as a validation step for the estimation
routine when a ground-truth is not available, that is when dealing with
empirical fMRI data. A more reliable validation can be obtained by

comparing the model FC in (17) computed from the estimated bθ with the
empirical FC obtained in a different run from the same subject, i.e. from
new data that have not been used for parameters inference: a good
agreement would be a reasonable indicator of the generalization capa-
bilities of the estimated model.
2.3. Sparse estimation Algorithm

We now describe a procedure to estimate the parameter vector θ of
model (12) from measurements fyðkÞgNk¼1 of the BOLD signal.

Following a Bayesian perspective, we first assign a prior pγðθÞ so as to
reflect either prior knowledge (e.g., on typical haemodynamic responses
as in (Friston et al., 2003)) or to favor reconstruction of a sparse effective
connectivity matrix A. The parameters γ, known as hyperparameters in
the Bayesian learning framework, define the prior and are also estimated
from data as discussed below. Ideally, one would like to find θ and γ that
maximize the marginal posterior

pγðθjYÞ¼
Z

pγðX; θjYÞ dX (18)

where Y :¼ ½y>ð1Þ ⋯ y>ðNÞ�> and X :¼ ½x>ð0Þ⋯ x>ðNÞ�>, playing the
role of measured and latent variables, respectively. However, the
computation of such a high-dimensional integral is typically avoided by
exploiting the decomposition pγðθjYÞ∝pðY jθÞpγðθÞ and a tractable lower
bound of the likelihood

pðY jθÞ¼
Z

pðX;Y jθÞ dX: (19)

An appropriate bound can be found e.g. resorting to the EMAlgorithm
(Dempster et al., 1977).

Before delving into algorithmic details, the prior pγðθÞ will be speci-
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fied. It will be assumed that pγðθÞ∝pγðAÞpðσÞ
Qn

i¼1pðhiÞpðλiÞ, where pðσÞ
and pðλiÞ, i ¼ 1;…; n, are uninformative priors while the hi’s are i.i.d.
Gaussian hieN ðμh;ΣhÞ. A key role is played by the sparsity inducing prior
pγðAÞ for the connectivity matrix A. Following the Sparse Bayesian
Learning (SBL) perspective (Tipping, 2001), the elements ½A�ij of matrix A
are postulated to be independent zero mean Gaussian with variances γk,
i.e. pγðaÞeN ð0;diagðγ1;⋯; γn2 ÞÞ with a :¼ vecðA>Þ denoting the vectori-
zation of A>. SBL was originally proposed to deal with classical regres-
sion problems where no hidden variables are present and where
observations are corrupted by white Gaussian noise. Under this setting,

the hyperparameters γ :¼ fγkgn
2

k¼1 will be estimated through marginal
likelihood maximization (also known as type-II maximum likelihood
method). As a consequence, under generic conditions, the maximum
likelihood ML estimates of certain γi’s will be zero and the Gaussian
posterior distribution of the corresponding element ai of matrix A will
concentrate around zero, leading to a zero MAP estimate. To compute the

ML estimate, the hyperparameters fγign
2

i¼1 are updated, as an inner step of
the EM-type Algorithm described below, following the reweighted ℓ1

approach proposed in (Wipf and Nagarajan, 2010). This procedure pro-
vides an automatic selection of a sparsity pattern in the estimated
effective connectivity matrix A, thus avoiding the combinatorial search
over candidate network structures, which becomes practically infeasible
in reasonably sized networks (tens to hundreds of nodes). Further details
will be provided in Appendix C. Though the introduction of post-hoc
model selection (Friston and Penny, 2011) and Bayesian Model Reduc-
tion (Friston et al., 2016) have extremely simplified the search over
candidate DCM models, classical DCM approaches (Friston et al., 2007,
2008, 2010, 2014; Razi et al., 2015) remain affected by the issue of
combinatorial model search. During the last decade, several studies have
tried to alleviate this drawback by specifying different sparsity priors for
the connectivity matrix A (Ryali et al., 2011, 2016; Seghier and Friston,
2013; Razi et al., 2017; Fr€assle et al., 2018), in line with the approach we
propose here.

We now provide the details regarding how the MAP estimate

bθ ¼ arg max
θ

ln pðY jθÞ þ lnpγðθÞ (20)

is obtained using an EM procedure that iteratively optimizes a lower
bound of the (log)posterior. Classically, EM maximizes lnpðY jθÞ by iter-
atively maximizing its lower bound

L ðqðXÞ; θÞ¼
Z

qðXÞðln pðX;Y jθÞ� ln qðXÞÞ dX (21)

with respect to an arbitrary distribution qðXÞ and θ. In the statistical
learning literature L ðqðXÞ; θÞ is also known as (negative) free-energy. At
the l-th iteration of the Algorithm, L ðqðXÞ; θðlÞÞ is maximized by
qðlþ1ÞðXÞ ¼ pðX��Y ;θðlÞÞ. Plugging this into (21), one obtains

L
�
qðlþ1ÞðXÞ; θ�¼ Z

p
�
X
��Y ; θðlÞ�ln pðX;Y jθ�dX

�
Z

p
�
X
��Y ; θðlÞ�ln p�XjY ; θðlÞ�dX: (22)

In our MAP setting (20) the a-priori information on θ needs to be
included. Neglecting the terms that do not depend on θ and γ, a lower
bound of the posterior is given by

Q
�
θ; θðlÞ

�¼ Z
p
�
X
��Y ; θðlÞ�ln pðX;Y jθ� dXþ lnpγðθÞ: (23)

Using the Markovian property of system (12), Q ðθ; θðlÞÞ can be
rewritten as [Sarkka, 2013, Ch.12]
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Q
�
θ;θðlÞ

�¼XN Z
p
�
xðkÞ;xðk�1Þ��Y ;θðlÞ� lnpðxðkÞjxðk�1Þ;θ�dxðkÞdxðk�1Þ
k¼1

þ
XN
k¼1

Z
p
�
xðkÞ��Y ;θðlÞ� lnpðyðkÞjxðkÞ;θ�dxðkÞþ lnpγðθÞ

(24)

where the smoothing distributions

p
�
xðkÞ��Y ; θðlÞ�¼N ðbxsðkÞ;PsðkÞÞ (25)

p
�
xðkÞ;xðk�1Þ��Y ;θðlÞ�¼N

	 bxsðkÞbxsðk�1Þ


;

	
PsðkÞ PsðkÞG>ðk�1Þ

Gðk�1ÞPsðkÞ Psðk�1Þ

�

(26)

can be computed by means of the Rauch-Tung-Striebel smoother (RTSS)
(Rauch et al., 1965). Its implementation is summarized in Appendix B
(Algorithm 2). Plugging (25) and (26) into (24) we get

Q
�
θ; θðlÞ

� ¼ lnpγðθÞ � N
2
lnj2πQj � N

2
lnj2πRj

�N
2
tr
�
Q�1ðΛ�ΨA> � AΨ> þ AϒA>Þ�

�N
2
tr
�
R�1ðΔ� ΞH> �HΞ> þHΛH>Þ�

(27)

where

Λ ¼ 1
N

X
k¼1

PsðkÞ þ bxsðkÞ½bxsðkÞ�>;

Ψ ¼ 1
N

X
k¼1

PsðkÞGðk � 1Þ þ bxsðkÞ½bxsðk � 1Þ�>;

ϒ ¼ 1
N

X
k¼1

Psðk � 1Þ þ bxsðk � 1Þ½bxsðk � 1Þ�>;

Ξ ¼ 1
N

X
k¼1

yðkÞ½bxsðkÞ�>; Δ ¼ 1
N

X
k¼1

yðkÞy>ðkÞ:

In summary, our Algorithm alternates between an RTS smoother,
which computes the distributions (25)–(26) for a fixed θ, and the maxi-
mization of function Q ðθ; θðlÞÞ in Eq. (27) to update θ. At each iteration

also the hyper-parameters fγign
2

i¼1 are updated; this is the key step for
inducing sparsity on A. The complete routine is reported in Appendix B
(Algorithm 1).

In terms of computational cost, each iteration has complexity OððnsÞ3Þ
due to matrix inversions in the RTS smoother, see step 13 of Algorithm 1.
Thus, for N iterations, the computational cost scales as OððnsÞ3NÞ. In our
experiments the number N of EM iterations ranged in the interval
½20;400� depending on sampling time and on the number of monitored
regions. Results on average execution times on a specific hardware can be
found in Sections 3.1 and 3.2.

A further issue that calls for attention is the non-convexity of problem
(20), which might have many local minima. As such the initialization θð0Þ

and fγð0Þi gn
2

i¼1 plays a crucial role, especially when dealing with large
DCMs. We experimentally investigated the impact of this stage on the

estimated DCM and we found that the values of fγð0Þi gn
2

i¼1 do not strongly
affect the final outcome of the EM Algorithm, while the initialization of
the effective connectivity matrix A seems to be more critical. Some of
these results will be reported in Section 3.3.5 where large-scale DCMs are
considered. As an outcome of the latter investigation further hints on
initialization are found in Appendix B (Algorithm 1).

A last warning concerns sparsity ofA: due to numerical issues, some of
the parameters bγk’s become small but not zero. Thus, we obtain quasi-
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sparse solutions bA, i.e. with many entries having very small absolute
values. These entries are irrelevant to any practical purpose and, to

facilitate interpretation of the results, are thresholded to zero to make bA
rigorously sparse. An automated thresholding criterion based on func-
tional connectivity notions will be proposed and discussed (see Sec. 3.1
and also Sec. 3.3.2).
2.4. Synthetic data

Some Monte-Carlo studies on synthetic datasets were conducted. The
synthetic rs-fMRI data were generated using SPM12 routines spm_int_J,
spm_fx_fmri and spm_gx_fmri (http://www.fil.ion.ucl.ac.uk/spm/).
Routine spm_gx_fmri was modified to generate different haemodynamic
responses, each generated randomly drawing θh from the empirical dis-
tributions reported in (Friston et al., 2003).

Two generative models, with respectively 7 and 66 brain regions,
were used. The former setup resembles a local brain network, while the
latter simulates a whole-brain network. A fixed sparsity pattern was
assigned to matrix A in both setups. In the 7-regions network the non-
zero entries were fixed in order to resemble the connectivity of a local
brain network. The 66-nodes network was obtained using the human
connectome derived from diffusion-weighting imaging in (Hagmann
et al., 2008): following (Fr€assle et al., 2018), a structural connection
between two brain areas was assumed to be present only if the average
inter-regional fiber density was larger than 0.06. This thresholding
favored the stability of the DCM constructed starting from the con-
nectome matrix. In both setups, the absolute values of the non-zero
(off-diagonal) entries of A were sampled from a normal distribution
with mean 0.2 and variance 0.0025, while their signs were drawn from a
Bernoulli distribution with parameter p ¼ 0:5. The diagonal entries of A
were fixed to �0.5 to prevent instability issues. The endogenous fluctu-
ations vðtÞ were modelled using Gaussian white noise with intensity
σ2In ¼ 0:01 � In. Using these generative models, 20 Monte-Carlo sets with
N ¼ 300 samples of BOLD signal time-series were generated, random-
izing both the driving noise and the effective connectivity matrix A.
Several sampling times TR ¼ f0:5s;1s;2sg were tested in the 7-regions
setting, while only TR ¼ 2s was considered for the 66-nodes DCM. The
signal-to-noise ratio (SNR) was fixed to 3 in all datasets. Figs. S1 and S23

in the Supplementary Material show a sample of the generated data.
In addition, to study the impact of data SNR on the performance of

our Algorithm, we conducted an extensive simulation study using a fixed
connectivity matrix A, defined as

A¼

2
666666664

�0:5 0 0 0 �0:2 0 0
0 �0:5 0 �0:45 �0:3 0 0
0 0 �0:5 0:8 0 0 0
0 0:6 0 �0:5 �0:1 0:6 0
0:3 0 �0:55 0 �0:5 0:2 0
0 0 0 0 0:3 �0:5 0:45

0:15 0 0:2 0 0 0 �0:5

3
777777775
: (28)

We generated 9 datasets with 20 Monte-Carlo runs each, by varying
the data SNR in the set f1;5; 10g and the sampling time TR in the set
f1; 5;10g. The generated BOLD time-series contained again N ¼ 300
samples and the endogenous fluctuations vðtÞweremodelled as described
above.

Remark 1. Note that in this paper synthetic data were always gener-
ated using a sparse directed connectivity matrix A. This reflects the belief
that brain networks are organized as small world (and thus sparse). In
future work we shall also consider more general conditions where the
model might be quasi-sparse or not sparse at all, in order to test how
different approaches perform in terms of approximating a generic model
3 All the tables, sections and figures referenced with the prefix “S” (e.g. S1(a))
are found in the Supplementary Material.

6

with a sparse one.

We tested our method against several state-of-the-art algorithms in
terms of its ability to retrieve the true underlying directed connectivity,
namely:

� spDCM with post-hoc selection (Friston and Penny, 2011). The SPM12
routines spm_dcm_fmri_csd and spm_dcm_post_hoc were used with
driving inputs a-priori switched off.

� Multivariate Granger Causality (MVGC). The order of the estimated
VAR model was chosen through Bayesian Information Criterion (BIC)
for the data coming from the 7-regions DCM and by means of Akaike
Information Criterion (AIC) when dealing with the whole-brain DCM.
In both cases, the Geweke’s χ2 test with FDR correction and signifi-
cance level equal to 0.2 was used to detect the connectivity structure.
Routine tsdata_to_var of the MVGCMatlab Toolbox (Barnett and Seth,
2014) was used to estimate effective connectivity, while routines
var_to_autocov, autocov_to_pwcgc and mvgc_pval were used to assess
the connectivity structure.

� Some causal search algorithms included in the suite Tetrad (http
://www.phil.cmu.edu/tetrad/):
� Peter and Clark (PC) Algorithm equipped with Fisher-Z test (Spirtes
and Glymour, 1991);

� Peter and Clark method using Fast Adjacency Search stable Algo-
rithm (Colombo and Maathuis, 2014) for the adjacency estimation
(PCstable), also equipped with Fisher-Z test;

� Fast Greedy Equivalence Search (FGES) adopting Fisher-Z score
(Ramsey, 2015; Ramsey et al., 2017);

� Linear Non-Gaussian Acyclic Modelling (Lingam) (Shimizu et al.,
2006);

� an optimized version of the CCD Algorithm (CCDmax) using Fisher-
Z test (Richardson, 1996);

� Fast Adjacency Skewness (FASK) Algorithm equipped with Gaussian
BIC score as a conditional independence test (Sanchez-Romero
et al., 2018).

For all these algorithms we used classes LoadContinuousDa-
taAndSingleGraph and Simulations to import the synthetic BOLD data
and the true effective connectivity graph. We used classes Statistics
and Comparison (in particular the routine compareFromSimulations)
to evaluate the performance of the various algorithms. Finally, for all
of them we used the default parameters settings.

The performance was measured both in terms of Root Mean Squared
Error (RMSE) on the estimated connectivity matrix A, as well as in terms
of accuracy, precision, sensitivity and specificity in retrieving the effec-
tive connectivity network (presence/absence of directed links). These are
defined as:

accuracy¼TPþ TN
Pþ N

; precision ¼ TP
TPþ FP

sensitivity¼TP
P
; specificity ¼ TN

N
(29)

where P and N respectively denote the number of non-zero (existing
edges) and zero entries in the true connectivity matrix, while TP and TN
are respectively the number of non-zero and zero entries that are
correctly retrieved by the estimation Algorithm; finally, FP is the number
of connections that exist in the estimated connectivity, but do not exist in
the true effective network.

Remark 2. We warn the reader that all these measures can be criticized
to some extent, as they compare the estimated model with the “true”
model. Of course in practice a true model does not exist and, most
importantly, several models of different complexity may explain the
observed data, thus calling for methods that, as ours and Bayesian model
reduction, trade complexity with fit. We stress that one of the final goals
of whole brain modelling is to find an interconnection structure that can

http://www.fil.ion.ucl.ac.uk/spm/
http://www.phil.cmu.edu/tetrad/
http://www.phil.cmu.edu/tetrad/


G. Prando et al. NeuroImage 208 (2020) 116367
be interpreted and used for clinical and translational purposes. Thus, we
regard as a plus the ability to recover a model which is close to some
ground truth for “typical” sparse network topologies.

2.5. Empirical data: 66 regions

We applied our Algorithm to the dataset used in (Ponce-Alvarez et al.,
2015) consisting of 48 BOLD time-series measured in 24 right-handed
healthy young volunteers (15 females, age range 20–31 years).4 Two
scanning sessions of 10 min, sampling time TR ¼ 2 sec, are available for
each subject. Participants were asked to relax and maintain fixation on a
red point of 0.3 visual degrees positioned in the center of a black screen
during scanning. Data were acquired on a 3T MR scanner (Achieva;
Philips Medical Systems) using a T2-weighted echo-planar-imaging (EPI)
sequence (TR ¼ 2000 ms, TE ¼ 35 ms, 32 axial slices, voxel size 3� 3�
3.5 mm3). Data pre-processing was performed using the SPM5 software
package (Wellcome Department of Cognitive Neurology, London, UK)
with the following steps: (1) correction for slice-timing differences; (2)
correction of head-motion; (3) co-registration of the anatomical image
and the mean functional image; (4) spatial normalization of all images to
the MNI space with a voxel size of 3� 3� 3mm3; (5) spatial Independent
Component Analysis (ICA) of the BOLD time-series in MNI space for the
removal of artifacts due to blood pulsation, head movement and instru-
mental spikes. Finally, for each recording session, the mean BOLD
time-series were extracted from the n ¼ 66 brain regions of the Hagmann
atlas (Hagmann et al., 2008). Further details on the acquisition and
processing of these data can be found in Section “Methods” of (Pon-
ce-Alvarez et al., 2015), while the list of ROIs and their abbreviations is
reported in Table S11 of the Supplementary Material.

To validate the estimated models, we compared the PearsonCC be-
tween the empirical FC matrix of a given data run and the model FC
inferred using the same data (see Eq. (17)). In addition, we also compared
the latter model FC with the empirical FC estimated from the second data
run for the same subject. This was done to evaluate, on the one hand, the
dependence of the estimated DCM on the specific data run and, on the
other hand, to what extent the estimated effective connectivity is able to
capture subject-specific features.

Next, a one-sample t-test was performed to assess which effective
connections are stable across subjects in the population. In addition, we
exploited graph theory measures to characterize the estimated effective
connectivity networks. We used the Brain Connectivity Toolbox (BCT, htt
ps://sites.google.com/site/bctnet/) (Rubinov and Sporns, 2010) to
compute centrality measures such as strength, betweenness centrality,
within-module degree z-score and participation coefficient of the network
nodes, or segregation measures such as the clustering coefficient. The
purpose of the latter analyses is to understand which brain regions play a
role in favouring network segregation (provincial hubs) and which instead
are crucial for network integration (connector hubs). Since these two
properties have been widely studied in undirected brain networks arising
from structural or functional connectivity (Stam and Reijneveld, 2007;
Bullmore and Sporns, 2009; Zhou et al., 2006), we conducted the same
analysis on both effective and functional graphs in order to assess the role
of directionality in brain connectivity.

Finally, we investigated the impact of EM initialization on the esti-
mated effective connectivity A by comparing two initialization strategies
for A.
4 We report here the Ethics statement included in (Ponce-Alvarez et al., 2015):
“This research was conducted in agreement with the Code of Ethics of the World
Medical Association (Declaration of Helsinki) and informed consent was ob-
tained from all subjects before performing the study, in accordance with insti-
tutional guidelines. The study design was approved by the local Ethics
Committee of Chieti University and the local Ethics Committee of Lausanne.”
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3. Results

3.1. Synthetic data: 7 regions DCM

We start our experimental validation by suggesting a criterion for the
thresholding of the estimated effective connectivity matrix. The top plot
in Fig. 1(a) reports the PearsonCC5 between the empirical FC matrix
directly computed from the BOLD time-series and the estimated model
FC (calculated as in Eq. (17)) as a function of the threshold applied to the
estimated effective connectivity matrix A. It is apparent that increasing
the threshold value leads to a deterioration of the agreement between the
two FC matrices. We suggest to fix the threshold to the largest value that
leads to a degradation of at most 3% in the correlation between the
empirical and the estimated FC. As a result the thresholds ranges between
0.025 and 0.075 in the 20 Monte-Carlo runs. This choice of the threshold
provides good generalization capabilities in terms of predicting empirical
FC on a new dataset (Fig. 1(a)-bottom). This choice also leads to a good
estimate of A. The RMSE is essentially not affected by the thresholding
(Fig. 1(b)). Accuracy, precision and specificity (Fig. 1(c)-1(d)-1(f),
respectively) improve if a larger threshold is adopted. However,
increasing the threshold leads to a worse sensitivity (Fig. 1(e)), since the
connectivity matrix becomes too sparse and many links are not detected.

Adopting this threshold strategy, we compared the performance of
our sparse DCM with the other methods listed in Sec. 2.4. The results are
reported in Fig. 2 for TR ¼ 2s. Our sparse DCM approach always appears
within the two best-performing methods. In particular, the performance
in terms of RMSE are comparable with those achieved by MVGC and are
superior to those obtained by the algorithms included in the suite Tetrad
(see Fig. 2(a)). Concerning the reconstruction of the true effective con-
nectivity structure, we observe that sparse DCM provides very good re-
sults in terms of accuracy and sensitivity. The performance related to
sensitivity is superior if compared to the algorithms of the suite Tetrad.
The performance of spDCM in terms of sensitivity is very poor. Indeed, it
tends to overestimate the degree of sparsity in the effective connectivity
matrix. Tables S1–S5 show the comparison for different sampling times
TR. Notably, sometimes spDCM estimated completely disconnected net-
works, thus making it impossible to compute precision (see Table S5).
MVGC may incur in a similar behavior if the significance level of the
Geweke’s χ2-test is not properly set. This test is used by MVGC to select
the significant connections. We observed that a larger significance level
may prevent an excessive sparsity in the estimated connectivity matrix.
We set it to 0.2 in the reported simulations.

Overall, we can conclude that our method outperforms the competi-
tors in detecting “true” effective connections (in terms of sensitivity);
remarkably, this is achieved while maintaining a good specificity.

Fig. 3 shows the performance of our approach as a function of sam-
pling time and data SNR. In this case, the synthetic BOLD time-series
were generated with the fixed connectivity matrix A in Eq. (28). The
plots highlight how our approach significantly benefits from larger SNRs.
Somewhat surprisingly, performance moderately improves when TR in-
creases. This behavior may be explained by the fact that low TR data are
gathered in a shorter time-horizon (since all the designed datasets always
contain 300 samples), thus they might not be enough informative about
the underlying dynamics. Indeed, a similar behavior is observed for
spDCM in Tables S6–S10, which compare the performance of the tested
algorithms on the same datasets. This trend is further confirmed by the
results achieved on the data generated with randomly sampled true
connectivity matrices: by inspecting Tables S1–S5 it can be noticed that
not only our approach but also the method relying on Granger causality
(MVGC) and FGES achieve better performance on data having higher
sampling time.

As a final comparison, we report in Table 1 average execution times
5 The Pearson Correlation Coefficient is computed only between the upper
diagonal parts of the two FC matrices, due to their symmetry.

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/


Fig. 1. Synthetic data with 7 brain regions (nodes) and randomly drawn connectivity matrix (SNR ¼ 3, TR ¼ 2s). Performance metrics as function of the thresholding
applied on the estimated ECs.
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(in seconds) for each method over the 20 MC runs. The value reported
under Tetrad is the sum of the execution times of all the algorithms
included in the suite (i.e. PC, PCstab, FGES, Lingam, CCDmax and FASK).
Simulations were conducted with a Macbook Pro 2017 (2.5 GHz Intel
8

Core i7 processor, 16 GB RAM). As expected, the computational effort is
low for the correlation based algorithms (Tetrad and MVGC), which
simply compare correlations between the variables included in the
model. Inverse methods, such as our sparse DCM and the spectral DCM,



Fig. 2. Synthetic data with 7 brain regions (nodes) and randomly drawn con-
nectivity matrix (SNR ¼ 3, TR ¼ 2s). Performance metrics over 20 MC runs
(mean � standard deviation) are shown for our sparse DCM as well as for the
compared methods.
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require the inversion of the specified model, thus being more expensive
from the computational point of view.

3.2. Synthetic data: whole-brain-scale network

We now analyse the performance of sparse DCM in a more realistic
whole brain setting (66 regions), still using synthetic data. The thresh-
olding procedure was the same used in Sec. 3.1, leading to selected
thresholds in the range ½0:01; 0:025�.
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We compared sparse DCM with the methods listed in Sec. 2.4 (see
Fig. 4) but excluding spDCM and Lingam due to their high computational
load. Also CCDmax had to be dropped because it did not converge on
most of the Monte-Carlo datasets.Overall, the results in Fig. 4 are in favor
of sparse DCM, showing that its performance scales well with network
size. The perfect score achieved by MVGC in terms of specificity is due to
the fact that it provides, in most runs, a completely disconnected
network. As a result its performance in terms of sensitivity is very poor.
Differently, the high specificity performance obtained by our method is
also accompanied by satisfying sensitivity and precision scores. The latter
are the highest among the compared approaches.

Table 2 contains the average execution times per MC run of the
compared algorithms. The simulations were conducted with the same
hardware described in Section 3.1. Despite sparse DCM is significantly
more expensive than the correlation-based approaches, it scales better
than MVGC and Tetrad when the number of monitored brain regions
increases.

3.3. Empirical data: 66 regions

We now consider the empirical fMRI data described in Sec. 2.5.
Subjects 12 and 18 of the dataset have been excluded from the analyses
reported below due to convergence problems in one of the two runs.

3.3.1. Effective and functional connectivity
We first consider the data of a single subject to illustrate the sparse

DCM outputs. Fig. 5(a) shows the estimated effective connectivity before
thresholding. The matrix is actually (almost) sparse, with many entries
very close to zero, even if not exactly zero. Fig. 5(b) illustrates the linear
haemodynamic responses estimated for each of the 66 brain regions of
the Hagmann atlas (Hagmann et al., 2008). Their average is reported in
black. It is interesting to observe that our Algorithm indeed captures a
significant variability of the haemodynamic responses for different brain
areas. Finally, the agreement between empirical FC and model FC
reconstructed using the estimated DCM can be appreciated by comparing
Fig. 5(d) and 5(c).

The agreement between empirical and estimated FC is confirmed for
the entire sample of subjects in terms of Pearson correlation coefficient
(see the blue dots in Fig. 6). Most notably, Fig. 6 also reports the Pear-
sonCC between the model FC coming from the DCM estimated using data
from Run 2 and the empirical FC computed from Run 1 (red diamonds):
this comparison can be viewed as a “model validation” stage, which aims
at assessing the generalization capabilities of the estimated models. For
completeness, the PearsonCCs between the empirical FCs from Run 1 and
Run 2, which may be regarded as ceiling level for the corresponding red
diamonds, are also shown (black squares).

3.3.2. Effective connectivity thresholding
Similarly to the synthetic scenario, the threshold value was fixed to

0.01 following the same selection approach we adopted with synthetic
data. This threshold also guarantees a large agreement between the
model FC and the empirical one, when computed on a different data run
(Run 1 in this case), as shown by Fig. 7(b).

To further validate the threshold selection criterion, we exploited the
availability of two scanning runs for each subject. Since we expect (a
priori) that the ECs estimated from each of the two runs should be
similar, we can evaluate if the chosen threshold guarantees such an
agreement. To this purpose, we computed the so-called Within Subject
Similarity (WSS), that is, the PearsonCC between the ECs inferred from
the two data runs of the same subject. This quantity is shown in Fig. 7(c)
as function of the thresholding. The results support our choice (i.e., 0.01),
because larger values lead to a reduced similarity between the ECs
inferred for the same subject.

3.3.3. Population study: effective connectivity
Using the optimal threshold value identified in the previous section,



Fig. 3. Synthetic data with 7 brain regions and fixed connectivity matrix. Average performance metrics over 20 MC runs achieved by the proposed Algorithm as
function of data SNR and sampling time TR.

Table 1
Synthetic data with 7 brain regions (nodes) and randomly drawn connectivity
matrix (SNR ¼ 3, TR ¼ 2s). Average execution time per run (computed over 20
MC runs).

sparseDCM spDCM MVGC Tetrad

Avg execution time [s] 133 62 0.10 0.42
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we now proceed to (i) assess the stability of the connections across the
entire sample of subjects, and (ii) briefly discuss the structure of the
resulting population-level EC matrix.

We performed a one-sample t-test with FDR (¼ 0:05) correction on
the ECs of the 22 subjects. The results for the two data runs are reported
respectively in Fig. 8(a) and 8(b). Black and red entries denote those links
for which the null hypothesis (corresponding to the absence of the link)
was rejected at a significance level α ¼ 0:05. Brain regions are ordered
according to a left-right subdivision: black and red squares respectively
denote intra- and inter-hemispherical connections. The same results are
reported in Fig. S7 where brain regions are grouped according to a
functional atlas.

Inspection of the EC matrices suggests good agreement between runs,
which is confirmed by a correlation of 0.82. Note that, intra-
hemispherical connections (black squares in Fig. 8(a)) are much more
frequent than inter-hemispherical ones (red squares in Fig. 8(a)). Most of
the latter are actually connecting the same region in the two hemispheres
(notice the red diagonals appearing in the upper right and lower left sides
of Fig. 8(a)-8(b)). Most notably, the EC results reveal some directed
connections that are stable either in the two hemispheres and in the two
data runs. Among them, there are the links from the paracentral lobule
(PARC) to the postcentral gyrus (PSTC) and to the precentral gyrus
(PREC), i.e. between regions of the somatosensory-motor network, as
10
well as to the posterior cingulate cortex (PC), suggesting a link between
somatosensory-motor and default-mode networks. Moreover, we should
also note the links between the auditory and the integration regions
(Ponce-Alvarez et al., 2015), i.e. those from the superior temporal cortex
(ST) to the supramarginal gyrus (SMAR) and from the superior parietal
cortex (SP) to SMAR. There seems also to be a strong relationship among
the pars orbitalis (PORB), the pars opercularis (POPE), the pars trian-
gularis (PTRI) and the rostral anterior cingulate cortex (RMF): PTRI is
influenced by POPE, PORB and RMF. Analogously, RMF is conditioned
by POPE, PTRI and PORB. Finally, PTRI affects POPE and PORB. A more
in-depth network analysis is provided in the next Section.

3.3.4. Population study: network analysis
We conducted a graph theoretical analysis of the effective connec-

tivity networks estimated using the dataset described in Sec. 2.5. Some of
the most popular network measures (Rubinov and Sporns, 2010; Bull-
more and Sporns, 2009) were computed for each subject. These are
summarized in Appendix D. For each network measure, nodes were
sorted in decreasing order with respect to the chosen metric. We then
determined the number of subjects in which a certain node was in the top
20% of the corresponding ranking. The same analysis was performed on
the functional connectivity data. The aim of this set of analyses was
threefold: first, to assess which brain regions play a relevant role within
the effective connectivity graph; second, to evaluate the consistency
between the measures computed for the graphs estimated from the two
data runs; and third, to compare effective and functional connectivity
networks.

Considering EC networks, we notice that the superior frontal cortex
(SF) shows a high in-strength value (see Fig. 9(a)), suggesting that ex-
ecutive functions play a key role in the resting-state network. In partic-
ular, this suggests that SF is prone to be controllable by other regions, but



Fig. 4. Synthetic data with 66 brain regions (nodes) and randomly drawn connectivity matrix (SNR ¼ 3, TR ¼ 2s). Performance metrics over 20 MC runs (mean �
standard deviation) are shown for our sparse DCM as well as for the compared methods.

Table 2
Synthetic data with 66 brain regions and randomly drawn connectivity matrix
(SNR¼ 3, TR ¼ 2s). Average execution time per run (computed over 20 MC runs).

sparseDCM spDCM MVGC Tetrad

Avg execution time [s] 19840 – 85 130

G. Prando et al. NeuroImage 208 (2020) 116367
has a weaker ability to control other areas. This is confirmed by
Fig. S9(a), which refers to centrality and, to a minor extent, by Fig. 9(b),
which instead considers out-strength. Moreover, the in- and out-strength
of the SF node seem to be asymmetric in the two hemispheres, with the
right one typically having a larger strength. This asymmetry is also
evident when looking at the EC betweenness centrality. Finally, the
asymmetry of the SF node can be detected in the FC strength (Figs. S8(a)
and 9(d)). Other cases of asymmetry between the two hemispheres
11
involve the precuneus (PCUN) and the pars opercularis (POPE), which
appear to be more influential in the right hemisphere, according to
Fig. 9(a), and the lateral occipital cortex (LOCC). The latter behaves
differently in terms of both in-strength and betweenness centrality. Other
significant nodes in terms of in-strength (Fig. 9(a)) and out-strength
(Fig. 9(b)) are the superior parietal cortex (SP) and the lingual gyrus
(LING). Not surprisingly, Fig. 9(a)-9(b) and Fig. 9(d) show a significant
agreement between the nodes strengths of the effective and functional
graphs (see Fig. 10).

Next, segregation is analyzed using the weighted clustering coeffi-
cient, displayed in Fig. 9(c). The cuneus (CUN) and the pericalcarine
cortex (PCAL) seem relevant in segregation. A low out-degree partici-
pation coefficient and a high within-module z-score in a consistent
portion of the population confirm this role. A similar conclusion can be
drawn for the rostral anterior cingulate cortex (RAC). At a glance, the 3D



Fig. 5. Single subject analysis (Subject 17, data from Run 2). (a) Estimated Effective Connectivity (EC). (b) Estimated haemodynamic responses for each of the 66
BOLD time-series (i.e., brain regions) and the corresponding mean (black solid line). (c) Functional Connectivity reconstructed from the subject’s estimated EC shown in
panel (a). (d) Empirical Functional Connectivity.
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Figure 6. Blue dots: Pearson correlation coefficient
(PearsonCC) between empirical FCs of Run 2 data

(FC2) and the functional connectivity cFC2 recon-
structed from the ECs estimated using the same data
(see Eq. (17)). Red diamonds: PearsonCC between
empirical FCs of Run 1 data (FC1) and the functional

connectivity cFC2 reconstructed from the ECs esti-
mated using Run 2 data. Black squares: PearsonCC
between empirical FCs of Run 1 data (FC1) and
empirical FCs of Run 2 data (FC2). Horizontal lines:
Corresponding average values across the entire sample
of subjects.

Fig. 7. Impact of EC thresholding on the quality of FC reconstruction and on the stability of EC estimates across fMRI runs for the entire sample of subjects (N ¼ 22).
All metrics are shown as a function of EC threshold value.
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brain plots in Fig. 9(c) and 9(e) show a clear difference between the
effective and functional networks in terms of clustering coefficient: while
in the functional graph the posterior brain regions are typically part of
small clusters, in the effective graph this property seems to characterize
only the pericalcarine cortex (PCAL) and the cuneus (CUN). Moreover,
comparing Figs. 9(c) and S8(b), we can notice that the supramarginal
gyrus (SMAR), the superior temporal, parietal and frontal cortex
(ST,SP,SF) often tend to have small clustering coefficient. Accordingly,
13
they seem to be associated with low local efficiency of information
transfer for specialized processing (functional segregation). An opposite
situation is observed for the pericalcarine cortex (PCAL) and the cuneus
(CUN), which belong to the visual network.

The weighted participation coefficient and the weighted within-
module z-score (Figs. S10(a) and S11(b)) show that the posterior
cingulate cortex (PC), the superior parietal cortex (SP) and the left middle
temporal cortex (MT) are characterized by a high participation



Fig. 8. Population Analysis. One-sample t-test (p-value< 0:05 FDR corrected) over ECs estimated using data from Run 1 (panel (a)) or Run 2 (panel (b)). The null
hypothesis is rejected for colored entries (black and red squares respectively denote intra-emispheric and inter-hemispheric connections).
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coefficient and a low within-module z-score in a significant fraction of
the population, thereby facilitating integration in the effective connec-
tivity network. Analogous properties are observed for the para-
hippocampal cortex (PARH) in the functional graph (compare
Figs. S10(c) and S11(c)).

We conclude our network analysis studying the directionality of EC
graphs. In particular, sources and sinks are revealed computing the dif-
ference between the absolute in- and out-strength. Boxplots of the latter
quantities are reported in Fig. 10. Several regions can be classified as
sources in both hemispheres, such as the posterior cingulate cortex (PC),
the pars orbitalis (PORB), the parahippocampal cortex (PARH), the
caudal anterior cingulate cortex (CAC) and the bank of the superior
temporal sulcus (BSTS). On the other hand, only the superior frontal
cortex (SF) seems to play a relevant sink role. Some regions also show a
different behavior in the two hemispheres: for instance, the left supra-
marginalgyrus (SMAR) mainly shows to be a source, while in the right
hemisphere its function appears more variable.

3.3.5. Population study: Algorithm initialization
The impact of different initializations of our Algorithm (see Sec. 2.3

and Appendix B) is now empirically evaluated. In particular two possible
initializations of effective connectivity matrix A are considered. When no
a priori information is available, a simple choice would be.Að0Þ ¼ � In6

On the other hand, if some prior knowledge on the effective connectivity
is available, this could be exploited, e.g. setting Að0Þ to some “average”
network.

These two initialization strategies for Algorithm 1 were compared
using the empirical dataset illustrated in Sec. 2.5. The results of this study
are reported in Fig. 11, where the two strategies are respectively denoted
with “-I” and “Avg”. To implement the latter we followed a “leave-one-
out strategy”: for each subject we set Að0Þ equal to the average of the ECs
6 The results illustrated in the previous sections were achieved by means of
this initialization.
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estimated from the remaining subjects in the dataset. The top row in
Fig. 11 evaluates the impact of the two initializations directly on EC,
while the bottom row focuses on the resulting model FC (see Eq. (17)).
Specifically, Fig. 11(a) shows the PearsonCCs between the ECs returned
by the two strategies over the population, while Fig. 11(d) contains the
same comparison performed on the model FCs. Despite a moderate
agreement between the estimated ECs, there is a very high consistency
between the FCs. This finding is confirmed by the PearsonCC between the
model FCs and the empirical ones, respectively computed on the esti-
mation BOLD time-series and on a new data run (Fig. 11(e)-11(f)). It is
therefore apparent that the initialization of A does not affect the per-
formance in terms of functional connectivity. Nonetheless, the initiali-
zation strategy does affect the estimated effective connectivity itself:
depending on the starting point, the EM algorithm could converge to
different local minima, giving rise to the discrepancies that can be
observed in Fig. 11(a). Not surprisingly, exploiting the a-priori infor-
mation to initialize the algorithm (“Avg”) favours similarity among the
inferred ECs. This behavior is shown in Fig. 11(b)-11(c) which respec-
tively report the within-subject and between-subject similarity,
measured in terms of Pearson correlation coefficient between the infer-
red ECs.

We conducted the same analysis reported in Sec. 3.3.4 on the effective
connectivity networks returned using the initialization denoted with
“Avg”. The results are reported in Fig. S12. There is a significant agree-
ment on the in-strength, out-strength and clustering coefficient. The
increased between-subject similarity observed in Fig. 11(c) achieved
using “Avg” is also revealed in the bar plots in Fig. S12(a): compared to
Fig. 9(a), fewer nodes have a large strength value across subjects, thus
reflecting a reduced variability within the population. This trend is less
apparent in Figs. S12(b) and S12(c). Finally, the results returned by the
two initialization strategies significantly agree in terms of clustering
coefficient (compare Figs. 9(c) and S12(c)), while some discrepancies can
be observed when evaluating the nodes out-strength (compare Figs. 9(b)
and S12(b)).

Concerning the remaining parameters in θ (see Eq. (16)), as well as



Fig. 9. Number of subjects in which the weighted strength (or clustering coefficient) of a certain node is in the top 20%. (a)–(c) refer to the effective connectivity graph;
(d)–(e) refer to the functional connectivity graph.
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Fig. 10. Asymmetry in the effective connectivity network. Each boxplot shows the difference between the absolute in- and out-strength for a specific brain region.

Fig. 11. Impact of Effective Connectivity initialization
on the estimation Algorithm: comparison between
initializing with the identity matrix (-I) and with the
average of the ECs estimated from other subjects
(Avg). (a) Pearson correlation coefficient (PearsonCC)
between ECs estimated from the two initializations.
(b) Within Subject Similarity. (c) Between Subject
Similarity. (d) PearsonCC between the FCs recon-
structed from the ECs estimated from the two initial-
izations. (e) PearsonCC between empirical FCs and the
FCs reconstructed from the ECs estimated using the
same data run. (f) PearsonCC between empirical FCs
and the FCs reconstructed from the ECs estimated
using the other data run.
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the hyper-parameters γ (see the discussion in Sec. 2.3), it is fair to say that
the choice of initialization has only a marginal (if any) effect. The only
exception regards the initialization of the standard deviation σ of
endogenous fluctuation process vðtÞ. To this purpose we have developed
a tailored procedure, which we experimentally verified to be rather
robust (see the description in Appendix B).

4. Discussion

In this work we introduced sparse DCM, a novel method to estimate
effective connectivity from resting-state fMRI data. Our method stands
out against state-of-the-art contributions thanks to its ability to infer
whole-brain graphs comprising tens of regions (66 in the experiments
reported here). This was made possible by the use of a linearized model
for haemodynamics and of a sparsity inducing mechanism, which auto-
matically prunes irrelevant connections. In this way, contrary to most
existing techniques, there is no need to perform a selection of candidate
network structures that typically also relies on the information about
structural connectivity.

Key steps underlying our approach are the discretization and statis-
tical linearization of the haemodynamic model (Buxton et al., 1998;
Friston et al., 2000; Stephan et al., 2007). The latter have allowed to
transform the non-linear continuous time DCM into a discrete-time linear
state space model. The linearized haemodynamic response accounts for
empirical priors available in the literature for physiological parameters
which define the nonlinear model in Eqs. (4)–(8). We then developed an
EM-like Algorithm to estimate this linear generative model and in
particular the effective connectivity matrix.

We demonstrated the face validity of the novel method by means of
numerical experiments performed on two synthetic scenarios, consisting
of 7 and 66 regions (nodes), respectively. Sparse DCM was compared to
several state-of-the-art methods, including spectral DCM (Friston et al.,
2014; Razi et al., 2015, 2017), Multivariate Granger Causality (MVGC)
(Barnett and Seth, 2014), Fast Greedy Equivalence Search (FGES)
(Ramsey, 2015; Ramsey et al., 2017), Lingam (Shimizu et al., 2006), Fast
Adjacency Skewness Algorithm (FASK) (Sanchez-Romero et al., 2018),
an optimized version of the CCD routine (Richardson, 1996) and the
“Peter and Clark” method (Spirtes and Glymour, 1991; Colombo and
Maathuis, 2014). When considering the simpler scenario comprising 7
regions, our method proved to be superior to the competitors in terms of
accuracy and sensitivity, while it was among the two best-performing
approaches when looking at specificity, precision and RMSE. Among
the other methods, MVGC yielded a competitive performance when
considering specificity and precision, but this result turned out to be due
to its tendency to overestimate the sparsity degree of the networks. In
extreme cases, which were often detected in the larger-scale scenario
consisting of 66 regions, MVGC returned a completely disconnected
network. This feature makes MVCG unreliable to our purpose. In the
“large” (66 regions) synthetic scenario our method outperformed all the
compared approaches especially in terms of RMSE, accuracy and
sensitivity.

Using the 7 regions synthetic scenario we also evaluated the sensi-
tivity of our approach with respect to the data SNR and to the sampling
frequency. As expected, sensitivity and, to a minor extent, accuracy and
precision improve as SNR increases. On the other hand, the data sam-
pling time seemed to have minor impact on the performance of sparse
DCM. We envisage that future advances in the technology of fMRI
scanners would, on the one hand, increase the SNR levels in themeasured
BOLD time-series and, on the other hand, increase the image acquisition
frequency. Some developments in this sense have already been achieved
by exploiting high magnetic field strengths (Duyn, 2012), ultra-fast im-
aging (Stirnberg et al., 2017; Xu et al., 2013) or by considering the
confounds due to magnetic field fluctuations (Bollmann et al., 2017).
According to our study in the synthetic 7 regions setup, we believe that
our effective connectivity estimation method will strongly benefit from
these technological advances.
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The proposed Algorithm was also applied on empirical BOLD time-
series measured in 22 healthy adults (Ponce-Alvarez et al., 2015) to
infer whole-brain effective connections. Two resting-state fMRI runs
were available for each subject, thereby allowing us to estimate distinct
effective connectivity matrices for each run. These two matrices showed
good agreement across individuals, as measured by the Pearson corre-
lation coefficient. The consistency of the effective connectivity estimated
across runs was also confirmed when looking at the connections that are
found to be stable (i.e., statistically reliable) across individuals.

We also performed a graph-theoretical analysis on the whole-brain
effective connectivity graphs estimated from the empirical data. The
same study was also conducted on the undirected FC graphs thus high-
lighting analogies and discrepancies between effective and functional
networks. We believe that this preliminary investigation might serve as a
possible pipeline for future studies focusing on the brain’s functional
organization and on the pattern of directed interactions. However, we
warn the reader that the graph measures computed in this paper should
be taken with great caution.

We anticipate that the availability of an inference Algorithm for
whole-brain effective connectivity will serve as seed for stimulating
further applications of graph theory to directed brain networks, which
represents a largely unexplored area of computational neuroscience.

We emphasize that effective connectivity models, differently from
functional and structural networks, also encode directionality in the
connection. Our results suggest that directed connections play a key role
in the evaluation of the small-word properties of the brain. Different
values of the clustering coefficient can change the importance of the
regions when functional segregation processes are considered, while
different path length measures could indicate a different vision of the
functional integration properties of the regions in rapidly combining
specialized information. Thus, knowledge about the directionality of the
links between brain regions could give an additional value to the inter-
pretation of how brain networks are organized and how they generate
complex dynamics. Moreover, the recent introduction of control theory
methods into neuroscience is perfectly suited to the case of directed
networks (Liu et al., 2011) but it remains highly controversial for undi-
rected networks such as connectomes generated from diffusion imaging
data (see (Tu et al., 2018) for a lively debate).

The empirical dataset was also exploited to investigate the impact of
different initialization strategies for the sparse DCM Algorithm. In
particular, we discussed how previously estimated effective connectivity
profiles could be used to initialize the estimation procedure. The
exploitation of this prior information can, on the one hand, significantly
reduce the computational effort required by the estimation routine and,
on the other hand, increase both the within- and between-subject simi-
larity of the inferred effective connectivity matrices. These findings
appear particularly valuable in prospective clinical applications when,
for instance, a new patient has to be screened and effective connectivity
patterns from other patients (with a similar clinical profile) are already
available.

Concerning the related literature, our work can be considered part of
a restricted number of contributions dealing with the inference of whole-
brain effective connectivity from resting-state fMRI data. These include
the spectral DCM approach proposed by (Razi et al., 2017), where
principal components of the functional connectivity were exploited to
define the prior covariance assigned to the effective connectivity matrix,
and in turn to constrain the number of DCM parameters to be estimated.
This allowed to invert DCMs consisting of 36 regions. However, the
required computational effort remained significant, thus making the
application to larger DCMs still questionable. The DCM framework was
also recently developed in order to deal with whole-brain effective
connectivity estimation from task-based fMRI data (Fr€assle et al., 2018).
The procedure, called regression-DCM, was applied to a network
comprising up to 104 nodes. It also exploited a sparsity inducing prior on
effective connections tuned by free energy minimization. However,
differently from our approach, the haemodynamic response was held
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fixed, thus not accounting for region- and subject-specific variations of
the mapping between neural activity and BOLD signal (Handwerker
et al., 2004; Badillo et al., 2013). We regard this as a major limitation of
regression-DCM, making it possibly very sensitive in applications on
atypical brains (e.g. post stroke) where the haemodynamic response may
be severely altered in lesioned areas. Finally, though regression-DCM
could potentially deal with resting-state data, it does not explicitly ac-
count for the endogenous fluctuations that are assumed to drive neural
activity at rest, thus making it not directly applicable to the estimation of
resting-state effective connectivity. Nonetheless, a comparison between
regression-DCM and our inference procedure based on a linear DCM
would help in assessing the impact of both haemodynamic variability and
of endogenous fluctuations modelling. Outside the DCM framework,
models that attempt to establish Granger-type causality directly on
observed BOLD signals have been developed. For instance (Gilson et al.,
2016), encoded effective connectivity in an Ornstein-Uhlenbeck model
and estimated effective connections by fitting the model stationary co-
variances to the empirical ones computed from resting-state fMRI ob-
servations. Despite being very computationally efficient, this procedure
does not include an haemodynamic model and has to be provided with a
prior structure for the effective connectivity network (e.g., using a
structural connectivity matrix). Nevertheless, this approach has been
successful in retrieving signatures for subject identification (Pallares
et al., 2018) and in task recognition (Gilson et al., 2017). We believe that
a comparison between this technique and our inversion scheme would
reveal whether haemodynamic modelling is relevant in the context of
effective connectivity or might be neglected. Whole-brain estimates can
also be obtained by resorting to a class of model-free methods, typically
referred to as “Bayesian Nets” (Bielczyk et al., 2018). These approaches
include the “Peter and Clark” Algorithm, the Cyclic Causal Discovery
procedure (CCD), Greedy Equivalence Search (GES) and fast GES (FGES).
Even if these methods are very fast, they typically return only an
equivalence class of graphs, whose members can be distinguished only
using further assumptions. Nonetheless, FGES was recently applied to all
the cortical voxels in a resting-state fMRI scan (around 51000 voxels)
(Ramsey et al., 2017). (Dubois et al., 2017) used FGES as a preliminary
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step to infer the set of candidate structures and exploited it to subse-
quently derive subject-specific networks. In this case, a comprehensive
comparison between these model-free techniques and our approach
would provide insights on the importance of modelling when dealing
with brain directed interactions. We plan to conduct this and the afore-
mentioned comparisons in a future contribution.

In addition to the detailed comparisons with other state-of-the-art
techniques, future developments of sparse DCM include a study about
the modelling of brain endogenous fluctuations that are supposed to
drive the neural activity at rest. Despite these are typically assumed to be
scale-free processes (Freyer et al., 2009; Stam and De Bruin, 2004; Shin
and Kim, 2006), our model considered them as Gaussian white noise. A
preliminary investigation on the plausibility of this assumption was
already conducted in a recent work (Prando et al., 2018), where also
first-order autoregressive models for endogenous fluctuations were
considered. However, we believe that a more in-depth analysis should be
conducted, considering larger datasets and more complex autoregressive
models.

The ultimate goal of this work would regard clinical applications and,
in particular, the possibility to detect individual differences in the
effective connectivity profiles of patients that are predictive of the clin-
ical outcomes. In future contributions we plan to further analyse the
plausibility of the linear model and, subsequently, to apply our estima-
tion procedure to fMRI data measured in neurological subjects in order to
characterize the discrepancies between healthy and damaged brains.
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Appendix A. Statistical Linearization of the haemodynamic response

To derive the linear model of the haemodynamic response, we first compute a population of typical responses generated by the non-linear model
(4)–(8). Then, we define gi as a linear combination of their empirical mean and of the first p principal components of their sample covariancematrix, that
is hi ¼Hαi, i ¼ 1;…;n. While the coefficients αi 2 Rpþ1 have to be estimated from the given fMRI data, the matrixH is constructed through the following
steps:

1. Sample θðjÞh , j ¼ 1;…;Ns from the empirical Gaussian distributions given in Table 1 of the seminal work (Friston et al., 2003).

2. For each θðjÞh compute, with some abuse of terminology, the impulse response of the non-linear model (4)–(8), i.e. the output (say bðkÞ) when the
input xðkÞ ¼ δðkÞ and δðkÞ is the Kronecker delta function. Let bðjÞ be the corresponding output sampled at rate 1=TR and truncated at length s.

3. Compute the empirical mean b ¼ 1
Ns

PNs
j¼1b

ðjÞ.

4. Compute the empirical covariance matrix Σb 2 Rs�s:

Σb ¼ 1
Ns

XNs

j¼1

�
bðjÞ � b

��
bðjÞ � b

�>
: (A.30)
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5. Compute the eigenvalue decomposition of Σb, Σb ¼ USU> , where S :¼ diagðs1;…; ssÞ and U :¼ ½u1 ⋯ us�.
6. Define H as H :¼ ½b u1 u2 ⋯ up� where p << s.
7. Model b as hi ¼ Hαi.

Exploiting the fact that the empirical covariance Σb is close to be low rank, with only a small number (p) of significant singular values fsjgpj¼1, the

coefficient vectors αi are assigned the Gaussian prior

pðαiÞeN ðμα;ΣαÞ μα :¼ ½1 0 ⋯ 0�> Σα : ¼ diag
�
ε; s1;…; sp

�
i¼ 1;…; n

so that the hi’s match the empirical statistics b and Σb; ε is a small positive constant to guarantee the invertibility of Σα. Clearly, the final prior for hi will
be hieN ðb;HΣαH>Þ.

Appendix B. EM Algorithm

The model parameters in (12) are estimated using the EM Algorithm detailed in Algorithm 1 below. The inputs to this algorithm are the fMRI data
fyðkÞgNk¼1 and the prior for the haemodynamic impulse responses hi, that is H, μα and Σα (see the discussion in Appendix A). An initial guess for the
parameters θ has also to be provided. The latter aspect has been thoroughly discussed in Section 3.3.5.

More specifically, we initialize the connectivity matrix A as Að0Þ ¼ �In and set hð0Þi ¼ b; i ¼ 1;…; n (the empirical mean from the prior). An initial
value for the variance σ2 of the endogenous fluctuations vðtÞ is chosen as follows:

1. Deconvolve the fMRI time-series fyðkÞgNk¼1 with b in order to have a first estimate of the neural time-series fxðkÞgNk¼1;

2. Model each fxiðkÞgNk¼1, i ¼ 1;…; n as an AR(3) model;
3. Set σ2 as the sample mean of the estimated noise variance of the n AR models estimated at step 2.

Finally, the variances λ2i , i ¼ 1; ::;n, of the measurement noise eðkÞ are initialized at one tenth of the empirical variance of the corresponding BOLD

time-series fyiðkÞgNk¼1.The hyper-parameters fγð0Þi gn
2

i¼1 are also assigned a starting value, according to any a-priori knowledge available on the effective
connectivity network. For instance, structural connectivity can be exploited at this stage, by setting to non-zero the γi’s corresponding to structural links

and to a small quantity (e.g. ε � 10�6) all the others. If no a-priori knowledge is available, the same value can be assigned to all fγð0Þi gn
2

i¼1.After the
initialization, each iteration of Algorithm 1 consists in the application of the RTS smoother (whose routine is reported in Algorithm 2) to compute the
function Q ðθ;θðlÞÞ, which is then maximized to update the parameter estimate θðlþ1Þ (Step 4 of Algorithm 1). The objective function also includes the
priors for A and fαigni¼1 (which shape the haemodynamic responses fhigni¼1). Note that the shorthand notation a :¼ vecðA>Þ is used. The new estimates

σðlþ1Þ andAðlþ1Þ are then used at Step 5 to update the covariance matrixQðlþ1Þ and in turn the hyper-parameters fγðlþ1Þ
i gn

2

i¼1 at Step 6. The details about the
derivation of the update equation are provided in Appendix C.

Algorithm 1. Estimation of parameters θ through EM
19
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Algorithm 2. RTS Smoother
Appendix C. Iterative Reweighted Procedure for Hyperparameters Update

Step 6 of Algorithm 1 updates the hyper-parameters fγign
2

i¼1 of the prior for the connectivity matrix A, i.e. aeN ð0;diagðγ1;…; γn2 ÞÞ, adapting the
reweighted procedure proposed by (Wipf and Nagarajan, 2010) for linear regression models of the form

x¼Φaþ w

where a is to be estimated from the noisy observations x, while Φ is the regressors matrix and w is the noise vector.In our setup this model is obtained
after linearizing the original state update Eq. (9) which is non-linear as a function of a ¼ vecðA>Þ. Namely, define the matrices

Xþ : ¼
2
4 x>ð2Þ

⋮
x>ðNÞ

3
5; X : ¼

2
4 x>ð1Þ

⋮
x>ðN � 1Þ

3
5; W : ¼

2
4 w>ð1Þ

⋮
w>ðN � 1Þ

3
5: (C.31)

Eq. (9) can be rewritten in the non-linear regression form

Xþ ¼XeA
>TR þW : (C.32)

Then, using the approximation eA>TR ’ Iþ A>TR, we obtain:

ΔX¼XA>TR þW (C.33)

where ΔX ¼ Xþ � X. Using the vectorization operator, we can rewrite (C.33) in linear regression form,

x¼Φaþ w (C.34)

where x :¼ vecðΔXÞ, Φ ¼ ½φ1 ⋯ φn2 � :¼ ðI 	 XÞTR, a :¼ vecðA>Þ, w :¼ vecðWÞ. Therefore, we can update the hyper-parameters fγign
2

i¼1 as suggested in
(Wipf and Nagarajan, 2010), see Step 6 of Algorithm 1.

Appendix D. Network Measures of Brain Connectivity

The estimated effective connectivity A can be interpreted as the weighted adjacency matrix of a directed graph between different brain regions,
where each link corresponds to a directed influence of one area on another one. Specifically, the set of vertexes (or nodes) V coincides with the set of
monitored brain areas (jV j ¼ n), while we say that region i is influenced by region j if the ði;jÞ-th entry of matrixA, sayAij, is non-zero. To the purpose of
computing network indexes we define the matrix E :¼ A� diagðAÞ, i.e. E coincides with A on the off-diagonal entries and has zeros on the main di-
agonal. We also define the binary adjacency matrix E, obtained from E by setting to 1 its non-zero entries. We evaluate the estimated graph in terms of
three types of metrics, which quantify the degree of centrality of each node within the network (measures of centrality), as well as the presence of clusters
20



G. Prando et al. NeuroImage 208 (2020) 116367
(measures of segregation) and the ease with which brain regions communicate (measures of integration).The most common centrality measure is the so-
called node weighted degree: since we deal with a directed graph, we can distinguish between the weighted in-degree dini and the weighted out-degree douti
which sum the weights of the links coming in and out from a certain node, respectively:

din
i ¼

X
j2V

��Eij

��; dout
i ¼

X
j2V

��Eji

��: (D.35)

These quantities are also known as in-strength (dini ) and out-strength (douti ). As a second centrality measure we consider the weighted betweenness
centrality, i.e. the fraction of shortest paths in the network which pass through a given node. Namely, for vertex i it is defined as

bi ¼ 1
ðn� 1Þðn� 2Þ

X
h;j2V

h 6¼j;h 6¼i;j6¼i

ρhjðiÞ
ρhj

(D.36)

where ρhj is the number of shortest paths between nodes h and j, while ρhjðiÞ is the number of shortest paths between h and j which pass through i. The
shortest path length between vertexes i and j is defined as

lij ¼
X

Euv2P i→j

~Euv; ~Euv ¼ 1
Euv

(D.37)

where P i→j denotes the directed shortest path from i to j. According to Eq. (D.37), stronger connections are interpreted as shorter distances.Other
centrality metrics are the within-module degree z-score and the participation coefficient, which are based on a preceding partition of the network into a set
of non-overlapping modules (or clusters) M. The weighted within-module in-degree z-score of node i is defined as

zini ¼ din
i ðmiÞ � μdin ðmiÞ

σdin ðmiÞ (D.38)

where mi is the module containing node i and dini ðmiÞ is the weighted within-module in-degree of node i, i.e. the weighted sum of links entering i from
vertexes in module mi. μdin ðmiÞ and σdin ðmiÞ are respectively the mean and the standard deviation of the within-module mi weighted in-degree distri-
bution. The weighted within-module out-degree z-score is analogously defined, replacing dini ðmiÞ; μdin ðmiÞ; σdin ðmiÞ with douti ðmiÞ;μdout ðmiÞ;σdout ðmiÞ.The
weighted in-degree participation coefficient is given by

pcini ¼ 1�
X
m2M


dini ðmÞ
din
i

�2

(D.39)

where dini ðmÞ is the weighted sum of the links entering node i from all vertexes in module m. The definition of the out-degree participation coefficient
follows the same principle.Combined together, the within-module degree z-score and the participation coefficient provide information about the role of
a certain node in facilitating network segregation or integration. Specifically, a node with high within-module degree z-score and low participation
coefficient is a so-called provincial hub, that is, it favors segregation. On the other hand, a vertex with low within-module degree z-score and high
participation coefficient is a connector hub, meaning that it encourages integration. In addition to the combined evaluation of these two metrics, we
consider a further measure of segregation, known as weighted clustering coefficient, i.e. the weighted fraction of triangles around a node. Specifically, it is
defined as

cci ¼

2
64
0
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where the notation E½α� denotes the element wise exponentiation of matrix E, i.e. ½E½α��ij ¼ Eα
ij, and d

tot
i ¼ d

in
i þ d

out
i and d

in
i ¼ P

j2V Eij; d
out
i ¼ P

j2V Eji.
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