Marco Mandurrino

Marco Mandurrino
INFN - Istituto Nazionale di Fisica Nucleare | INFN · Turin Division

PhD
Particle Detectors Designer

About

103
Publications
13,128
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,255
Citations
Introduction
Physicist and Engineer - specialist in solid state physics, particle tracking, silicon technologies, computational physics and electronic devices - he worked at Politecnico in Turin focusing his activity on the study and modeling of quantum tunneling processes (TAT and BTBT). Presently, he is at INFN where, after being involved in designing and optimizing LGAD-based 4D trackers for CERN, now is Senior Research Fellow for the design and characterization of monolithic CMOS particle sensors.
Additional affiliations
June 2019 - September 2019
CERN
Position
  • Visiting Researcher
Description
  • Testing coordinator and supervisor of the characterization activities carried out on the RSD1 detectors at the Solid State Detector Laboratory (SSD-Lab)
February 2017 - present
INFN - Istituto Nazionale di Fisica Nucleare
Position
  • Researcher
Description
  • Design, Numerical Simulation and Testing of Silicon Particle Detectors for High-Performance Timing Measurements and 4D-Tracking. Former Grant Holder and Head of the "Resistive AC-Coupled Silicon Detectors" (RSD) National Experiment, now Senior Research Fellow for the Design and Characterization of Monolithic CMOS Sensors.
November 2016 - present
CERN
Position
  • CERN User
Description
  • Development (design and optimization) of radiation-hard silicon particle trackers (also within the RD50 Collaboration) for the CMS MIP Endcap Timing Detector (until 2022) and the ALICE Timing Layer (from 2023).

Publications

Publications (103)
Article
We present a combined theoretical, numerical and experimental investigation on trap-assisted tunneling (TAT) in the subthreshold regime of III-nitride-based light-emitting diodes (LEDs). Starting from the basic formulation of the TAT models provided by Hurkx and Schenk, we discuss the derivation of a detailed approach based on both multiphonon and...
Article
Is it possible to design a detector able to concurrently measure time and position with high precision? This question is at the root of the research and development of silicon sensors presented in this contribution. Silicon sensors are the most common type of particle detectors used for charged particle tracking, however their rather poor time reso...
Article
Full-text available
In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a...
Article
Full-text available
In this paper we report results from a neutron irradiation campaign of Ultra-Fast Silicon Detectors (UFSD) with fluences of 1e14, 3e14, 6e14, 1e15, 3e15, 6e15 n/cm2. The UFSD used in this study are circular 50 micro-meter thick Low-Gain Avalanche Detectors (LGAD), with a 1.0 mm diameter active area. They have been produced by Hamamatsu Photonics (H...
Article
We designed, produced, and tested RSD (Resistive AC-Coupled Silicon Detectors) devices, an evolution of the standard LGAD (Low-Gain Avalanche Diode) technology where a resistive n-type implant and a coupling dielectric layer have been implemented. The first feature works as a resistive sheet, freezing the multiplied charges, while the second one ac...
Article
Full-text available
A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the sta...
Preprint
Full-text available
A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10~TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the sta...
Article
Full-text available
This paper presents the measurements on first very thin Ultra-Fast Silicon Detectors (UFSDs) produced by Fondazione Bruno Kessler; the data have been collected in a beam test setup at the CERN PS, using beam with a momentum of 12 GeV/c. UFSDs with a nominal thickness of 25 and 35 $$\mu$$ μ m and an area of 1 $$\times$$ × 1 $$\text {mm}^2$$ mm 2 hav...
Preprint
The basic principle of operation of silicon sensors with resistive read-out is built-in charge sharing. Resistive Silicon Detectors (RSD, also known as AC-LGAD), exploiting the signals seen on the electrodes surrounding the impact point, achieve excellent space and time resolutions even with very large pixels. In this paper, a TCT system using a 10...
Article
The MIUR PRIN 4DInSiDe collaboration aims at developing the next generation of 4D (i.e., position and time) silicon detectors based on Low-Gain Avalanche Diodes (LGAD) that guarantee to operate efficiently in the future high-energy physics experiments. To this purpose, different areas of research have been identified, involving the development, des...
Article
Resistive AC-coupled Silicon Detectors (RSDs) are based on the Low Gain Avalanche Diode (LGAD) technology, characterized by a continuous gain layer, and by the innovative introduction of resistive read-out. Thanks to a novel electrode design aimed at maximizing signal sharing, RSD2, the second RSD production by Fondazione Bruno Kessler (FBK), achie...
Article
Full-text available
Next generation Low Gain Avalanche Diodes (LGAD) produced by Hamamatsu photonics (HPK) and Fondazione Bruno Kessler (FBK) were tested before and after irradiation with ~1MeV neutrons at the JSI facility in Ljubljana. Sensors were irradiated to a maximum 1-MeV equivalent fluence of 2.5E15 N eq /cm ² . The sensors analysed in this paper are an improv...
Article
Low Gain Avalanche Detectors (LGADs) are a type of thin silicon detector with a highly doped gain layer. LGADs manufactured by Fondazione Bruno Kessler (FBK) were tested before and after irradiation with neutrons. In this study, the inter-pad dead regions (IPDRs), defined as the width of the distances between pads, were measured with a TCT laser sy...
Preprint
In this contribution, we present an innovative design of the Low-Gain Avalanche Diode (LGAD) gain layer, the p$^+$ implant responsible for the local and controlled signal multiplication. In the standard LGAD design, the gain layer is obtained by implanting $\sim$ 5E16/cm$^3$ atoms of an acceptor material, typically Boron or Gallium, in the region b...
Preprint
This paper presents the measurements on first very thin Ultra Fast Silicon Detectors (UFSDs) produced by Fondazione Bruno Kessler; the data have been collected in a beam test setup at the CERN PS, using beam with a momentum of 12 GeV/c. UFSDs with a nominal thickness of 25 $\mu$m and 35 $\mu$m and an area of 1 $\times$ 1 $\text{mm}^2$ have been con...
Article
In this contribution we describe the second run of RSD (Resistive AC-Coupled Silicon Detectors) designed at INFN Torino and produced by Fondazione Bruno Kessler (FBK), Trento. RSD are n -in- p detectors intended for 4D particle tracking based on the LGAD technology that get rid of any segmentation implant in order to achieve the 100% fill-factor. T...
Article
Resistive Silicon Detectors (RSD, also known as AC-LGAD) are innovative silicon sensors, based on the LGAD technology, characterized by a continuous gain layer that spreads across the whole sensor active area. RSDs are very promising tracking detectors, thanks to the combination of the built-in signal sharing with the internal charge multiplication...
Article
In this work, we introduce a new design concept: the DC-coupled Resistive Silicon Detectors, based on the LGAD technology. This new design intends to address a few known drawbacks of the first generation of AC-coupled Resistive Silicon Detectors (RSD). The sensor behaviour is simulated using a fast hybrid approach based on a combination of two pack...
Article
The past ten years have seen the advent of silicon-based precise timing detectors for charged particle tracking. The underlying reason for this evolution is a design innovation: the Low-Gain Avalanche Diode (LGAD). In its simplicity, the LGAD design is an obvious step with momentous consequences: low gain leads to large signals maintaining sensors...
Article
In this contribution, we present an innovative design of the Low-Gain Avalanche Diode (LGAD) gain layer, the p+ implant responsible for the local and controlled signal multiplication. In the standard LGAD design, the gain layer is obtained by implanting ∼5E16/cm3 atoms of an acceptor material, typically Boron or Gallium, in the region below the n++...
Preprint
In this work, we introduce a new design concept: the DC-Coupled Resistive Silicon Detectors, based on the LGAD technology. This new approach intends to address a few known features of the first generation of AC-Coupled Resistive Silicon Detectors (RSD). Our simulation exploits a fast hybrid approach based on a combination of two packages, Weightfie...
Preprint
The past ten years have seen the advent of silicon-based precise timing detectors for charged particle tracking. The underlying reason for this evolution is a design innovation: the Low-Gain Avalanche Diode (LGAD). In its simplicity, the LGAD design is an obvious step with momentous consequences: low gain leads to large signals maintaining sensors...
Preprint
Full-text available
Resistive Silicon Detectors (RSD, also known as AC-LGAD) are innovative silicon sensors, based on the LGAD technology, characterized by a continuous gain layer that spreads across the whole sensor active area. RSDs are very promising tracking detectors, thanks to the combination of the built-in signal sharing with the internal charge multiplication...
Article
Full-text available
In the past few years, the need of measuring accurately the spatial and temporal coordinates of the particles generated in high-energy physics experiments has spurred a strong R&D in the field of silicon sensors. Within these research activities, the so-called Ultra-Fast Silicon Detectors (UFSDs), silicon sensors optimized for timing based on the L...
Article
Full-text available
Future particle trackers will have to measure concurrently position and time with unprecedented accuracy, aiming at ∼5 μm and a few 10s ps resolution respectively. A promising good candidate for such a task are the resistive AC-LGADs, solid state silicon sensors of novel design, characterized by an internal moderate gain and an AC-coupled resistive...
Preprint
Next generation Low Gain Avalanche Diodes (LGAD) produced by Hamamatsu photonics (HPK) and Fondazione Bruno Kessler (FBK) were tested before and after irradiation with ~1MeV neutrons at the JSI facility in Ljubljana. Sensors were irradiated to a maximum 1-MeV equivalent fluence of 2.5E15 Neq/cm2. The sensors analysed in this paper are an improvemen...
Preprint
Full-text available
In the past few years, the need of measuring accurately the spatial and temporal coordinates of the particles generated in high-energy physics experiments has spurred a strong R\&D in the field of silicon sensors. Within these research activities, the so-called Ultra-Fast Silicon Detectors (UFSDs), silicon sensors optimized for timing based on the...
Preprint
In this contribution we describe the second run of RSD (Resistive AC-Coupled Silicon Detectors) designed at INFN Torino and produced by Fondazione Bruno Kessler (FBK), Trento. RSD are n-in-p detectors intended for 4D particle tracking based on the LGAD technology that get rid of any segmentation implant in order to achieve the 100% fill-factor. The...
Preprint
Low Gain Avalanche Detectors (LGADs) are a type of thin silicon detector with a highly doped gain layer. LGADs manufactured by Fondazione Bruno Kessler (FBK) were tested before and after irradiation with neutrons. In this study, the Inter-pad distances (IPDs), defined as the width of the distances between pads, were measured with a TCT laser system...
Article
Within the MoveIT-project of the National Institute for Nuclear Physics (INFN), the University of Torino (UNITO) and INFN-Torino are developing a detector made of a telescope of two Ultra-Fast Silicon Detectors (UFSD) aligned along the beam direction to determine the energy of clinical proton beams from the measurement of the time-of-flight of sing...
Article
This paper presents the principles of operation of Resistive AC-Coupled Silicon Detectors (RSDs) and measurements of the temporal and spatial resolutions using a combined analysis of laser and beam test data. RSDs are a new type of n-in-p silicon sensor based on the Low-Gain Avalanche Diode (LGAD) technology, where the n+ implant has been designed...
Article
Full-text available
RSDs (Resistive AC-Coupled Silicon Detectors) are n-in-p silicon sensors based on the LGAD (Low-Gain Avalanche Diode) technology, featuring a continuous gain layer over the whole sensor area. The truly innovative feature of these sensors is that the signal induced by an ionising particle is seen on several pixels, allowing the use of reconstruction...
Article
Low Gain Avalanche Diodes (LGADs) are now considered a viable solution for 4D-tracking thanks to their excellent time resolution and good resistance to high radiation fluence. However, the currently available LGAD technology is well suited only for applications that require coarse space precision, pixels with pitch in the range 500 µm–1 mm, due to...
Article
The performance of the Ultra-Fast Silicon Detectors (UFSD) after irradiation with neutrons and protons is compromised by the removal of acceptors in the thin layer below the junction responsible for the gain. This effect is tested both with capacitance–voltage, C–V, measurements of the doping concentration and with measurements of charge collection...
Article
Full-text available
Beam monitoring in particle therapy is a critical task that, because of the high flux and the time structure of the beam, can be challenging for the instrumentation. Recent developments in thin silicon detectors with moderate internal gain, optimized for timing applications (Ultra Fast Silicon Detectors, UFSD), offer a favourable technological opti...
Preprint
RSDs (Resistive AC-Coupled Silicon Detectors) are n-in-p silicon sensors based on the LGAD (Low-Gain Avalanche Diode) technology, featuring a continuous gain layer over the whole sensor area. The truly innovative feature of these sensors is that the signal induced by an ionising particle is seen on several pixels, allowing the use of reconstruction...
Preprint
Full-text available
This paper presents the principles of operation of Resistive AC-Coupled Silicon Detectors (RSDs) and measurements of the temporal and spatial resolutions using a combined analysis of laser and beam test data. RSDs are a new type of n-in-p silicon sensor based on the Low-Gain Avalanche Diode (LGAD) technology, where the $n^+$ implant has been design...
Article
In the past few years, there has been growing interest in the development of silicon sensors able to simultaneously measure accurately the time of passage and the position of impinging charged particles. In this contribution, a review of the progresses in the design of UFSD (Ultra-Fast Silicon Detectors) sensors, manufactured at the FBK (Fondazione...
Article
Full-text available
Several future high-energy physics facilities are currently being planned. The proposed projects include high energy e+e− circular and linear colliders, hadron colliders, and muon colliders, while the Electron-Ion Collider (EIC) is expected to construct at the Brookhaven National Laboratory in the future. Each proposal has its advantages and disadv...
Preprint
The properties of 50 um thick Low Gain Avalanche Diode (LGAD) detectors manufactured by Hamamatsu photonics (HPK) and Fondazione Bruno Kessler (FBK) were tested before and after irradiation with 1 MeV neutrons. Their performance were measured in charge collection studies using b-particles from a 90Sr source and in capacitance-voltage scans (C-V) to...
Article
In this paper we present the numerical simulation of silicon detectors with internal gain as the main tool for 4-dimensional (4D) particle trackers design and optimization. The Low-Gain Avalanche Diode (LGAD) technology and its present limitations are reviewed with the aim of introducing the Resistive AC-Coupled Silicon Detectors (RSD) paradigm as...
Preprint
Several future high-energy physics facilities are currently being planned. The proposed projects include high energy $e^+ e^-$ circular and linear colliders, hadron colliders and muon colliders, while the Electron-Ion Collider (EIC) has already been approved for construction at the Brookhaven National Laboratory. Each proposal has its own advantage...
Preprint
Full-text available
In this paper we present a complete characterization of the first batch of Resistive AC-Coupled Silicon Detectors, called RSD1, designed at INFN Torino and manufactured by Fondazione Bruno Kessler (FBK) in Trento. With their 100% fill-factor, RSD represent the new enabling technology for the high-precision 4D-tracking. Indeed, being based on the we...
Preprint
It is foreseen to significantly increase the luminosity of the LHC in order to harvest the maximum physics potential. Especially the Phase-II-Upgrade foreseen for 2023 will mean unprecedented radiation levels, significantly beyond the limits of the Silicon trackers currently employed. All-Silicon central trackers are being studied in ATLAS, CMS and...
Preprint
We simulated, designed, produced, and tested RSD (Resistive AC-Coupled Silicon Detectors) devices, an evolution of the standard LGAD (Low-Gain Avalanche Diode) technology where a resistive n-type implant and a coupling dielectric layer have been implemented. The first feature works as a resistive sheet, freezing the multiplied charges, while the se...
Article
Purpose: The direct measurement of each beam particle is proposed as a new paradigm for the monitoring of clinical ion beams. To this aim, the results on clinical proton beams of Ultra Fast Silicon Detectors (UFSDs)-based devices are reported. Methods: The capability to detect single protons and the outstanding time resolution (tenths of ps) provid...
Conference Paper
Full-text available
Solid state silicon detectors gained extensive applications in particle physics experiment. High detection precision, radiation resistance and very good time resolution are their main advantages that overcome many limitations of alternative gas detecting systems. Ultra Fast Silicon Detectors (UFSD) are a recent development which feature a faster ch...
Conference Paper
Full-text available
Purpose Due to their extra advantages, solid state silicon detectors were initially used in nuclear and particle physics experiments and rapidly gained widespread applications in many different fields (space, medical, etc.). High detection precision, radiation resistance and very good time resolution are their main advantages that overcome many lim...
Article
Purpose For beam monitoring in particle therapy, silicon detectors could overcome the limitations of ionization chambers. In particular, silicon sensors with internal gain (Ultra Fast Silicon Detectors, UFSDs) provide high signal-to-noise ratio and fast collection times ( ∼1 ns in 50 μm thickness). A segmented sensor could allow discriminating and...
Conference Paper
The MoVeIT project of the Italian Institute for Nuclear Physics (INFN) aims at studying, modeling and verifying the biological impact on charged particle therapy of some complex physical and biological effects, so far neglected by treatment planning systems (TPS) currently used. The preclinical testing of biologically optimized TPS requires dedicat...
Article
Full-text available
The combination of precision space and time information in particle tracking, the so called 4D tracking, is being considered in the upgrade of the ATLAS, CMS and LHCb experiments at the High-Luminosity LHC, set to start data taking in 2024–2025. Regardless of the type of solution chosen, space–time tracking brings benefits to the performance of the...
Conference Paper
Purpose. Laboratory characterization of thin strip silicon sensors with internal gain (Ultra Fast Silicon Detectors), developed for beam monitoring applications in particle therapy, has been performed in order to qualify each sensor in terms of leakage current, dead and noisy channels and gain as a function of the bias voltage. Methods. some detect...
Article
The Ultra Fast Silicon Detectors (UFSDs) are a new kind of silicon detectors based on Low Gain Avalanche Diodes technology. The UFSDs are optimised for time measurements with the goal of both excellent space and time resolution, which makes them a very good candidate for 4D tracking. In this paper, we will briefly explain their innovative design an...
Conference Paper
Full-text available
In this contribution I will review the state-of-the-art and developments of the Ultra-Fast Silicon Detectors (UFSD) project, designed to provide accurate particle tracking in both space and time. Working principles, technology, measurements and TCAD (Technology Computer-Aided Design) simulations of Low-Gain Avalanche Detectors (LGAD) are described,...
Article
The properties of 60-{\mu}m thick Ultra-Fast Silicon Detectors (UFSD) detectors manufactured by Fondazione Bruno Kessler (FBK), Trento (Italy) were tested before and after irradiation with minimum ionizing particles (MIPs) from a 90Sr \b{eta}-source . This FBK production, called UFSD2, has UFSDs with gain layer made of Boron, Boron low-diffusion, G...
Article
In this paper we report measurements of the uniformity of time resolution, signal amplitude, and charged particle detection efficiency across the sensor surface of low-gain avalanche detectors (LGAD). Comparisons of the performance of sensors with different doping concentrations and different active thicknesses are presented, as well as their tempe...
Article
Fondazione Bruno Kessler (FBK, Trento, Italy) has recently delivered its first 50 $\mu$m thick production of Ultra-Fast Silicon Detectors (UFSD), based on the Low-Gain Avalanche Diode design. These sensors use high resistivity Si-on-Si substrates, and have a variety of gain layer doping profiles and designs based on Boron, Gallium, Carbonated Boron...