Marco Gnugnoli

Marco Gnugnoli
Università degli Studi di Milano-Bicocca | UNIMIB · Department of Biotechnology and Biosciences

Doctor of Philosophy

About

8
Publications
1,190
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
94
Citations

Publications

Publications (8)
Article
Full-text available
Studies performed in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have led the way in defining the DNA damage checkpoint and in identifying most of the proteins involved in this regulatory network, which turned out to have structural and functional equivalents in humans. Subsequent experiments revealed that the checkpoint is an...
Article
In Saccharomyces cerevisiae, the protein kinase A (PKA) plays a central role in the control of metabolism, stress resistance and cell cycle progression. In a previous work, we used a FRET-based A-kinase activity reporter (AKAR3 probe) to monitor changes in PKA activity in vivo in single S. cerevisiae cells. Since this procedure is quite complex and...
Article
Full-text available
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5’-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nuclease Exo1 or Dna...
Article
Full-text available
Budding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC and the DNA polymerase ε (Pol ε) holoenzyme. In Saccharomyces cerevisiae , Dpb4 forms histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol ε complex. Here, we sho...
Article
Full-text available
DNA is exposed to both endogenous and exogenous DNA damaging agents that chemically modify it. To counteract the deleterious effects exerted by DNA lesions, eukaryotic cells have evolved a network of cellular pathways, termed DNA damage response (DDR). The DDR comprises both mechanisms devoted to repair DNA lesions and signal transduction pathways...
Article
Full-text available
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through...
Article
Effective stratification of cancer patients on the basis of their molecular make-up is a key open challenge. Given the altered and heterogenous nature of cancer metabolism, we here propose to use the overall expression of central carbon metabolism as biomarker to characterize groups of patients with important characteristics, such as response to ad...
Article
Full-text available
Author Summary Genome instability is one of the most pervasive characteristics of cancer cells and can be due to DNA repair defects and failure to arrest the cell cycle. Among the many types of DNA damage, the DNA double strand break (DSB) is one of the most severe, because it can cause mutations and chromosomal rearrangements. Generation of DSBs t...

Network

Cited By