Marco Cristani

Marco Cristani
  • Ph.D. in Computer Science
  • Professor (Assistant) at University of Verona

About

309
Publications
85,375
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,806
Citations
Current institution
University of Verona
Current position
  • Professor (Assistant)
Additional affiliations
October 2007 - present
University of Verona
Position
  • Professor (Assistant)

Publications

Publications (309)
Preprint
Full-text available
Natural language goes beyond dryly describing visual content. It contains rich abstract concepts to express feeling, creativity and properties that cannot be directly perceived. Yet, current research in Vision Language Models (VLMs) has not shed light on abstract-oriented language. Our research breaks new ground by uncovering its wide presence and...
Article
With the advent of Industrial 4.0 and the push towards Industry 5.0, the data generated by the industries have become surprisingly large. This abundance of data significantly boosts machine and deep learning models for Predictive Maintenance (PdM). The PdM plays a vital role in extending the lifespan of industrial equipment and machines while also...
Preprint
Full-text available
This study investigates the performance of robust anomaly detection models in industrial inspection, focusing particularly on their ability to handle noisy data. We propose to leverage the adaptation ability of meta learning approaches to identify and reject noisy training data to improve the learning process. In our model, we employ Model Agnostic...
Preprint
Full-text available
In image generation, Multiple Latent Variable Generative Models (MLVGMs) employ multiple latent variables to gradually shape the final images, from global characteristics to finer and local details (e.g., StyleGAN, NVAE), emerging as powerful tools for diverse applications. Yet their generative dynamics and latent variable utilization remain only e...
Preprint
Full-text available
The fast fashion industry's insatiable demand for new styles and rapid production cycles has led to a significant environmental burden. Overproduction, excessive waste, and harmful chemicals have contributed to the negative environmental impact of the industry. To mitigate these issues, a paradigm shift that prioritizes sustainability and efficienc...
Preprint
Full-text available
In the fast-fashion industry, overproduction and unsold inventory create significant environmental problems. Precise sales forecasts for unreleased items could drastically improve the efficiency and profits of industries. However, predicting the success of entirely new styles is difficult due to the absence of past data and ever-changing trends. Sp...
Preprint
Full-text available
The fast fashion industry suffers from significant environmental impacts due to overproduction and unsold inventory. Accurately predicting sales volumes for unreleased products could significantly improve efficiency and resource utilization. However, predicting performance for entirely new items is challenging due to the lack of historical data and...
Preprint
Full-text available
Attackers can deliberately perturb classifiers' input with subtle noise, altering final predictions. Among proposed countermeasures, adversarial purification employs generative networks to preprocess input images, filtering out adversarial noise. In this study, we propose specific generators, defined Multiple Latent Variable Generative Models (MLVG...
Preprint
Existing embodied instance goal navigation tasks, driven by natural language, assume human users to provide complete and nuanced instance descriptions prior to the navigation, which can be impractical in the real world as human instructions might be brief and ambiguous. To bridge this gap, we propose a new task, Collaborative Instance Navigation (C...
Preprint
Full-text available
In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in...
Preprint
Full-text available
Continuous monitoring of coma patients is essential but challenging, especially in developing countries with limited resources, staff, and infrastructure. This paper presents a low-cost IoT-based system designed for such environments. It uses affordable hardware and robust software to monitor patients without constant internet access or extensive m...
Preprint
Full-text available
Ge'ez, an ancient Ethiopic script of cultural and historical significance, has been largely neglected in handwriting recognition research, hindering the digitization of valuable manuscripts. Our study addresses this gap by developing a state-of-the-art Ge'ez handwriting recognition system using Convolutional Neural Networks (CNNs) and Long Short-Te...
Preprint
Full-text available
Gaze Target Detection (GTD), i.e., determining where a person is looking within a scene from an external viewpoint, is a challenging task, particularly in 3D space. Existing approaches heavily rely on analyzing the person's appearance, primarily focusing on their face to predict the gaze target. This paper presents a novel approach to tackle this p...
Preprint
Full-text available
In recent years, the development of deep learning approaches for the task of person re-identification led to impressive results. However, this comes with a limitation for industrial and practical real-world applications. Firstly, most of the existing works operate on closed-world scenarios, in which the people to re-identify (probes) are compared t...
Preprint
Full-text available
Patterns of human motion in outdoor and indoor environments are substantially different due to the scope of the environment and the typical intentions of people therein. While outdoor trajectory forecasting has received significant attention, indoor forecasting is still an underexplored research area. This paper proposes SITUATE, a novel approach t...
Article
Full-text available
We propose a solution for Active Visual Search of objects in an environment, whose 2D floor map is the only known information. Our solution has three key features that make it more plausible and robust to detector failures compared to state-of-the-art methods: (i) it is unsupervised as it does not need any training sessions. (ii) During the exp...
Preprint
Full-text available
This study introduces the Iterative Refinement Process (IRP), a robust anomaly detection methodology designed for high-stakes industrial quality control. The IRP enhances defect detection accuracy through a cyclic data refinement strategy, iteratively removing misleading data points to improve model performance and robustness. We validate the IRP's...
Preprint
Full-text available
In the past decade, Deep Neural Networks (DNNs) achieved state-of-the-art performance in a broad range of problems, spanning from object classification and action recognition to smart building and healthcare. The flexibility that makes DNNs such a pervasive technology comes at a price: the computational requirements preclude their deployment on mos...
Preprint
Full-text available
Split Computing (SC), where a Deep Neural Network (DNN) is intelligently split with a part of it deployed on an edge device and the rest on a remote server is emerging as a promising approach. It allows the power of DNNs to be leveraged for latency-sensitive applications that do not allow the entire DNN to be deployed remotely, while not having suf...
Preprint
Full-text available
Defect detection is the task of identifying defects in production samples. Usually, defect detection classifiers are trained on ground-truth data formed by normal samples (negative data) and samples with defects (positive data), where the latter are consistently fewer than normal samples. State-of-the-art data augmentation procedures add synthetic...
Preprint
In the Vision-and-Language Navigation in Continuous Environments (VLN-CE) task, the human user guides an autonomous agent to reach a target goal via a series of low-level actions following a textual instruction in natural language. However, most existing methods do not address the likely case where users may make mistakes when providing such instru...
Preprint
Full-text available
In this study, we show that diffusion models can be used in industrial scenarios to improve the data augmentation procedure in the context of surface defect detection. In general, defect detection classifiers are trained on ground-truth data formed by normal samples (negative data) and samples with defects (positive data), where the latter are cons...
Article
Full-text available
New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to...
Article
Full-text available
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence by promoting the joint design of resource-constrained IoT hardware devices and their learning-based software architectures. TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, econo...
Article
Full-text available
The revolutionary technologies behind Industry 4.0 have opened a new era for manufacturing: connected and autonomous machines, collaborative robotics, and monitoring techniques are spreading to increase productivity and sustainability. From the workers’ perspective, they bring new safety threats but also opportunities to solve old ones, while conce...
Chapter
We present SCENE-pathy, a dataset and a set of baselines to study the visual selective attention (VSA) of people towards the 3D scene in which they are located. In practice, VSA allows to discover which parts of the scene are most attractive for an individual. Capturing VSA is of primary importance in the fields of marketing, retail management, sur...
Chapter
Vector Quantized Variational Autoencoders (VQ-VAEs) have gained popularity in recent years due to their ability to represent images as discrete sequences of tokens that index a learned codebook of vectors, enabling efficient image compression. One variant of particular interest is VQ-VAE 2, which extends previous works by representing images as a h...
Preprint
We present Le-RNR-Map, a Language-enhanced Renderable Neural Radiance map for Visual Navigation with natural language query prompts. The recently proposed RNR-Map employs a grid structure comprising latent codes positioned at each pixel. These latent codes, which are derived from image observation, enable: i) image rendering given a camera pose, si...
Chapter
The fashion industry is one of the most active and competitive markets in the world, manufacturing millions of products and reaching large audiences every year. A plethora of business processes are involved in this large-scale industry, but due to the common short life-cycle of clothing items, supply-chain management and retailing strategies are cr...
Chapter
Conventional automatic doors cannot distinguish between people wishing to pass through the door and people passing by the door, so they often open unnecessarily. This leads to the need to adopt new systems in both commercial and non-commercial environments: smart doors. In particular, a smart door system predicts the intention of people near the do...
Preprint
Full-text available
Industry 4.0 involves the integration of digital technologies, such as IoT, Big Data, and AI, into manufacturing and industrial processes to increase efficiency and productivity. As these technologies become more interconnected and interdependent, Industry 4.0 systems become more complex, which brings the difficulty of identifying and stopping anom...
Article
Full-text available
We propose an end-to-end solution to address the problem of object localisation in partial scenes, where we aim to estimate the position of an object in an unknown area given only a partial 3D scan of the scene. We propose a novel scene representation to facilitate the geometric reasoning, Directed Spatial Commonsense Graph (D-SCG), a spatial scene...
Preprint
Full-text available
Continuous mid-air hand gesture recognition based on captured hand pose streams is fundamental for human-computer interaction, particularly in AR / VR. However, many of the methods proposed to recognize heterogeneous hand gestures are tested only on the classification task, and the real-time low-latency gesture segmentation in a continuous stream i...
Preprint
Full-text available
Many recent pattern recognition applications rely on complex distributed architectures in which sensing and computational nodes interact together through a communication network. Deep neural networks (DNNs) play an important role in this scenario, furnishing powerful decision mechanisms, at the price of a high computational effort. Consequently, po...
Preprint
Full-text available
BDDs are representations of a Boolean expression in the form of a directed acyclic graph. BDDs are widely used in several fields, particularly in model checking and hardware verification. There are several implementations for BDD manipulation, where each package differs depending on the application. This paper presents HermesBDD: a novel multi-core...
Preprint
We propose a solution for Active Visual Search of objects in an environment, whose 2D floor map is the only known information. Our solution has three key features that make it more plausible and robust to detector failures compared to state-of-the-art methods: (i) it is unsupervised as it does not need any training sessions. (ii) During the explora...
Preprint
Full-text available
We propose a novel image dataset focused on tiny faces wearing face masks for mask classification purposes, dubbed Small Face MASK (SF-MASK), composed of a collection made from 20k low-resolution images exported from diverse and heterogeneous datasets, ranging from 7 x 7 to 64 x 64 pixel resolution. An accurate visualization of this collection, thr...
Preprint
Full-text available
The fashion industry is one of the most active and competitive markets in the world, manufacturing millions of products and reaching large audiences every year. A plethora of business processes are involved in this large-scale industry, but due to the generally short life-cycle of clothing items, supply-chain management and retailing strategies are...
Preprint
Full-text available
We propose an end-to-end solution to address the problem of object localisation in partial scenes, where we aim to estimate the position of an object in an unknown area given only a partial 3D scan of the scene. We propose a novel scene representation to facilitate the geometric reasoning, Directed Spatial Commonsense Graph (D-SCG), a spatial scene...
Chapter
Full-text available
Pushing back the frontiers of collaborative robots in industrial environments, we propose a new Separable-Sparse Graph Convolutional Network (SeS-GCN) for pose forecasting. For the first time, SeS-GCN bottlenecks the interaction of the spatial, temporal and channel-wise dimensions in GCNs, and it learns sparse adjacency matrices by a teacher-studen...
Chapter
We propose a data-centric pipeline able to generate exogenous observation data for the New Fashion Product Performance Forecasting (NFPPF) problem, i.e., predicting the performance of a brand-new clothing probe with no available past observations. Our pipeline manufactures the missing past starting from a single, available image of the clothing pro...
Preprint
Full-text available
This work makes a substantial step in the field of split computing, i.e., how to split a deep neural network to host its early part on an embedded device and the rest on a server. So far, potential split locations have been identified exploiting uniquely architectural aspects, i.e., based on the layer sizes. Under this paradigm, the efficacy of the...
Preprint
Full-text available
Conventional automatic doors cannot distinguish between people wishing to pass through the door and people passing by the door, so they often open unnecessarily. This leads to the need to adopt new systems in both commercial and non-commercial environments: smart doors. In particular, a smart door system predicts the intention of people near the do...
Preprint
Full-text available
Pushing back the frontiers of collaborative robots in industrial environments, we propose a new Separable-Sparse Graph Convolutional Network (SeS-GCN) for pose forecasting. For the first time, SeS-GCN bottlenecks the interaction of the spatial, temporal and channel-wise dimensions in GCNs, and it learns sparse adjacency matrices by a teacher-studen...
Preprint
Full-text available
We propose a data-centric pipeline able to generate exogenous observation data for the New Fashion Product Performance Forecasting (NFPPF) problem, i.e., predicting the performance of a brand-new clothing probe with no available past observations. Our pipeline manufactures the missing past starting from a single, available image of the clothing pro...
Preprint
Full-text available
We present Visuelle 2.0, the first dataset useful for facing diverse prediction problems that a fast-fashion company has to manage routinely. Furthermore, we demonstrate how the use of computer vision is substantial in this scenario. Visuelle 2.0 contains data for 6 seasons / 5355 clothing products of Nuna Lie, a famous Italian company with hundred...
Preprint
Transformer Networks have established themselves as the de-facto state-of-the-art for trajectory forecasting but there is currently no systematic study on their capability to model the motion patterns of people, without interactions with other individuals nor the social context. This paper proposes the first in-depth study of Transformer Networks (...
Preprint
Full-text available
We solve object localisation in partial scenes, a new problem of estimating the unknown position of an object (e.g. where is the bag?) given a partial 3D scan of a scene. The proposed solution is based on a novel scene graph model, the Spatial Commonsense Graph (SCG), where objects are the nodes and edges define pairwise distances between them, enr...
Preprint
Full-text available
Retrieving clothes which are worn in social media videos (Instagram, TikTok) is the latest frontier of e-fashion, referred to as "video-to-shop" in the computer vision literature. In this paper we present MovingFashion, the first publicly available dataset to cope with this challenge. MovingFashion is composed of 14855 social videos, each one of th...
Preprint
Full-text available
This paper investigates the effectiveness of systematically probing Google Trendsagainst textual translations of visual aspects as exogenous knowledge to predict the sales of brand-new fashion items, where past sales data is not available, but only an image and few metadata are available. In particular, we propose GTM-Transformer, standing for Goog...
Preprint
Full-text available
In this paper we focus on the problem of learning online an optimal policy for Active Visual Search (AVS) of objects in unknown indoor environments. We propose POMP++, a planning strategy that introduces a novel formulation on top of the classic Partially Observable Monte Carlo Planning (POMCP) framework, to allow training-free online policy learni...
Article
Illumination is important for well-being, productivity and safety across several environments, including offices, retail shops and industrial warehouses. Current techniques for setting up lighting require extensive and expert support and need to be repeated if the scene changes. Here we propose the first fully automated light management system whic...
Preprint
Full-text available
In this paper we focus on the problem of learning an optimal policy for Active Visual Search (AVS) of objects in known indoor environments with an online setup. Our POMP method uses as input the current pose of an agent (e.g. a robot) and a RGB-D frame. The task is to plan the next move that brings the agent closer to the target object. We model th...
Article
Full-text available
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying...
Article
Full-text available
One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, governments are adopting restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to s...
Preprint
Full-text available
We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying...
Preprint
One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is...
Preprint
Full-text available
Illumination is important for well-being, productivity and safety across several environments, including offices, retail shops and industrial warehouses. Current techniques for setting up lighting require extensive and expert support and need to be repeated if the scene changes. Here we propose the first fully-automated light management system (LMS...
Preprint
Full-text available
Most recent successes on forecasting the people motion are based on LSTM models and all most recent progress has been achieved by modelling the social interaction among people and the people interaction with the scene. We question the use of the LSTM models and propose the novel use of Transformer Networks for trajectory forecasting. This is a fund...
Article
In this article, we explore the correlation between people trajectories and their head orientations. We argue that people trajectory and head pose forecasting can be modelled as a joint problem. Recent approaches on trajectory forecasting leverage short-term trajectories ( aka tracklets) of pedestrians to predict their future paths. In addition, s...
Chapter
Object pose estimation is important for systems and robots to interact with the environment where the main challenge of this task is the complexity of the scene caused by occlusions and clutters. A key challenge is performing pose estimation leveraging on both RGB and depth information: prior works either extract information from the RGB image and...
Chapter
We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages...
Chapter
Full-text available
Capturing the essence of a textile image in a robust way is important to retrieve it in a large repository, especially if it has been acquired in the wild (by taking a photo of the textile of interest). In this paper we show that a texel-based representation fits well with this task. In particular, we refer to Texel-Att, a recent texel-based descri...
Chapter
In this paper we propose an image segmentation method specifically designed to detect crystalline grains in microscopic images. We build on the watershed segmentation approach; we propose a preprocessing pipeline to generate a topographic map exploiting the physical nature of the incoming data (i.e. Atomic Force Microscopy) to emphasize grain bound...

Network

Cited By