Marco Aldinucci

Marco Aldinucci
Università degli Studi di Torino | UNITO · Dipartimento di Informatica

PhD. Computer Science

About

243
Publications
38,111
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,709
Citations
Citations since 2017
72 Research Items
1259 Citations
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
2017201820192020202120222023050100150200250300
Additional affiliations
June 2009 - present
Università degli Studi di Torino
Position
  • FastFlow
December 2008 - December 2014
Università degli Studi di Torino
Position
  • Researcher
October 2007 - October 2008
Università di Pisa
Position
  • Virtualinux

Publications

Publications (243)
Preprint
Full-text available
Training Deep Learning (DL) models require large, high-quality datasets, often assembled with data from different institutions. Federated Learning (FL) has been emerging as a method for privacy-preserving pooling of datasets employing collaborative training from different institutions by iteratively globally aggregating locally trained models. One...
Conference Paper
Full-text available
Federated Learning (FL) is becoming popular in different industrial sectors where data access is critical for security, privacy and the economic value of data itself. Unlike traditional machine learning, where all the data must be globally gathered for analysis, FL makes it possible to extract knowledge from data distributed across different organi...
Preprint
Decentralised Machine Learning (DML) enables collaborative machine learning without centralised input data. Federated Learning (FL) and Edge Inference are examples of DML. While tools for DML (especially FL) are starting to flourish, many are not flexible and portable enough to experiment with novel systems (e.g., RISC-V), non-fully connected topol...
Preprint
Full-text available
The Gaia Astrometric Verification Unit-Global Sphere Reconstruction (AVU-GSR) Parallel Solver aims to find the astrometric parameters for $\sim$10$^8$ stars in the Milky Way, the attitude and the instrumental specifications of the Gaia satellite, and the global parameter $\gamma$ of the post Newtonian formalism. The code iteratively solves a system...
Preprint
The modelling and analysis of biological systems has deep roots in Mathematics, specifically in the field of Ordinary Differential Equations. Alternative approaches based on formal calculi, often derived from process algebras or term rewriting systems, provide a quite complementary way to analyse the behaviour of biological systems. These calculi a...
Chapter
The idea behind novel single-cell RNA sequencing (scRNA-seq) pipelines is to isolate single cells through microfluidic approaches and generate sequencing libraries in which the transcripts are tagged to track their cell of origin. Modern scRNA-seq platforms are capable of analyzing up to many thousands of cells in each run. Then, combined with mass...
Article
The Gaia Astrometric Verification Unit–Global Sphere Reconstruction (AVU–GSR) Parallel Solver aims to find the astrometric parameters for ∼108 stars in the Milky Way, the attitude and the instrumental specifications of the Gaia satellite, and the global parameter γ of the post Newtonian formalism. The code iteratively solves a system of linear equa...
Article
Full-text available
The growing number of next-generation applications offers a relevant opportunity for healthcare services, generating an urgent need for architectures for systems integration. Moreover, the huge amount of stored information related to events can be explored by adopting a process-oriented perspective. This paper discusses an Ambient Assisted Living h...
Conference Paper
Full-text available
Classic Machine Learning (ML) techniques require training on data available in a single data lake (either centralized or distributed). However, aggregating data from different owners is not always convenient for different reasons, including security, privacy and secrecy. Data carry a value that might vanish when shared with others; the ability to a...
Article
In the near future, Exascale systems will need to bridge three technology gaps to achieve high performance while remaining under tight power constraints: energy efficiency and thermal control; extreme computation efficiency via HW acceleration and new arithmetic; methods and tools for seamless integration of reconfigurable accelerators in heterogen...
Conference Paper
Early detection of precancerous cysts or neoplasms, i.e., Intraductal Papillary Mucosal Neoplasms (IPMN), in pancreas is a challenging and complex task, and it may lead to a more favourable outcome. Once detected, grading IPMNs accurately is also necessary, since low-risk IPMNs can be under surveillance program, while high-risk IPMNs have to be sur...
Preprint
Full-text available
Early detection of precancerous cysts or neoplasms, i.e., Intraductal Papillary Mucosal Neoplasms (IPMN), in pancreas is a challenging and complex task, and it may lead to a more favourable outcome. Once detected, grading IPMNs accurately is also necessary, since low-risk IPMNs can be under surveillance program, while high-risk IPMNs have to be sur...
Preprint
Full-text available
In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data. However, recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis. Feder...
Conference Paper
Full-text available
Federated Learning has been proposed to develop better AI systems without compromising the privacy of final users and the legitimate interests of private companies. Initially deployed by Google to predict text input on mobile devices, FL has been deployed in many other industries. Since its introduction, Federated Learning mainly exploited the inne...
Chapter
Full-text available
At the present time, we are immersed in the convergence between Big Data, High-Performance Computing and Artificial Intelligence. Technological progress in these three areas has accelerated in recent years, forcing different players like software companies and stakeholders to move quickly. The European Union is dedicating a lot of resources to main...
Article
Full-text available
The designers of a new coordination interface enacting complex workflows have to tackle a dichotomy: choosing a language-independent or language-dependent approach. Language-independent approaches decouple workflow models from the host code’s business logic and advocate portability. Language-dependent approaches foster flexibility and performance b...
Conference Paper
Predicting response to treatment plays a key role to assist radiologists in hepato-cellular carcinoma (HCC) therapy planning. The most widely used treatment for unresectable HCC is the trans-arterial chemoembolization (TACE). A complete radiological response after the first TACE is a reliable predictor of treatment favourable outcome. However, visu...
Conference Paper
Full-text available
To achieve high performance and high energy efficiency on near-future exascale computing systems, three key technology gaps needs to be bridged. These gaps include: energy efficiency and thermal control; extreme computation efficiency via HW acceleration and new arithmetics; methods and tools for seamless integration of reconfigurable accelerators...
Article
Full-text available
This paper reviews recent cardiology literature and reports how Artificial Intelligence Tools (specifically, Machine Learning techniques) are being used by physicians in the field. Each technique is introduced with enough details to allow the understanding of how it works and its intent, but without delving into details that do not add immediate be...
Preprint
Full-text available
HPC is an enabling platform for AI. The introduction of AI workloads in the HPC applications basket has non-trivial consequences both on the way of designing AI applications and on the way of providing HPC computing. This is the leitmotif of the convergence between HPC and AI. The formalized definition of AI pipelines is one of the milestones of HP...
Article
Full-text available
Energy consumption is one of the major issues in today’s computer science, and an increasing number of scientific communities are interested in evaluating the tradeoff between time-to-solution and energy-to-solution. Despite, in the last two decades, computing which revolved around centralized computing infrastructures, such as supercomputing and d...
Article
Full-text available
This work aims at distilling a systematic methodology to modernize existing sequential scientific codes with a little re-designing effort, turning an old codebase into modern code, i.e., parallel and robust code. We propose a semi-automatic methodology to parallelize scientific applications designed with a purely sequential programming mindset, pos...
Article
Full-text available
COVID-19 infection caused by SARS-CoV-2 pathogen has been a catastrophic pandemic outbreak all over the world, with exponential increasing of confirmed cases and, unfortunately, deaths. In this work we propose an AI-powered pipeline, based on the deep-learning paradigm, for automated COVID-19 detection and lesion categorization from CT scans. We fi...
Article
Full-text available
Background High-throughput sequencing Chromosome Conformation Capture (Hi-C) allows the study of DNA interactions and 3D chromosome folding at the genome-wide scale. Usually, these data are represented as matrices describing the binary contacts among the different chromosome regions. On the other hand, a graph-based representation can be advantageo...
Conference Paper
Full-text available
High-Performance Computing (HPC) is one of the strategic priorities for research and innovation worldwide due to its relevance for industrial and scientific applications. We envision HPC as composed of three pillars: infrastructures, applications, and key technologies and tools. While infrastructures are by construction centralized in large-scale H...
Article
Full-text available
A volunteer effort by Artificial Intelligence (AI) researchers has shown it can deliver significant research outcomes rapidly to help tackle COVID-19. Within two months, CLAIRE’s self-organising volunteers delivered the World’s first comprehensive curated repository of COVID-19-related datasets useful for drug-repurposing, drafted review papers on...
Article
Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding afte...
Chapter
Full-text available
High-throughput sequencing Chromosome Conformation Capture (Hi-C) allows the study of chromatin interactions and 3D chromosome folding on a larger scale. A graph-based multi-level representation of Hi-C data is essential for proper visualisation of the spatial pattern they represent, in particular for comparing different experiments or for re-mappi...
Article
Full-text available
Workflows are among the most commonly used tools in a variety of execution environments. Many of them target a specific environment; few of them make it possible to execute an entire workflow in different environments, e.g. Kubernetes and batch clusters. We present a novel approach to workflow execution, called StreamFlow, that complements the work...
Article
Full-text available
In the last years, pattern-based programming has been recognized as a good practice for efficiently exploiting parallel hardware resources. Following this approach, multiple libraries have been designed for providing such high-level abstractions to ease the parallel programming. However, those libraries do not share a common interface. To pave the...
Conference Paper
Full-text available
High throughput applications with real-time guar- antees are increasingly relevant. For these applications, par- allelism must be exposed to meet deadlines. Directed Acyclic Graphs (DAGs) are a popular and very general application model that can capture any possible interaction among threads. However, we argue that by constraining the application s...
Preprint
Full-text available
Workflows are among the most commonly used tools in a variety of execution environments. Many of them target a specific environment; few of them make it possible to execute an entire workflow in different environments, e.g. Kubernetes and batch clusters. We present a novel approach to workflow execution, called StreamFlow, that complements the work...
Article
Please cite this article as: V. Amaral, B. Norberto and M. Goulão et al., Programming languages for data-Intensive HPC applications: A systematic mapping study, Parallel Computing, https://doi.org/10.1016/j.parco.2019.102584 A major challenge in modelling and simulation is the need to combine expertise in both software technologies and a given sci...
Article
Full-text available
This work studies the issues related to dynamic memory management in Data Stream Processing, an emerging paradigm enabling the real-time processing of live data streams. In this paper we consider two streaming parallel patterns and we discuss different implementation variants related on how dynamic memory is managed. The results show that the stand...
Article
Many bioinformatic applications require to exploit the capabilities of several computational resources to effectively access and process large and distributed datasets. In this context, Grid computing has been largely used to face unprecedented challenges in Computational Biology, at the cost of complex workarounds needed to make applications succe...
Chapter
Full-text available
Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack th...
Article
Full-text available
We discuss the extended parallel pattern set identified within the EU-funded project RePhrase as a candidate pattern set to support data intensive applications targeting heterogeneous architectures. The set has been designed to include three classes of pattern, namely i) core patterns, modelling common, not necessarily data intensive parallelism ex...
Conference Paper
Full-text available
This work presents a novel approach to distributed training of deep neural networks (DNNs) that aims to overcome the issues related to mainstream approaches to data parallel training. Established techniques for data parallel training are discussed from both a parallel computing and deep learning perspective, then a different approach is presented t...
Conference Paper
Full-text available
The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive...
Chapter
Full-text available
Boosted by Big Data popularity, new languages and frameworks for data analytics are appearing at an increasing pace. Each of them introduces its own concepts and terminology and advocates a (real or alleged) superiority in terms of performances or expressiveness against predecessors. In this hype, for a user approaching Big Data analytics (even an...
Article
Full-text available
Obtaining CPU cycles on an HPC cluster is nowadays relatively simple and sometimes even cheap for academic institutions. However, in most of the cases providers of HPC services would not allow changes on the configuration, implementation of special features or a lower-level control on the computing infrastructure, for example for testing experiment...
Article
Full-text available
We advocate the Loop-of-stencil-reduce pattern as a means of simplifying the implementation of data-parallel programs on heterogeneous multi-core platforms. Loop-of-stencil-reduce is general enough to subsume map, reduce, map-reduce, stencil, stencil-reduce, and, crucially, their usage in a loop in both data-parallel and streaming applications, or...
Chapter
Full-text available
This work presents an innovative approach adopted for the development of a new numerical software framework for accelerating dense linear algebra calculations and its application within an engineering context. In particular, response surface models (RSM) are a key tool to reduce the computational effort involved in engineering design processes like...
Preprint
Full-text available
This work aims to assess the state of the art of data parallel deep neural network training, trying to identify potential research tracks to be exploited for performance improvement. Beside, it presents a design for a practical C++ library dedicated at implementing and unifying the current state of the art methodologies for parallel training in a p...
Article
Full-text available
In this paper, we present a new C++ API with a fluent interface called PiCo (Pipeline Composition). PiCo's programming model aims at making easier the programming of data analytics applications while preserving or enhancing their performance. This is attained through three key design choices: 1) unifying batch and stream data access models, 2) de-c...
Article
Full-text available
Continuous streaming computations are usually composed of different modules, exchanging data through shared message queues. The selection of the algorithm used to access such queues (i.e. the concurrency control) is a critical aspect both for performance and power consumption. In this paper we describe the design of automatic concurrency control al...
Conference Paper
Full-text available
In April 2018, under the auspices of the POR-FESR 2014-2020 program of Italian Piedmont Region, the Turin’s Centre on High-Performance Computing for Artificial Intelligence (HPC4AI) was funded with a capital investment of 4.5Me and it began its deployment. HPC4AI aims to facilitate scientific research and engineering in the areas of Artificial Inte...
Conference Paper
Full-text available
The present trend in big-data analytics is to exploit algorithms with linear or even sub-linear time complexity, in this sense it is usually worth to investigate if the available techniques can be approximated to reach an affordable complexity. However, there are still problems in data science and engineering that involve algorithms with higher tim...
Conference Paper
Full-text available
In this paper, we present a new C++ API with a fluent interface called PiCo (Pipeline Composition). PiCo's programming model aims at making easier the programming of data analytics applications while preserving or enhancing their performance. This is attained through three key design choices: 1) unifying batch and stream data access models, 2) deco...
Conference Paper
Full-text available
The cloud environment is increasingly appealing for the HPC community, which has always dealt with scientific applications. However, there is still some skepticism about moving from traditional physical infrastructures to virtual HPC clusters. This mistrusting probably originates from some well known factors, including the effective economy of usin...
Article
The cloud environment is increasingly appealing for the HPC community, which has always dealt with scientific applications. However, there is still some skepticism about moving from traditional physical infrastructures to virtual HPC clusters. This mistrusting probably originates from some well known factors, including the effective economy of usin...
Book
This book constitutes the proceedings of the 24th International Conference on Parallel and Distributed Computing, Euro-Par 2018, held in Turin, Italy, in August 2018. The 57 full papers presented in this volume were carefully reviewed and selected from 194 submissions. They were organized in topical sections named: support tools and environments;...
Article
Full-text available
According to the recent trend in data acquisition and processing technology, big data are increasingly available in the form of unbounded streams of elementary data items to be processed in real-time. In this paper we study in detail the paradigm of sliding windows, a well-known technique for approximated queries that update their results continuou...
Article
Full-text available
The Open Computing Cluster for Advanced data Manipulation (OCCAM) is a multi-purpose flexible HPC cluster designed and operated by a collaboration between the University of Torino and the Sezione di Torino of the Istituto Nazionale di Fisica Nucleare. It is aimed at providing a flexible, reconfigurable and extendable infrastructure to cater to a wi...
Conference Paper
Full-text available
Power consumption management has become a major concern in software development. Continuous streaming computations are usually composed by different modules, exchanging data through shared message queues. The selection of the algorithm used to access such queues (i.e., the concurrency control) is a critical aspect for both performance and power con...
Technical Report
Full-text available
In this report, we present a new programming model based on Pipelines and Operators, which are the building blocks of programs written in PiCo, a DSL for Data Analytics Pipelines. In the model we propose, we use the term Pipeline to denote a workflow that processes data collections -- rather than a computational process -- as is common in the data...