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1 Introduction

For decades the uncertainty at the financial markets has been the main point of research related

to risk (Segal et al., 2015; Vorbrink, 2014). A market standard that was established more than 30

years ago to be used as a measure of risk is Value-at-Risk (VaR) (Duffie and Pan, 1997). It is the

most straightforward way of expressing potential losses over a target horizon with a specific statis-

tical confidence. The simplicity of VaR doesn’t restrain numerous approaches from being proposed

(Engle and Manganelli, 2004; Barone-Adesi et al., 2008; Wang et al., 2010). Such scientific abun-

dance imposes that various approaches to calculation of VaR might be in use and still be considered

’good’. Whether one can address the model as of good quality is the point of the debate of many

researchers in this field (Abad et al., 2014; Nozari et al., 2010; Ergün and Jun, 2010; Degiannakis

et al., 2012; Escanciano and Olmo, 2010; Abad and Benito, 2013). Even though the models have

been thoroughly tested and are deemed statistically correct, temporal changes in financial time se-

ries characteristics are still not given enough attention, which can lead to over- or underestimation

of risk. The best example of such situation is a financial crisis from 2008 (Degiannakis et al., 2012)

or more recent market crash caused by COVID-19 (Omari et al., 2020). Therefore financial industry

- both regulators and financial institutions - turns towards a better, probabilistic way to estimate risk

from the past events that is able to adapt to recent shocks rapidly (So and Philip, 2006). As of writ-

ing, the official estimate of market risk is Expected Shortfall (ES) proposed by Basel Committee.

It estimates the expected value of potential loss if such loss on the considered asset will be lower

than VaR.

One of the most influential factors that drives the risk is the variance, in particular its chang-

ing temporal structure or tendency to cluster (Cont, 2002). There exists a broad family of models

that is aimed at capturing such effect, while the most common one is Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) model, proposed by Bollerslev (1986). Due to the fact

that financial markets usually exhibit the known stylized facts, a more fitting approach is to use

fat-tailed distribution (Aloui and Mabrouk, 2010). The introduction of distributions such as t or

GED distributions that allow to model skewness and heavy tails has dispelled any doubts regarding

the validity of GARCH models (BenSaïda, 2015; Bonato, 2012). Another extension of these mod-

els, proposed by Francq and Zakoïan (2004), assumes that not only the variance exhibits temporal
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changes, but also the mean, however in terms of financial returns the mean is usually irrelevant in

the long term (Fama, 1998).

On the other hand, financial researchers aremuch keen on implementingmachine learningmeth-

ods (Sezer et al., 2020). The deep neural networks (deep NNs) are considered to be a good substitute

to the conventional statistical methods, not only in financial markets field, but also in other areas

of science (Mnih et al., 2013; Devlin et al., 2018; Cho et al., 2014). However in the case of time

series data, recurrent approaches, such as long short term memory (LSTM) NNs are better (Good-

fellow et al., 2016). In addition to that, NNs offer a nonlinear estimator of the probability function

(Chen and Billings, 1992). In case of GARCH models a conditional variance function usually as-

sumes a linear or a very simple nonlinear relationship between the probability function (as well as

distribution’s moments) and the observables (Glosten et al., 1993a; Nelson and Cao, 1992).

According to Lim et al. (2019), the best approach to exploit machine learning in the time se-

ries domain is not to fully replace statistical and econometric approaches. They rather propose to

combine the best of both worlds, hence the idea of this paper is to model the conditional variance

with NN. There have been a few studies in the intersection of GARCH models and NNs already.

For example, Arnerić et al. (2014) have proposed to model time series with GARCH model, but

with an extension to RNN by the name of Jordan NNs. A similar research by Kristjanpoller and

Minutolo (2015, 2016) proposes a ANN-GARCH model and their results indicate a 25% reduction

in mean absolute percentage error (MAPE). A research by Kim andWon (2018) takes a step further

by incorporating a LSTM layer into the neural network, reporting a decrease in mean absolute error

(MAE) of 37.2%. Yet another approach, proposed by Jeong and Lee (2019) considers a RNNmodel

to specify the autoregressive moving average (ARMA) process that drives not the conditional vari-

ance, but the conditional mean. Their results reveal that such an approach leads to a decrease in

MAPE by about 10%.

However, the aforementioned research doesn’t focus particularly on the implementation of the

NNs into conditional variance itself. For example the research by Kristjanpoller and Minutolo

(2015, 2016) utilizes GARCH estimates of the volatility as an input to the NN model, whereas

Kim and Won (2018) build a NN with covariates being the parameters of artificially generated

GARCHmodels. Our approach leans toward the estimation of conditional moments of the assumed
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distribution with the usage of NNs, as e.g. in Rothfuss et al. (2019). The first to propose such

approach were Nikolaev et al. (2011), who have studied an approach with recurrent NNs (RNNs)

to represent the conditional variance and have found out that the inclusion of nonlinear methods

(RNN-GARCH) decreases the model uncertainty. Further on, Liu and So (2020) consider usage of

LSTM NN to model the conditional variance directly by the maximum likelihood approach of the

assumed distribution’s density function. They have shown that the method can successfully specify

both standard deviation and variance of the financial returns. Another advantage of their approach

is the option to use explainable artificial intelligence (XAI) methods. However, instead of using an

estimate, they have assumed the values of additional (besides first and second moments) parameters

of the distribution. Another research by Nguyen et al. (2019) proposes a fairly similar approach,

but to a stochastic volatility (SV) model, which is related to GARCH. In their research they propose

a SV-LSTM model, which instead of applying AR(1) process to model volatility, uses a LSTM

NN. Their results indicate that the proposed approach can give better out of sample estimates than

standard SV models.

In this paper we propose GARCHNet - conditional specification for GARCH models based

on the NNs with the extensive use of a LSTM layer. Our incentives are based on the previously

raised GARCH drawbacks and that the LSTM NN is able to adequately represent any nonlinear

relationships that are present in the financial time series data. We also extend previous research in

this field by proposing another distributions - we propose GARCHNet with normal, t and skewed t

distributions and we provide necessary negative log likelihood functions for all of them to be used

as cost functions in the backpropagation algorithms of NN optimization.

We also propose an empirical experiment to verify the usefulness of the GARCHNet model.

The experiment is to estimate one day ahead forecasts of Value-at-Risk over a horizon of 250 test-

ing instances (roughly one trading year) and compare them with equivalent GARCH models. The

experiment was conducted on the log returns from the index WIG20 (Warsaw Stock Exchange In-

dex; Poland) over four different time frames (both training and testing samples) throughout 2005 -

2021. The experiment was written and conducted in Python and pytorch (Paszke et al., 2019).

The paper is organized as follows. In section 2 we introduce the theoretical foundations for

GARCHNet and the necessary background for VAR backtesting. In section 3 we describe the em-
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pirical experiment with data andmodel’s descriptions. In section 4 we report the results of the exper-

iment and in section 5 we have entered our concluding remarks and paths to extend our framework

in the future research.

2 Methodology

2.1 GARCH models

GARCH model with no mean (pure GARCH process) can be specified as:

rt = µt + εt,

εt = σtzt,
(1)

where rt is observed time series, µt is conditional mean of the process and σt is the conditional

standard deviation of the observed time series process. zt is an innovation process and is consid-

ered to be i.i.d with unit variance, in the most straightforward approach the assumed distribution is

normal: zt ∼ N (0, 1).

InVaR area, many conditional variance definitions have been proposed already: standardGARCH

(Bollerslev, 1986), EGARCH (Nelson, 1991), IGARCH (Engle and Bollerslev, 1986) or GJR-

GARCH (Glosten et al., 1993b). However in this paper we only utilize standard GARCH(p, q)

process, which defines conditional volatility as:

σ2
t = ω +

q∑
i=1

βiz
2
t−i +

p∑
i=1

γiσ
2
t−i, (2)

where p and q are numbers of lags of conditional variance and innovation respectively, βββ and γγγ

are parameter vectors to be estimated. The stationarity assumption of GARCH process is met with∑q
i=1 βi +

∑p
i=1 γi < 1.

When it comes to the optimization of this process, one of the possible procedures is to use

quasi maximum likelihood (QML). Given that the innovations are assumed to be independent, the

conditional log likelihood of the vector of demeaned observed time series εεε of length T can be

denoted as a sum of all log conditional densities of particular innovations εt (see Francq and Zakoïan,
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2004):

`(θθθ; εεε) =
T∑
t=1

`t(θθθ; εt) =
T∑
t=1

logf(εt|εt−1, ..., ε1;θθθ) =
T∑
t=1

logf(εt;θθθ), (3)

where θθθ = (ω, β1, ..., βq, γ1, ..., γp) is a vector of parameters, f(εt|εt−1, ..., ε1;θθθ) is conditional den-

sity function of innovation εt, however, given that the innovations are independent it will reduce to

f(εt;θθθ).

Quasi maximum likelihood estimation of the parameters vector θθθ is a solution θ̂θθ of:

θ̂θθ = argmax
θ

`(θθθ, εεε) (4)

`(θθθ, εεε) =
1

T

T∑
t=1

`t(θθθ, εt) (5)

In the case zt is normally distributed, conditional log likelihood function for one observation is

equal to:

`t(θθθ, εt) = −1

2
logσ2

t −
1

2

ε2t
σ2
t

, (6)

which comes down to a logarithm of a normal density function.

In the case zt is t distributed, an additional parameter is necessary to be estimated - η - number

of degrees of freedom of this distribution, with an assumption of η > 2. Therefore the parameter

vector is θθθ = (ω, β1, ..., βq, γ1, ..., γp, η), and conditional log likelihood for one observation is:

`t(θθθ, εt) = logΓ

(
η + 1

2

)
− logΓ

(η
2

)
− 1

2
log(π (η − 2)σ2

t )−
η + 1

2
log

(
1 +

ε2t
σ2
t (η − 2)

)
, (7)

where Γ(·) is a gamma function and the log likelihood is a logarithm of density of t distribution.

In the last case we consider zt as skewed t distributed. Yet another parameter is introduced

- λ, responsible for the skewness of the distribution. The particular analytic implementation of

skewed t distribution was proposed by Hansen (1994). In this case an additional assumption is that

−1 < λ < 1. Parameter vector is once again extended to θθθ = (ω, β1, ..., βq, γ1, ..., γp, η, λ).

`t = ln

bc
σ

(
1 +

1

η − 2

(
a+ bx/σ

1 + sgn(x/σ + a/b)λ

)2
)−(η+1)/2

 , (8)
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where

a = 4λc
η − 2

η − 1
, b2 = 1 + 3λ2 − a2, c =

Γ
(
η+1
2

)√
π (η − 2)Γ

(
η
2

) , (9)

All of the log likelihood functions are obtainable numerically. In addition to that, specific form

of the conditional variance does not influence the QML in the above form. The assumed distribution

has much more impact on it. This opens up a possibility to use much more complicated, nonlinear

forms, such as NNs (Goodfellow et al., 2016).

2.2 LSTM neural networks

Long Short Term Memory (LSTM) neural networks are an extension of recurrent neural net-

works (RNNs), proposed by Rumelhart et al. (1986). RNNs are a special kind of neural networks

that introduce recurrency by enabling the use of sequential, autocorrelated data. The sequence (or

observed time series) is accompanied by a hidden input, some sort of a memory state that stores the

information provided with previous timesteps. The next input in the sequence is predicted with that

recurrent hidden state:

ht = g(Wxxt +Whht−1 + bh) (10)

where g(·) is an activation function (e.g., logistic sigmoid, hyperbolic tangent or Rectified Linear

Unit (ReLU)), xxx = (x1, x2, ..., xT ) is the sequence of observed time series of length T , while hhh =

(h1, h2, ..., hT ) represents a random vector - hidden state of the same length T . Wx and Wh are

weight matrices (parameters) of the neural network, corresponding to xxx and hhh respectively and

bh is a bias vector. Such equation assumes that the sequence can be of infinite length, or at least

of arbitrarily large number T , however due to computational obstacles (such as the problem of

vanishing or exploding gradients (Pascanu et al., 2012)) the sequence length T is practically limited

to only a few timesteps.

The problem mentioned above is practically solved by introduction of LSTM (Hochreiter and

Schmidhuber, 1997). LSTMs expand the idea of hidden states by introducing gating mechanisms,

which tell whether to preserve or ignore the input from the hidden state. Given that, LSTMs can

”remember” or ”forget” particular timesteps if necessary, building the long-term dependency pa-

rameter matrix. In detail, there are three gates: forget, input and output.
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The following equations calculated iteratively build up LSTM network:

it = g(Wixxt +Wihht−1 +Wicct−1 + bi) (11)

ft = g(Wfxxt +Wfhht−1 +Wfcct−1 + bf ) (12)

ct = ft � ct−1 + it � tanh(Wcxxt +Wchht−1 + bc) (13)

ot = g(Woxxt +Wohht−1 +Wocct + bo) (14)

ht = ot � h(ct) (15)

yt = Wyhht + by (16)

where W terms denote weight matrices (e.g.: Wix is a matrix of weights from the input gate to

the input x), the b terms denote bias vectors (e.g. bi is the input gate bias vector), g(·) and h(·)

denote sigmoid and hyperbolic tangent activation functions respectively here, i, f and o denote

input, forget and output gates respectively, ct is another hidden state vector, specifically named cell

activation vector (responsible for activating specific gates). The output of the neural network can

be any distribution p(yyy|xxx;θθθ), however most often some particular moment of this distribution is

estimated directly - in our case we would like it to be conditional variance.

2.3 GARCHNet

Our idea for the GARCH process specification is to use neural network as an approximation

of the true conditional variance specification. In order to optimize the NN, likelihood functions

described in section 2.1 come in handy. They are used as cost functions - in a negative form (negative

log likelihoods). In GARCHNet, the GARCH specification is as follows:

ln = Wlnln−1ln−1 + bln (17)

and

1 = Wlyyt + bl1 , (18)



Buczyński, M. and Chlebus, M. /WORKING PAPERS 8/2021 (356) 8

where yt is calculated as in equation 16 and n determines the number of following fully connected

layers. Given that, conditional variance is the function of the last n fully connected layer:

σ2
t = g(WV lln + bV ), (19)

where g(·) is a function with non-negative output (e.g. softplus), whileWV l is a matrix of weights

from the last hidden layer to the output layer and bV denotes its bias. The input to such LSTM

neural network is p last observed time series realizations (chosen beforehand). Its output will be

an estimate of conditional variance. Due to the specific mechanism that drives the LSTM layers’

forgetting mechanism, we don’t have to worry that the sequence, which is fed to the model might

be too long. NNs are usually optimized using the backpropagation algorithm (Goodfellow et al.,

2016), that considers calculation of gradients for each neuron in a layer and then applying changes

to weights iteratively based on the value of the cost function.

However, in the density functions of t and skewed t distributions, there are two additional param-

eters that are necessary to be estimated or assumed. In our scenario these parameters are estimated

with the same NN as a function of time. Therefore degrees of freedom η and skewness λ are esti-

mated as:

η = g(WElln + bE) + 2, (20)

λ = h(WSlln + bS), (21)

where g(·) is a function with non-negative output (e.g. softplus), h(·) is a function with output in the

range (−1, 1), while W are matrices of weights from the last hidden layer to the particular output

layer (degrees of freedom η and skewness λ respectively) and b vectors denote their biases. Please

note that we are adding two units to the output of degrees of freedom η to meet the assumption that

η > 2. A complementary approach would imply changes in the log likelihood function.

This means that in the most advanced scenario, for skewed t distribution, there are three last

hidden layers (one for conditional variance σ2
t , one for degrees of freedom η and one for skewness

λ), each resulting in one different output neuron.

Originally, conditional variance’s parameters (ω, β and γ) should be non-negative (Bollerslev,

1986), which together with non-negativity of random variables (σ2
t and z2t ) suffices for the condi-
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tional variance to be non-negative as well. In the case of neural network, such assumption could

lead to the worsening of the accuracy of estimated solution (Chorowski and Zurada, 2014). In-

stead of using such limitation, we have proposed to use softplus function (or any other that outputs

non-negative values and is easily differentiable). Softplus function is defined as:

Softplus(x) = log(1 + exp(x)). (22)

In the case of skewness we have proposed to use hyperbolic tangent function so that the output

meets the assumption that −1 < λ < 1. Hyperbolic tangent function is defined as:

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
. (23)

2.4 Value-at-Risk

Value-at-Risk (VaR) defines the worst possible loss with a given probability α, assuming normal

market conditions for a specific time period t (Philippe, 2006). In other words, VaR is a quantile of

the distribution of the observed financial time series. In our case, these are log returns of the price

quotations of the respective stock index.

P (rt < V aRα(t)|Ωt−1) = α, (24)

where rt is the realization of the observed financial time series and Ωt−1 is an information set given

at the time t− 1.

When GARCHmodels are employed, VaR is calculated as an α quantile of the assumed innova-

tion distribution weighted by the estimate of the conditional standard deviation σt, plus an estimate

of conditional mean µt (Angelidis et al., 2004):

V aRα = µt + σtF
−1(α). (25)
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2.4.1 Quality of VaR forecasts

The basic tool that allows to assess the quality of the VaR forecast is the count of the instances, in

which VaR forecast was lower (in absolute terms) than the realization of the observed time series -

excess count or proportion of failures (Chlebus, 2017):

α̂ =
1

N

N∑
t=1

IV aRα>rt , (26)

where N is the number of testing instances and
∑N

t=1 IV aRα>rt is the number of exceedances = n.

Statistically, this number comes from binomial distribution (assuming that the exceptions are

IID). Basel Committee strictly regulates what values constitute to the ’safe zone’ or require the

model to be looked upon. Specifically the name of such test is Traffic Light Test (Costanzino and

Curran, 2018). In the case of VaR at 2.5% significance level and 250 testing instances the ’safe’

(green) zone ends with 10 exceptions (95% cumulative probability) and yellow (warning zone) ends

with 16 exceptions (99.99% cumulative probability).

The unconditional coverage (UC) test by Kupiec (1995) builds up on the idea that the overall

number of exceptions should follow the binomial distribution. To test that a likelihood ratio test is

proposed:

LRUC = −2ln

(
(1− α)N−nαn

(1− α̂)N−nα̂n

)
. (27)

There is also a conditional coverage (CC) test by Christoffersen (1998). In addition to the uncon-

ditional coverage, Christoffersen test measures the likelihood of unusually frequent VaR exceptions

- an effect of exceptions clustering.

Let us assume that the exceptions follow a first-order Markov chain with transition probability

matrix:

Π1 =

1− π01 π01

1− π11 π11

 , (28)

where πij = P (It = j|It−1 = i) and It is an indicator variable that takes 1 if there was an exceptions
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and 0 otherwise. The likelihood of such a process is:

L(Π1; I1, ..., IN) = (1− π01)
n00πn01

01 (1− π11)
n01πn11

11 . (29)

The maximum likelihood estimate of parameters πij is:

Π1 =

 n00

n00+n01

n01

n00+n01

n10

n10+n11

n11

n10+n11

 . (30)

Now, let us assume that the exceptions are independent. In terms of first-order Markov chain

model the transition matrix would be:

Π2 =

1− π2 π2

1− π2 π2

 . (31)

In this scenario likelihood function becomes:

L(Π2; I1, ..., IN) = (1− π2)
(n00+n10)π

(n01+n11)
2 . (32)

Finally, using likelihood ratio test the CC’s independence test can be concluded:

LRind = −2ln

(
L(Π2; I1, ..., IN)

L(Π1; I1, ..., IN)

)
. (33)

The conditional coverage test consists of both unconditional coverage and independence tests:

LRcc = LRuc + LRind.

Even more restrictive is dynamic quantile (DQ) test by Engle and Manganelli (2004). They

define another random variable Hitt = It − α. The null hypothesis of this test is that the ex-

pected value of theHitt explained with the information available at t− 1 is zero. To test that, they

implement a linear regression model:

Hitt = δ +
K∑
k=1

βkXt−k + εt, (34)
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where matrix X might include both lags of Hit, r or V aR. DQ test statistic is then:

DQ =
Hit′X(X ′X)−1X ′Hit

α(1− α)
(35)

Another interesting dimension to compare models are loss functions (LFs). Their value deter-

mines the loss in case of the occurrence of the model’s failure. There are two sides that are usually

interested in these values - regulator and the companies themselves. Both of them weight some

business aspects differently. From the regulatory point of view the most important aspect is the

value lost on the occurrence of VaR exception, whereas from the point of view of a company - the

alternative cost of holding excessive reserves.

To compare the models we have chosen following loss functions, from the proposed by Abad

et al. (2015):

• Lopez quadratic LF (LLF):

LLFt =

1 + (V aRt − rt)
2 if rt < V aRt,

0 otherwise;

(36)

• Caporin regulator’s LF (CRLF):

CLFt =

|1− |rt/V aRt|| if rt < V aRt,

0 otherwise;

(37)

• Caporin firm’s LF (CFLF):

CFLFt = |1− |rt/V aRt|| for all rt; (38)

• Abad, Benito, Lopez’s LF (ABLLF):

ABLLFt =

(V aRt − rt)
2 if rt < V aRt,

β(rt − V aRt) otherwise,

(39)
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where β is a parameter that represents a cost of capital, originally an interest rate.

3 Data and model specifications

3.1 Data

GARCHNet’s performance was measured empirically by backtesting on the log returns of price

quotations of WIG20 (Warsaw Stock Exchange; Poland). Therefore our observed time series is:

rt = logpt − logpt−1. (40)

Such data is openly available, e.g.: from Stooq (2021). As a reference we have also estimated

corresponding GARCH models on the same data samples.

We have subjectively chosen four different time periods consisting of 1250 observations each

(1000 for the training sample and 250 for the testing sample). The start dates of specific periods are

as follows: (i) 2005-01-01 (testing on year 2009), (ii) 2007-01-01 (testing on year 2011), (iii) 2013-

01-01 (testing on year 2017), (iv) 2016-01-01 (testing on year 2020). In our opinion these periods

provide a full view of possible volatility levels in training and testing samples - training and testing

samples both show low volatility (sample starting in 2013 respectively) or the volatility is different

for training and testing samples (low volatility training samples starting in 2005 and 2016; and high

volatility training sample starting in 2007). Such a spectrum allows us to test the model in varying

market conditions.

3.2 Models

We have compared proposed GARCHNet specifications with corresponding standard GARCH

models. In order to do that we have also had to choose the number of observations p that constitutes

a sequence for LSTM model. Due to resemblance to the original meaning of p in GARCH model

(number of lagged conditional variances in its model) we have controlled both these parameters

with p. The test includes p ∈ {5, 10, 20, 100}.

We have used a rolling-window estimation approach (Zanin andMarra, 2012). For each timestep

in the testing sample, we have prepared a new model with new randomly initialized weights and

trained it using last 1000 observations.
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For the neural network that specifies the conditional variance’s specification we have used a

rather small architecture: one layer LSTM with 100 neurons (fed with sequence of length p), fol-

lowed by three (n = 3) fully-connected layers with 64, 32 and 1 neuron(s) respectively. In the case

of t and skewed t distributions there were two (and three respectively) output layers to correspond

with the number of parameters to be optimized. The parameters were optimized using Adam opti-

mizer with learning rate equal to 3e-4 and batch size of 512. Due to rolling-window approach it was

hard to choose an automatic threshold for the number of epochs to avoid overfitting, so we have

arbitrarily trained each model for 300 epochs.

Figure 1: The diagram with the architecture of GARCHNet model

4 Results

The results of the experiment are satisfactory. In the figure 2 you can observe the relation

between forecasts by GARCH and GARCHnet with t distributed innovations. The presented rela-

tionship is one of the best. One can notice that the GARCHNet’s predictions do not depart from the

rate of return, even more - for some of the timesteps GARCHNet is much quicker to acknowledge
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the presence of volatility shocks. There is no GARCHmodel that would be better than its GARCH-

Net equivalent in all tested periods and for all tested sequence lengths p in terms of number of

exceptions. However GARCHNet with t distribution seems to have the highest overhead. Only in

case of two periods it had the number of exceptions greater than GARCH with t distribution. In the

case of the remaining models the overhead is much smaller and sometimes negative. However, we

believe that the predictive power of such model can be improved with the better neural architecture.

GARCHNet with skewed t distribution is worse by a small margin, which is not in line with its

GARCH equivalent - GARCH with skewed t distribution is the best model compared to the rest of

its family. This might indicate that the approach to the estimation of the distribution’s parameters

is inefficient with Adam optimizer or the approach that we have taken should be reconsidered. For

example the parameter estimate should be changed for estimate over whole training sample, not

based on the rather small sample (of length p) time series in prediction stage.

In the table 1 we have presented the results of statistical tests, as well as in the figure 3 you

can observe the numbers of exceptions. Let’s focus on the two first periods: the ones starting

Figure 2: Exemplary comparison for the GARCH and GARCHNet with t distribution for p = 20

Note: GT - GARCH with t distributed innovations; GNT - GARCHNet with t distributed innovations.
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in 2005 and 2007. Both these periods show a large number of failures to reject null hypotheses

of considered tests. GARCHNet’s numbers of exceptions do not show any outstanding features,

however we notice that the DQ test was failed to be rejected much more often than in case of the

standard GARCH approach. The nonlinear structure of the proposed conditional variance might

not be fully explained by the linear structure of the DQ test. In terms of statistical tests GARCHNet

approaches seem to provide models with greater quality on overall.

Now let’s move to the samples starting in years 2013 and 2016. In these two cases we see a

notably larger number of null hypothesis rejections - both due to risk under- and overestimation.

However, in these two periods results of GARCHNet models are in line with the results of standard

GARCH. On average GARCHNet models have the same number of exceptions. Both families of

models were unable to correctly respond to the COVID-19 financial market crashes, hence large

numbers of exceptions in the last analyzed period. It needs to be noted that COVID 19 period should

be treated as a stress-test to these models and given GARCHNet’s very similar results we would

Figure 3: Number of exceptions in regard to the studied period and number of lags p for each of the
models

Note: GN - GARCH with normally distributed innovations (d.i.); GT - GARCH with t d.i.; GST - GARCH with skewed t d.i.; GNN - GARCHNet

with normally d.i.; GNT - GARCHNet with t d.i.; GNS - GARCHNet with skewed t d.i.
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Table 1: Results of GARCH and GARCHNet models regarding p-values of considered

statistical tests

Period I (2009) Period II (2011) Period III (2017) Period IV (2020)

p Model UC CC DQ UC CC DQ UC CC DQ UC CC DQ

5

GN 0.16 0.10 0.00 0.30 0.20 0.00 0.01 0.00 0.62 0.00 0.00 0.00

GT 0.16 0.02 0.00 0.30 0.20 0.00 0.01 0.00 0.62 0.00 0.00 0.00

GS 0.30 0.20 0.00 0.16 0.02 0.00 0.01 0.00 0.62 0.00 0.00 0.00

GNN 0.02 0.00 0.00 0.33 0.05 0.09 0.00 - - 0.00 0.00 0.00

GNT 0.60 0.16 0.26 0.01 0.00 0.62 0.00 - - 0.00 0.00 0.00

GNS 0.92 0.86 0.99 0.01 0.00 0.62 0.00 - - 0.01 0.00 0.00

10

GN 0.77 0.74 0.00 0.08 0.01 0.00 0.01 0.00 0.96 0.02 0.00 0.00

GT 0.77 0.74 0.00 0.08 0.01 0.00 0.01 0.00 0.96 0.02 0.00 0.00

GS 0.92 0.86 0.35 0.16 0.02 0.00 0.01 0.00 0.96 0.02 0.00 0.00

GNN 0.30 0.20 0.50 0.30 0.20 0.02 0.05 0.02 0.99 0.00 0.00 0.00

GNT 0.60 0.16 0.72 0.33 0.37 0.53 0.00 - - 0.00 0.00 0.00

GNS 0.92 0.86 0.85 0.60 0.16 0.10 0.00 - - 0.00 0.00 0.00

20

GN 0.50 0.31 0.05 0.50 0.31 0.00 0.01 0.00 1.00 0.02 0.00 0.00

GT 0.77 0.36 0.34 0.50 0.31 0.00 0.01 0.00 1.00 0.00 0.00 0.00

GS 0.50 0.31 0.00 0.50 0.31 0.00 0.01 0.00 1.00 0.00 0.00 0.00

GNN 0.16 0.02 0.06 0.30 0.20 0.00 0.14 0.12 0.76 0.02 0.00 0.00

GNT 0.92 0.30 0.81 0.60 0.69 0.04 0.00 - - 0.01 0.00 0.00

GNS 0.14 0.12 1.00 0.33 0.05 0.13 0.05 0.02 1.00 0.00 0.00 0.00

100

GN 0.33 0.37 1.00 0.00 0.00 0.00 0.33 0.37 - 0.01 0.00 0.00

GT 0.14 0.12 1.00 0.00 0.00 0.00 0.05 0.02 - 0.01 0.00 0.00

GS 0.05 0.02 1.00 0.00 0.00 0.00 0.14 0.12 - 0.01 0.00 0.00

GNN 0.08 0.04 0.05 0.60 0.16 - 0.01 0.00 - 0.00 0.00 0.04

GNT 0.33 0.05 1.00 0.01 0.00 - 0.00 - - 0.01 0.00 0.01

GNS 0.92 0.86 1.00 0.60 0.69 - 0.14 0.12 - 0.00 0.00 0.18

Note: GN - GARCH with normally distributed innovations (d.i.); GT - GARCH with t d.i.; GST - GARCH with skewed t d.i.; GNN

- GARCHNet with normally d.i.; GNT - GARCHNet with t d.i.; GNS - GARCHNet with skewed t d.i.; UC - unconditional coverage

test; CC - conditional coverage test; DQ - dynamic quantile test.

All statistical tests that were failed to be rejected at the 5% significance level are in bold.



Buczyński, M. and Chlebus, M. /WORKING PAPERS 8/2021 (356) 18

T
ab
le
2
:
R
es
u
lt
s
o
f
G
A
R
C
H
an
d
G
A
R
C
H
N
et
m
o
d
el
s
re
g
ar
d
in
g
th
e
v
al
u
es
o
f
co
st
fu
n
ct
io
n
s

P
er
io
d
I
(2
0
0
9
)

P
er
io
d
II
(2
0
1
1
)

P
er
io
d
II
I
(2
0
1
7
)

P
er
io
d
IV

(2
0
2
0
)

p
M
o
d
el

CaporinRCost

LopezCost

CaporinCost

ABLCost

CaporinRCost

LopezCost

CaporinCost

ABLCost

CaporinRCost

LopezCost

CaporinCost

ABLCost

CaporinRCost

LopezCost

CaporinCost

ABLCost

5

G
N

2
.6
0

1
0
.0
0

2
6
9
1
.5
5

3
.0
5

1
.4
6

9
.0
0

3
5
6
4
.5
3

2
.3
2

0
.0
7

1
.0
0

2
2
0
7
.2
6

1
.5
5

6
.1
9

1
8
.0
1

1
5
8
7
.5
5

2
.1
3

G
T

2
.6
0

1
0
.0
0

2
7
9
1
.2
8

3
.0
3

1
.4
5

9
.0
0

3
5
7
5
.7
5

2
.3
3

0
.1
0

1
.0
0

2
2
8
4
.9
2

1
.5
8

4
.6
8

1
6
.0
1

1
7
1
6
.4
2

2
.3
0

G
S

2
.1
1

9
.0
0

3
1
4
5
.7
3

3
.2
8

1
.5
4

1
0
.0
0

3
5
8
8
.6
1

2
.3
2

0
.0
9

1
.0
0

2
2
9
4
.2
7

1
.5
9

4
.3
8

1
5
.0
1

1
6
5
2
.0
6

2
.2
4

G
N
N

2
.0
7

1
3
.0
0

2
7
0
0
.1
8

2
.9
3

1
.3
2

4
.0
0

3
9
1
7
.2
0

2
.3
7

0
.0
0

0
.0
0

2
5
3
7
.1
8

1
.6
1

5
.6
0

1
8
.0
1

1
5
8
5
.7
1

2
.1
7

G
N
T

0
.9
5

5
.0
0

3
4
2
3
.0
3

3
.6
5

0
.2
3

1
.0
0

5
1
8
2
.3
3

3
.4
1

0
.0
0

0
.0
0

3
3
7
2
.2
6

2
.0
7

4
.2
9

1
5
.0
1

1
9
6
6
.3
4

2
.5
3

G
N
S

0
.7
7

6
.0
0

3
2
6
0
.1
9

3
.4
3

0
.4
7

1
.0
0

4
7
5
8
.9
4

3
.0
5

0
.0
0

0
.0
0

2
9
4
5
.6
7

1
.8
8

4
.2
4

1
4
.0
1

1
8
7
2
.4
0

2
.3
8

1
0

G
N

1
.7
9

7
.0
0

2
8
2
3
.1
6

3
.0
8

1
.3
6

1
1
.0
0

3
6
1
3
.3
6

2
.2
7

0
.0
6

1
.0
0

2
1
4
5
.7
0

1
.5
4

5
.7
1

1
3
.0
2

1
8
7
8
.4
6

2
.5
6

G
T

1
.8
1

7
.0
0

2
9
6
6
.0
1

3
.1
5

1
.3
9

1
1
.0
0

3
6
3
4
.7
9

2
.2
8

0
.0
9

1
.0
0

2
1
6
8
.4
9

1
.5
6

5
.0
6

1
3
.0
1

1
9
2
7
.9
4

2
.6
0

G
S

1
.4
9

6
.0
0

3
2
4
7
.6
3

3
.4
5

1
.5
6

1
0
.0
0

3
6
7
2
.0
3

2
.2
8

0
.0
8

1
.0
0

2
2
1
6
.3
1

1
.5
9

5
.1
9

1
3
.0
1

1
8
8
0
.7
2

2
.5
6

G
N
N

1
.3
9

9
.0
0

2
7
8
0
.3
8

3
.1
3

2
.3
4

9
.0
0

3
5
6
3
.3
6

2
.2
3

0
.1
5

2
.0
0

2
4
9
0
.1
3

1
.5
8

5
.5
0

1
8
.0
1

1
4
8
9
.6
3

2
.2
6

G
N
T

0
.7
0

5
.0
0

3
0
5
1
.2
4

3
.5
1

0
.6
0

4
.0
0

4
2
1
0
.5
5

2
.6
7

0
.0
0

0
.0
0

3
3
3
1
.9
8

2
.0
4

4
.0
7

1
7
.0
1

1
9
3
8
.4
9

2
.5
5

G
N
S

0
.5
4

6
.0
0

2
9
0
1
.2
0

3
.5
5

0
.5
5

5
.0
0

4
5
6
2
.1
1

2
.9
2

0
.0
0

0
.0
0

2
9
5
9
.3
8

1
.8
7

4
.7
9

1
7
.0
1

1
8
1
6
.6
6

2
.3
4

2
0

G
N

1
.9
4

8
.0
0

3
0
9
9
.7
6

3
.1
9

1
.6
0

8
.0
0

3
5
3
7
.0
4

2
.2
5

0
.1
3

1
.0
0

1
9
0
4
.7
7

1
.4
9

5
.5
5

1
3
.0
1

1
8
2
6
.0
8

2
.6
5

G
T

1
.9
0

7
.0
0

3
1
6
5
.7
0

3
.2
2

1
.7
8

8
.0
0

3
5
5
5
.1
9

2
.2
5

0
.1
5

1
.0
0

1
9
5
3
.7
5

1
.5
1

4
.8
5

1
5
.0
1

1
8
5
5
.7
2

2
.7
0

G
S

1
.8
3

8
.0
0

3
4
5
9
.5
0

3
.5
0

1
.8
0

8
.0
0

3
6
0
8
.6
5

2
.2
6

0
.1
4

1
.0
0

1
9
8
6
.8
1

1
.5
4

5
.0
4

1
5
.0
1

1
7
8
9
.5
8

2
.6
2

G
N
N

1
.7
8

1
0
.0
0

2
9
3
5
.1
7

3
.0
3

1
.7
4

9
.0
0

3
3
4
0
.2
0

2
.1
5

0
.4
5

3
.0
0

2
4
6
7
.3
3

1
.5
4

4
.3
2

1
3
.0
1

1
8
1
7
.4
8

2
.5
2

G
N
T

1
.1
6

6
.0
0

3
3
8
2
.3
7

3
.4
6

0
.9
1

5
.0
0

3
8
9
5
.6
6

2
.5
7

0
.0
0

0
.0
0

3
2
4
9
.4
5

1
.9
9

3
.7
3

1
4
.0
1

2
0
2
5
.7
7

2
.7
6

G
N
S

0
.6
2

3
.0
0

3
4
0
0
.5
7

3
.4
5

0
.6
4

4
.0
0

4
3
0
3
.1
6

2
.9
3

0
.0
8

2
.0
0

2
8
0
9
.0
1

1
.8
2

5
.1
5

1
6
.0
1

2
2
3
2
.4
7

2
.6
1

1
0
0

G
N

0
.8
3

4
.0
0

3
3
6
8
.7
6

3
.7
2

4
.0
2

1
7
.0
0

2
7
5
0
.1
4

1
.9
1

0
.2
1

4
.0
0

2
0
1
7
.4
7

1
.4
0

5
.8
2

1
4
.0
2

2
1
2
1
.1
2

2
.7
7

G
T

0
.8
2

3
.0
0

3
3
8
4
.6
1

3
.7
3

3
.9
9

1
7
.0
0

2
7
5
6
.4
4

1
.9
1

0
.2
6

2
.0
0

1
9
7
6
.7
6

1
.4
2

5
.7
5

1
4
.0
2

2
0
8
9
.8
3

2
.7
7

G
S

0
.3
7

2
.0
0

3
6
6
7
.4
7

4
.1
1

4
.2
2

1
5
.0
0

2
7
9
6
.5
0

1
.9
2

0
.2
9

3
.0
0

2
0
3
1
.8
3

1
.4
7

6
.0
6

1
4
.0
2

1
9
2
1
.6
9

2
.6
7

G
N
N

1
.8
4

1
1
.0
0

2
4
3
2
.5
5

2
.9
9

1
.3
7

5
.0
0

3
8
5
2
.9
0

2
.5
1

0
.1
0

1
.0
0

2
3
0
1
.4
0

1
.4
6

4
.5
8

1
5
.0
1

1
7
5
9
.0
3

2
.4
8

G
N
T

0
.7
1

4
.0
0

3
3
1
7
.8
1

3
.7
6

0
.2
0

1
.0
0

6
2
9
4
.2
3

4
.0
5

0
.0
0

0
.0
0

3
1
2
2
.8
9

1
.8
8

3
.4
8

1
4
.0
1

1
9
7
4
.7
9

2
.5
7

G
N
S

0
.9
0

6
.0
0

2
7
6
5
.7
7

3
.3
5

0
.6
3

5
.0
0

4
7
6
0
.9
2

3
.1
5

0
.2
7

3
.0
0

2
6
7
9
.7
3

1
.7
8

4
.4
6

1
5
.0
1

1
9
2
5
.9
3

2
.4
5

N
o
te
:
G
N
-
G
A
R
C
H
w
it
h
n
o
rm
al
ly
d
is
tr
ib
u
te
d
in
n
o
v
at
io
n
s
(d
.i
.)
;
G
T
-
G
A
R
C
H
w
it
h
t
d
.i
.;
G
S
T
-
G
A
R
C
H
w
it
h
sk
ew

ed
t
d
.i
.;
G
N
N
-
G
A
R
C
H
N
et
w
it
h
n
o
rm
al
ly
d
.i
.;
G
N
T
-
G
A
R
C
H
N
et

w
it
h
t
d
.i
.;
G
N
S
-
G
A
R
C
H
N
et
w
it
h
sk
ew

ed
t
d
.i
.;

M
in
im
u
m
co
st
v
al
u
es
fo
r
ea
ch

p
er
io
d
an
d
p
p
ai
rs
ar
e
in
b
o
ld
.



Buczyński, M. and Chlebus, M. /WORKING PAPERS 8/2021 (356) 19

like to emphasize that it performs well in any conditions.

We notice that the length of the sequence has a nonlinear effect on the quality of the model. It

mostly depends on the volatility of the sample that was used for the prediction, mostly in case of

standard GARCH model - see outstanding exceptions for p = 100 in sample starting in 2007 and

much lower values for remaining values of p. Such effect is diminished in the case of GARCHNet,

however we still notice large discrepancies for different values of p. In terms of the proposed length

p, we would suggest 20, which is roughly 4 weeks - one trading month and therefore it has given

the most remarkable results.

In the table 2 we have presented the values of cost functions. We notice that due to a lower

number of exceptions of GARCHNet models, the values of regulator’s cost functions are lower than

for its equivalents in most of the analyzed cases, furthermore - the worst GARCHNet approaches

are often better than the best GARCH ones. This is a much desired trait of the VaR model, because

in case of the exception the potential loss is not that severe. However from the firm’s viewpoint

GARCHNet models don’t look so bright. In most of the cases the values of firm’s cost functions are

the worst - only for few instances the value of cost function for GARCHNet model was lower. This

is rather undesirable behavior given the usage of nonlinear approach. GARCHNet with normal

distribution seems to have the lowest value of ABLLF cost function among GARCHNet models

and usually it can compete with the same cost function calculated for its equivalent from GARCH

family. In conclusion, based on the results of cost functions, we assume that GARCHNet at this

stage is relatively conservative model.

5 Conclusion

In this paperwe have proposed a new approach to conditional variance’s specification inGARCH

models - a GARCHNet model that incorporates a simple long short term memory neural network.

The idea behind GARCHNet is that the neural network can easily approximate nonlinear relations

and these are by far the most often seen in the volatility of financial markets. In addition to that,

the simplicity of the GARCH maximum likelihood estimation allows to use original log likelihood

functions as cost functions in the GARCHNet neural network model. We have proposed three dif-

ferent GARCHNet models, each with a different assumed innovation distribution: normal; t; and

skewed t. The neural network that is used as the specification of the conditional variance is rather



Buczyński, M. and Chlebus, M. /WORKING PAPERS 8/2021 (356) 20

small. It incorporates a LSTM layer as an input followed by three fully connected layers. In case

the assumed distribution requires parameters other than mean and variance, these are optimized by

the very same neural network.

GARCHNet models were contrasted with the original GARCH models in an empirical study.

We have createdValue-at-Risk estimates using rollingwindow approach - we have trained themodel

using 1000 observations and estimated a forecast, thenwemoved one timestep forward and prapared

another one. Such procedure was repeated 250 times. For the data we have used log returns from

price quotations of WIG20 (Warsaw Stock Exchange; Poland).

Our results show that the GARCHNet is a prominent model that can explain conditional variance

at least on the same level as traditional approaches. Value-at-Risk forecasts are rather conservative,

however due to that fewer exceptions are observed. GARCHNet would more likely be chosen by

regulatory bodies than by firm’s management itself due to relatively higher alternative cost.

We can see several options to enhance the model already:

1. The best lenght of sequence p

p is one of the most influential parameters for the model as it defines the amount of infor-

mation one forecast includes, however we did not notice any trends that would determine its

impact on the quality of the model.

2. Stopping criterion

Given that the validation sample is absent in the case of an immediate forecast (timestep to

timestep), the available options to objectively define the end of the training phase of themodel

are depleted. We believe that in the case of VaR a stopping criterion based on the statistical

tests would be an accurate one.

3. Neural network architecture and hyper-parameter tuning

The neural network proposed in here is rather small. We believe that an increase in the number

of parameters (hence NN’s depth) would positively affect the quality of the model. Moreover

we haven’t covered any hyperparameter tuning - most of them were assumed, not tested.

4. Another approach to estimation of the distribution’s parameters
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The parameters of the distribution are now estimated by a separate layer that is dependent on

the previous layers. Worsened results of the t distributed and skewed t distributedGARCHNet

might be only an effect of the assumed approach. Two other options that could be considered

are either separate neural networks to estimate additional parameters optimized in one pro-

cedure (forecast sample dependent parameters); or inclusion of these parameters as separate

weights to be optimized (training sample dependent parameters).

5. Possible extension of this approach to time-series

Given that GARCHmodels are not only employed in VaRmodeling, we are mostly interested

in GARCHNet performance in traditional time-series forecasting.

6. ’One (model) to rule them all...’

Our study assumes the rolling window estimation approach. However, we believe that fre-

quent updates of the model might not necessarily improve its quality, while only increasing

the time overhead in training. We believe that the model can be fully reset (random weights

fully initialized) less often than with each timestep forecast. The model might be refitted be-

tween resets to include new information. The most extreme approach would assume that it is

only trained fully once (on the first 1000 observations) and than it is only refitted to include

new timesteps.
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