
66	 	 1541-1672/08/$25.00 © 2008 IEEE	 IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

S o f t w a r e D e s i g n

Exploring Alternative
Software Architecture
Designs: A Planning
Perspective
J. Andrés Díaz-Pace, Software Engineering Institute, Carnegie Mellon University

Marcelo R. Campo, Unicen University

The DesignBots

framework supports

architects in searching

for design alternatives

by capturing quality-

attribute design

concepts into a

hierarchical,

mixed-initiative

planning model.

Software architecture designs give us blueprints to build systems, enabling key

early decisions that can help us achieve a system’s functional and quality-attribute

requirements.1 Architectural decisions have far-reaching effects on development in terms

of quality, time, and cost. Architects apply technical knowledge and experience to guide

their decision making, choosing among multiple de-
sign solutions to find a reasonable balance of qual-
ity attributes such as performance, modifiability, or
security. This is complex and time consuming be-
cause qualities can conflict and lead to trade-offs. A
trade-off means that the improvement of one qual-
ity comes at the cost of degrading another—for ex-
ample, modifiability versus performance.

Since the mid-2000s, abstractions and tech-
niques for architectural design have been steadily
improving. Of particular interest are the pioneering
efforts of the Software Engineering Institute, which
has developed a “theory for predictable architecture
design” to manage the relationships between qual-
ity-attribute issues and architectural decisions.2 Ac-
cording to this theory, qualities don’t arise sponta-
neously from an architecture; rather, architects plan
for qualities by articulating predefined architectural
mechanisms.1

Architects usually start with an initial archi-
tectural solution, and then progressively consider
improvements regarding a few quality-attribute
drivers. As decision making proceeds, architects
explore, evaluate, and compose architectural trans-
formations. Approaches such as predictable archi-
tecture design (PAD) can help them explore alter-

natives systematically. Moreover, architects can
benefit from tools that intelligently navigate the
design space. Nonetheless, PAD concepts don’t
support design’s explorative aspects per se. To ad-
dress this problem, we treat exploration as a type
of search in which architectural knowledge prunes
options and directs the architect toward “good-
enough” solutions. Along this line, AI planning is
a suitable technique to (semi)automate that search.
Essentially, the quality-attribute drivers would be
the goals that appropriate architectural transfor-
mations (that is, basic actions operating on compo-
nents and connectors) must satisfy. Our objective is
to develop a design assistant that lets architects fo-
cus on the key decisions for shaping the architec-
ture by delegating to a planning engine the routine
search work derived from those decisions.

The DesignBots framework is a prototype for
such an assistant. It provides a multiagent infra-
structure that maps PAD concepts to a hierarchical
task network (HTN) planning model.3 HTN plan-
ning represents plans as task hierarchies that can
be gradually refined into subplans. In the context of
PAD, HTN planning helps identify tactical solutions
for quality attributes and then provide separately
the details of their materialization via architectural

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 67

patterns. This enables the (semi)automated
exploration of alternatives for an input ar-
chitecture and a set of quality-attribute sce-
narios. To study this approach’s feasibility,
we equipped DesignBots with architectural
knowledge for modifiability and perfor-
mance. Then, we empirically compared the
prototype outputs against human designs
from case studies. The results regarding
mappings and search capabilities show po-
tential for planning techniques to support
architectural tools based on quality-driven
constructive principles.

Architectural design
as a planning problem
One premise of the software architecture
community is that quality attributes can be
realized by applying specific architectural
patterns.1,4 In this context, a central ques-
tion is how to move from a set of quality-
attribute requirements to an architectural
structure that satisfies those requirements.
For instance, let’s suppose a modifiability
scenario stating that component A should in-
corporate new features with reduced change
impact. A possible architectural strategy for
the scenario is to insert an intermediary be-
tween A and its interacting components so

that the intermediary can break A’s depen-
dencies on other parts of the system. De-
pending on the dependency type, the archi-
tect would use various patterns to flesh out
a solution—namely, a repository, a naming
server, a publisher-subscriber, layers, and so
on.4 Several researchers have investigated
providing systematic “reasoning threads”
for this kind of design (see the sidebar “Re-
lated Work in Automated Design Support”).
Currently, one of the most representative ap-
proaches is PAD,2 which establishes guide-
lines for building architectures with predict-
able quality-attribute properties based on
three essential concepts: quality-attribute
scenarios, reasoning frameworks, and ar-
chitectural tactics. Figure 1 depicts the links
among these concepts, given a particular
quality attribute.

The PAD process is as follows. We as-
sume an initial architecture arch as a formal
specification of components, allocation of
responsibilities to components, and con-
nectors among components. We express a
quality-attribute requirement as a scenario,
which is a textual description of a use case
for the system. A scenario scen defines an
envelope of allowed quality-attribute mea-
sures. An interpretation function |(arch, scen)

analyzes the architecture through a reason-
ing framework and instantiates a model in-
stance. This reasoning framework in turn
applies an evaluation function E(model, scen)
to determine the quality-attribute value (or
response) that such an architecture will
achieve for a scenario stimulus. If the eval-
uated value is inside the region defined by
the scenario, the architecture will be “good
enough” to satisfy the scenario. If not, a tac-
tic changes the architecture using a trans-
formation function T(arch) so that a param-
eter of the reasoning framework moves in a
known direction and its (re)evaluation falls
into the desired region. Tactics capture the
logic behind architectural patterns to tackle
“classes of quality-attribute problems” (for
example, rippling of changes for modifiabil-
ity and bottlenecks for performance).1 Fur-
thermore, a tactic gives directives to con-
trol reasoning-framework parameters. In
the example just given, the tactic of “insert-
ing an intermediary” affects the probability
of change rippling, which is one of the pa-
rameters used by the modifiability frame-
work to compute the total cost of modifica-
tions. Tactical directives are made concrete
through one or more architectural patterns
that can actually transform the architecture.

Software architectures (SA)

Quality-attribute measures (QAM)

I

Analysis
archarch′

T

Quality-attribute reasoning
frameworks (RF)

E

Varch′Varch

Quality-attribute
scenarios (QAS)

scen Stimulus

Response

Interpretation (I): SA × QAS RF

Evaluation (E): RF × QAS RealValue

Architectural transformation (T): SA SA

Alternative
solutions

model

model′ Quality-attribute
scenario

Figure 1. Architectural theory for reasoning about quality-attribute design.2 The design space is divided into four planes: the
quality-attribute scenario plane, the quality-attribute measure plane, the software architecture plane, and the quality-attribute
reasoning framework plane. The first two planes represent the problem space, the third represents the solution space, and the
fourth captures the quality-attribute analysis that connects the problem and solution spaces.

68	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o f t w a r e D e s i g n

From an operational perspective, archi-
tects use tactics and patterns to explore the
design space and build architectural so-
lutions. Note, however, that the choice of

suitable mechanisms to transform an ar-
chitecture is implicit in PAD and thus left
to search. To provide automated assistance
for this search, we argue that the transfor-

mational knowledge embedded in tactics
and patterns fits well with HTN planning
techniques.3 Assuming tactics and patterns
as the planning domain, the two assets re-

Researchers have done considerable work in automated de-
sign support, but little in architectural-design approaches
using AI. Interesting automated-design-support approaches
include rule-based systems,1 goal-feature graphs,2 planning
for project management,3–5 multiobjective optimization,6
and reconfiguration of distributed systems.7,8

The NFR (nonfunctional requirements) Framework treats
quality attributes as a graph of synergistic or conflicting
goals.2 This approach has codified knowledge about satis-
fying these goals into methods, which work like their hier-
archical task network counterparts, and correlation rules,
which deal with general trade-off analysis. However, this
framework doesn’t provide details regarding architectural
structure. A later version of the NFR Framework added a
feature-solution graph that connects requirements with
architectural fragments. One difference with DesignBots is
the lack of (automatable) guidelines for exploring alterna-
tives through the feature-solution graph.

The first experiments with rule-based architectures for
design can be traced to the Programmer’s Apprentice proj-
ect at MIT. Unfortunately, much of that work failed because
of the underlying design theory’s weak support. The Soft-
ware Engineering Institute developed the ArchE expert
system (www.sei.cmu.edu/architecture/arche.html) on the
basis of predictable architecture design (PAD) concepts to
help architects quickly explore design alternatives. The use
of rules imposes limitations when specifying complex deci-
sion procedures. Open issues for both ArchE and Design-
Bots include the amount of data generated during search,
interaction with the architect, and the management of
trade-offs. Currently, research efforts are oriented toward
improving assistance using other AI techniques.

John Clarke and his colleagues discuss a view of software
engineering as a search framework.6 According to early re-
sults, a well-defined mapping from software concepts to a
particular optimization technique is an important require-
ment. Overall, we still don’t know whether optimizations
can handle complex design spaces in acceptable time and
with a good diversity of solutions.

Other researchers have applied temporal planning to dis-
tributed-systems reconfiguration.7 Although this approach
is still in an experimental stage, it concurs with our observa-
tions about domain writing and planner scalability. David
Garlan, Shan-Weng Cheng, and Bradley Schmerl8 propose
a more flexible reconfiguration approach that makes archi-
tectural information explicit at runtime and provides a map-
ping between architecture and code. This permits detection
when system behavior falls outside the acceptable range
and modification of component configuration accordingly.
Even though this reconfiguration is based on rules, it ap-
plies many architectural strategies that designbots use.

Two planning approaches related to project manage-
ment are RealPlan4 and Cabma.5 RealPlan treats resources as
separate from causal reasoning, using scheduling to allocate

enough resources after selecting actions to reach the goals.
This is expected to improve planner efficiency when resources
are at work and replanning might be needed. Because the
algorithm considers architectural elements as resources,
DesignBots could apply it to manage interactions between
solutions. Cabma combines HTN planning and case-based rea-
soning to reuse pieces of project plans, helping users create
new projects. Thus, Cabma naturally supports a mixed-initiative
modality of interaction. Barbara Dellen and Frank Maurer
have also used planning for process management; their tool
performs the processes and guides project members to carry
out activities.3 The approach includes tasks, methods, and
agents (both human and machine), all of which resemble
some of the DesignBots concepts. Because it concerns ar-
chitectural design, however, the process gives just a general
schema of the product design. Additional subprocesses are
scheduled as the design proceeds. In contrast, DesignBots has a
more elaborated design theory in which the artifacts are more
important than the enactment of processes. Thus, the design
process in DesignBots doesn’t need agents to be able to work.
DesignBots (as inherited from PAD) includes criteria to measure
the degree of quality-attribute achievement of the solutions.
Moreover, the agents in our framework reduce the complexity
of designing with quality-attribute knowledge.

References
 1. F. Bachmann et al., “Designing Software Architectures to

Achieve Quality Attribute Requirements,” IEE Proc. Software,
vol. 152, no. 4, 2005, pp. 153–165.

 2. L. Chung, B. Nixon, and E. Yu, “Using Non-Functional Require-
ments to Systematically Select among Alternatives in Archi-
tectural Design (1995),” Proc. 1st Int’l Workshop Architectures
for Software Systems, 1995, pp. 31–43, http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.29.2252.

 3. B. Dellen and F. Maurer, “Integrating Planning and Execution
in Software Development Processes,” Proc. 5th Int’l Workshop
Enabling Technologies on Infrastructure for Collaborative En-
terprises (WET ICE 96), IEEE CS Press, 2006, pp. 170–176.

 4. B. Srivastava, S. Kambhampati, and M. Do, “Planning the Proj-
ect Management Way: Efficient Planning by Effective Integra-
tion of Causal and Resource Reasoning in RealPlan,” Artificial
Intelligence, vol. 131, nos. 1–2, 2001, pp. 73–134.

 5. K. Xu and H. Muñoz-Avila, “Cabma: Case-Based Project Man-
agement Assistant,” 16th Conf. Innovative Applications of Ar-
tificial Intelligence (IAAI 04), AAAI Press, 2004, pp. 931−936.

 6. J. Clarke et al., “Reformulating Software Engineering as a
Search Problem,” IEE Proc. Software, Institution of Eng. and
Technology, vol. 150, no. 3, 2003, pp. 161–175.

 7. N. Arshad, D. Heimbigner, and A. Wolf, “Deployment and Dy-
namic Reconfiguration Planning for Distributed Software Sys-
tems,” IEEE Int’l Conf. Tools with Artificial Intelligence (ICTaI
03), IEEE CS Press, 2003, pp. 39–46.

 8. D. Garlan, S.-W. Cheng, and B. Schmerl, “Increasing System
Dependability through Architecture-Based Self-Repair,” Ar-
chitecting Dependable Systems, LNCS 2677, R. de Lemos, C.
Gacek, and A. Romanovsky, eds., Springer, 2003.

Related Work in Automated Design Support

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 69

quired to complete the mapping of PAD
to HTN are the initial architecture as the
world state, and this architecture’s scenarios
as the quality-attribute goals to plan for. Fi-
nally, the resulting plans are actually what
will generate the architectural alternatives.

The HTN planning problem for PAD is
stated formally as the 4-tuple <ArchitectureState,
QATaskNetwork, PatternDomain, Plan> with the fol-
lowing elements:

ArchitectureState is a set of ground atoms
(logical predicate names, each followed
by a list of arguments that are all bound
to constant values). Within the software
architectures (SA) plane, these ground
atoms describe the components, connec-
tors, and main functions that constitute
the architecture.
QATaskNetwork is a pair <Tasks, O>, where
Tasks is a sequence of ground tasks and O is
a partial order for them. A task is an atom
denoting an activity to be accomplished.
In the quality-attribute scenarios (QAS)
plane and the quality-attribute reasoning
frameworks (RF) plane, QATaskNetwork is
a partial order of outstanding goals to be
satisfied in the specified order. Tasks cap-
ture actual quality-attribute issues com-
ing from the analyses performed via the
I(arch, scen) and E(model, scen) functions.
PatternDomain is a collection of HTN pro-
cedures for individual tasks. Architec-
tural tactics and patterns are represented
in terms of HTN methods and operators
whose instantiation implements the T(arch)
function.
Plan is a sequence of ground tasks that
defines a transformation T(arch). When
the planning engine generates a success-
ful plan, the plan instance is also a plan-
ning state. So, Plan is the partial solution
found so far, and the engine has already
applied the corresponding transforma-
tion to the architecture. This transfor-
mation is quality driven in the sense
that it follows from goals for a quality
attribute, and it’s also ruled by a tactic
adequate for that attribute. Reevaluating
the reasoning framework can quantify
the architectural improvement.

A HTN method within PatternDomain has
the form <Head, Pre, ApplyWhen, Body>. Head re-
fers to the atom used as the method name
(which the planning engine can match
against tasks). Pre defines a list of logical pre-
conditions that must be true on ArchitectureState

•

•

•

•

for the method to be applied. Body specifies
a task refinement as a new network <Tasks,
O>. Within the SA plane, this refinement
will capture the design decisions leading
to a pattern (or part of it), but it won’t make
any changes to ArchitectureState. ApplyWhen
acts as a filtering condition for the method to
check its alignment with a particular tactic.

A HTN operator within PatternDomain has
the form <Head, Pre, ListAdd, ListDel>. Head and
Pre are similar to the method counterparts,
whereas ListAdd and ListDel are lists of logical
atoms. An operator changes ArchitectureState
by removing the atoms in ListDel and adding
the atoms in ListAdd. Within the SA plane,
an operator will fill in pattern implementa-
tion details (left blank by precedent meth-

ods) that lead to concrete architectural
modifications.

The basic HTN planning strategy entails
a trial-and-error search evaluating multiple
possibilities until it finds a transformation
that works for the current architecture. Al-
gorithms such as SHOP2 provide efficient
implementations of this strategy.3 Nonethe-
less, because of the inherent complexity of
designing with quality-attribute trade-offs,
additional features are necessary to keep
the search computationally tractable. Ac-
cording to PAD, we design for an individ-
ual quality, as the set of planes in Figure 1
show. This procedure (and thus the set of
planes) can be replicated to deal with other
qualities of interest, assuming all the par-
ties share the SA plane. If the architecture
doesn’t meet a scenario, PAD suggests two
alternative courses of action:

the planning engine keeps examining the
design space for alternative transforma-
tions, or

•

when no alternatives exist, the architect
“softens” the quality-attribute response
of one or more scenarios.

DesignBots tackles these aspects by com-
plementing the HTN planning formulation
with multiagent technology and a mixed-
initiative modality of interaction.

The DesignBots approach
DesignBots is a multiagent framework that
supports planning-based design assistance.
The framework divides the architectural
knowledge into agents, referred to as design-
bots. Different types of designbots have com-
petencies in different qualities (for example,
performance-oriented agents and modifi-
ability-oriented agents). This view captures
the usual division of expertise regarding
quality-attribute design techniques.1 The
framework also receives two inputs: an ini-
tial architecture and a weighted list of qual-
ity-attribute scenarios for that architecture.
Design alternatives to improve the initial ar-
chitecture are expected to emerge from the
cooperative work of all the agents (along
with the architect).

Figure 2 (see p. 70) shows the main
DesignBots workflow. During setup, each
designbot is configured with a reasoning
framework and architectural tactics and
patterns as PAD has prescribed. The agents
process their respective scenarios to derive
goals and then rely on a HTN planning en-
gine to generate architectural transforma-
tions. A special agent called a mediator
combines the designbots’ plans into a global
transformation. The designbots’ goals are
prioritized according to the scenarios’ rel-
evance for the system to balance the indi-
vidual plans’ effects on the architecture.
Once candidate transformations are avail-
able, the architect can select any of them
and proceed to modify his or her architec-
ture. This exploration continues until the ar-
chitect achieves a design that satisfies his or
her expectations.

Even with PAD, agents can’t make certain
decisions, simply because the agents cannot
have complete knowledge (or enough evi-
dence) to prefer one option over others. Usu-
ally, architects are good at solving certain
parts of a problem on the basis of their ex-
perience (for example, trade-off resolution,
preferences for pattern variants, and business
considerations), although they’re not always
able to provide a rule for their decisions.
For this reason, DesignBots implements a

•

Design alternatives to improve

the initial architecture

are expected to emerge

from the cooperative work

of all the agents (along

with the architect).

70	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o f t w a r e D e s i g n

mixed-initiative planning modality that puts
the architect in the search loop. As long as
the architect makes the principal decisions,
the planning engine can consider subsidiary
decisions for the plans as well as ensure a
correct application of patterns. For instance,
if the planning engine detects a problematic
component dependency, it would show the
architect a list of available patterns for break-
ing the dependency. Once the architect picks
a particular pattern, the engine can continue
the search on the basis of that pattern.

Later, we’ll explain the “constructive”
aspects of our planning system when ex-
ploring modifiability and performance al-
ternatives. A simplified battlefield con-
trol system (BCS), adapted from the
work of Rick Kazman and his colleagues,
illustrates the approach.5 BCS involves a
central commander and a collection of army
units (for example, troops, tanks, planes,
sensors, and maps). The initial architecture
follows a client-server pattern4 in which
the commander acts as the server and the
units are its clients, either making requests
or updating the commander’s database.
Internode communication occurs through
messages sent via a shared communication
channel. All these components display their
computations in a graphical interface.

The architectural model
and quality-attribute goals
Architectures are commonly represented
as graphs of interacting components. This
view is supported by architectural notations
known as architectural description lan-
guages (ADLs). For DesignBots, we’ve de-
fined an ADL called ADLite that gives a ba-
sic vocabulary of components, connectors,
and responsibilities. The main units of com-
putation are the components (processes, cli-
ents, servers, and repositories). Connectors
model pathways of interaction between com-
ponents (procedure calls, events, and access
to shared data). Responsibilities capture ap-
plication-specific functions that the architect
assigns to components. In addition, ADLite
elements can be annotated with properties.
An architectural transformation is meant
to change the actual configuration of com-
ponents, connectors, and responsibilities. A
special translator compiles ADLite specifi-
cations into world-state facts. Figure 3 shows
the BCS architecture in ADLite and the
corresponding HTN script. We simplified
ADLite’s ADL constructs to facilitate the
analysis and transformation of architectural
models. However, architectures expressed in
ADLite can be equivalently specified with
other notations such as UML2 or Acme.

A list of scenarios accompanies the in-
put architecture. A quality-attribute sce-
nario captures a textual story of (desired)
system usage. Each scenario must involve
a single quality and a response level (for
example, throughput for performance and
cost of changing components for modifi-
ability). Two scenarios elicited for BCS ap-
pear at the bottom of Figure 3 (along with
initial estimates of responses). The archi-
tect determines a ranking for the scenarios
and distributes them among the designbots
according to target quality. Let’s assume
Designbot 1 is a specialist in modifiability
and Designbot 2 is a specialist in perfor-
mance, and both are set to BCS Scenarios 1
and 2, respectively. Let’s also consider that
Scenario 1 is more important for the archi-
tecture than Scenario 2.

The designbots employ architectural
scopes to analyze the scenarios via reason-
ing frameworks. A scope isolates the area
of the architecture affected by a scenario.
We added scopes to PAD interpretation and
evaluation to narrow the planning engine’s
world state and to help designbots better de-
rive the goals they’re pursuing. Identifying
scopes requires the architect’s cooperation.
He or she must specify the responsibilities
implied by the scenario and then execute

Hierarchical
 task network

planning engine

Planning
problem
for snPlanning

problem
for s2

Modifiability tactics
and patterns

Architectural
description

(ADLite)

Global transformation

Performance
tactics and patterns

Compilation

Architect’s main decisions

PlanningMerging

Evaluation of
alternatives

1

Main activities (with different degrees of automation)
• Description of the input architectural model (Step 1)
• Allocation of quality-attribute scenarios to the designbots (Step 1)
• Analysis of individual scenarios to determine suitable goals and tactics (Step 2)
• Execution of the planning process at the designbots (Steps 3 & 4)
• Combination of individual plans by the mediator (Step 5)
• Application of satisfactory transformations to the architectural model (Step 6)

Planning
problem
for s1

1

2

2

3

4

5

6

Individual plan(s)

List of quality-attribute
scenarios: s1, s2, …, sn

Figure 2. Flow of activities in the DesignBots framework. The architectural description and its quality-attribute scenarios
are compiled into planning problems. The hierarchical task network (HTN) planning engine tries to find plans that solve the
problems. During the planning process, the engine can call the user (architect) for intervention. The final plans are merged in
the form of architectural transformations.

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 71

algorithms (provided by the framework) to
traverse the architecture and create a view
(the scope) containing the components that
are related to the responsibilities. Once the
scope is determined, the reasoning frame-
work runs its quality-attribute analysis as
usual. DesignBots implements two reason-
ing frameworks: a queuing model for evalu-
ating performance and a dependency-chain
model for evaluating modifiability. (A rea-
soning framework is considered here as a
black-box library for computing scenario
responses.) During analysis, the compo-
nents, connectors, and responsibilities par-

ticipating in the scope are annotated with
quality-related properties.

On the basis of the scope information,
screening rules decide which reasoning-
framework parameters should be manipu-
lated to affect the scenario response.2 Specif-
ically, each designbot applies these rules to
establish a list of candidate tactics and a net-
work of goals (that is, tasks) for its scenario.
From these tactics, the architect chooses
one tactic per scenario as the driving force
for further task-network refinements via
planning.

For example, in the case of Scenario 1

for modifiability, Designbot 1 calls a depen-
dency-chain reasoning framework to com-
pute the cost of changing the sensors. In
short, the interpretation considers a graph
with three types of elements: primary nodes,
secondary nodes, and the links among them.
A primary node is a component whose re-
sponsibilities are directly affected by the
specific change. A secondary node is a com-
ponent that interacts with a primary node. A
link is a connector through which changes
can propagate from primary to second-
ary nodes. Each node, whether primary or
secondary, is characterized by several cost

#goals: [// According to scenarios #1 and #2 in BCS
#tasks: [

#state: [

// Available types of components for BCS
componentTemplate(tFighter).
hasResponsibility(tFighter,executeOrder,public).
hasResponsibility(tFighter,provideVisualizationData,public).
hasResponsibility(tFighter,getOrder,public).
hasResponsibility(tFighter,reportToCommander,public).
hasPort(tFighter,guiPort).
providesInPort(tFighter,guiPort,provideVisualizationData).
hasPort(tFighter,unitPort).
providesInPort(tFighter,unitPort,executeOrder).
providesInPort(tFighter,unitPort,getOrder).
providesInPort(tFighter,unitPort,reportToCommander).
requiresInPort(tFighter,unitPort,storeInformation).

componentTemplate(tCommander). // Template for commander
hasResponsibility(tCommander,storeInformation,public).
hasResponsibility(tCommander,processInformation,private).
hasPort(tCommander,guiPort).

componentTemplate(tSensor). // Template for sensors
hasResponsibility(tSensor,reportToCommander,public).
hasResponsibility(tSensor,acquireRawData,private).
componentTemplate(tGuiPanel). // Template for guiPanel

hasResponsibility(tSensor,displayData,public).
componentTemplate(tComChannel). // Template for comChannel

 // Template for fighters

// Responsibilities for BCS
responsibility(provideVisualizationData,'Provide data for …').
responsibility(reportToCommander,'Send information to …').
responsibility(acquireRawData,'Acquire raw data from devices …').
responsibility(executeOrder,'Execute an order from …').
responsibility(storeInformation,'Store information items that …').
...

// BCS architectural model (components and connectors)
architecturalModel(bcsInitial).
component(bcsInitial,sensor1,tSensor),
component(bcsInitial,sensor2,tSensor),
component(bcsInitial,commander,tCommander),
component(bcsInitial,fighter1,tFighter),
component(bcsInitial,fighter2,tFighter),
component(bcsInitial,fighter3,tFighter),
component(bcsInitial,guipanel,tGuiPanel),
component(bcsInitial,comChannel,tComChannel),
connector (bcsInitial,comChannel,sensor1),
connector (bcsInitial,comChannel,sensor2),
connector (bcsInitial,comChannel,sensor3),
connector (bcsInitial,comChannel,commander),
connector (bcsInitial,guiPanel,commander),
connector (bcsInitial,guiPanel,fighter1),
connector (bcsInitial,guiPanel,sensor1)
...

]. // End HTN state

n1: checkDependencyChain(sensor1,comChannel, dataServices), // For modifiability
n2: checkDependencyChain(sensor2, comChannel, dataServices), // For modifiability
n3: deferBindingTime(tSensor, runtime), // For modifiability
n4:n4: reduceComputationalOverhead(tFighter, comChannel), // For performance
n5: reduceComputationalOverhead(comChannel, commander) // For performance

]
#order: [n1 before n3, n2 before n3, n1 before n4, n2 before n4, n4 before n5]].

Main quality Scenario description Estimated measure

1 Modifiability The system administrator adds a new type of sensor to the Average cost change = 55%
 network, and the architecture should take account of it.

2 Performance The number of fighter and sensor nodes increases, and the system Average throughput = 10%
 should keep the level of service bounded. Average latency = 0.65 msec

designbot #1

designbot #2

sensor2

sensor1

rpc3

rpc4

rpc5

rpc6rpc1

acomChannel

commander

fighter2

notification3

notification1

notification2
notification4

notification5

notification6

guiPanel

fighter1

rpc2

ADLite model
(box-and-line style) sensor3

Figure 3. Initial architecture of and quality-attribute scenarios from our example battlefield control system. The graphical model
of components and connectors in ADLite (on the left) becomes a set of facts for the world state. The textual scenarios (at the
bottom) lead to a network of goals. The world-state facts and the goals are the inputs to the HTN planning algorithm.

72	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o f t w a r e D e s i g n

properties, whereas each link is assigned to a
change-propagation probability. A weighted
sum over the scope elements gives the total
cost as the scenario response. Looking at the
response for Scenario 1 (see the table in Fig-
ure 3), the architect would judge that a value
above 50 percent isn’t good. Then, screening
rules would point out a problematic depen-
dency chain from the sensors to the com-
mander. To minimize the cost of change,
Designbot 1 can suggest the tactic of insert-
ing an intermediary between the sensors and
other components. Here, the rationale is that
the fewer components reached by the change,
the less effort required to support it. So, we’d
expect a better modifiability response. Anal-
ogously, Designbot 2 suggests the tactic of
keeping the communications latency under
a specific value to control Scenario 2’s per-
formance response. At last, the designbots
will infer their goals by relating the quality-
attribute analysis results to the components
and connectors within their scopes. Actu-
ally, when used in conjunction with scenar-
ios, goal-based networks are useful for di-
recting design efforts. Figure 3 shows a task
network inferred for the two BCS scenar-
ios. (Because of space limitations, we can’t
provide the whole analysis process through
which the designbots arrive at these goals.)
We can generate ordering constraints on the
basis of scenario priorities.

Tactics and architectural patterns
The designbots rely on a set of architectural
patterns and mechanisms—that is, design
elements with different levels of granular-
ity that serve to make tactics concrete.1,4 An
architectural mechanism is fine grained and
implements a single tactic, whereas an ar-
chitectural pattern is coarse grained and
usually encapsulates one or more tactics at
the same time. When mapped to the HTN
domain, architectural patterns and mecha-
nisms can range from basic actions (creation
and deletion of components or allocation of
responsibilities) to more complex ones (del-
egation of responsibilities or insertion of a
blackboard as intermediary). The bottom
of Figure 4 shows scripts for basic mecha-
nisms. We can write more elaborate mecha-
nisms and patterns on top of basic ones un-
til they reach the level of tactical tasks. The
top of Figure 4 shows examples of compos-
ite scripts. In particular, the thread starts with
the tactic of breaking the dependency chain
and the high-level task checkDependencyChain
(?primary, ?secondary, ?dependency). The first two

goals in Figure 3 (for Scenario 1 in BCS) are
instances of that schema.

The arrows in Figure 4 indicate how de-
composition proceeds. Initially, the task check-
DependencyChain() verifies whether the archi-
tect wants to act on the dependency between
two designated components. According to
the mixed-initiative modality, user-query
tasks permit information gathering at plan-
ning time (@selectOption(), @warning(), and
@getInput()). The task @selectOption() displays a
GUI panel and asks the architect for a de-
cision. If the architect enters a positive an-
swer, the next task is to effectively break the
dependency with an intermediary. If not, the
system sends a warning message to the GUI
panel. There are various implementations for

the intermediary following this tactic. The
first option would replace the actual connec-
tor with a new one that confers weak cou-
pling; the second option would insert a new
component to bridge the components. If the
architect selects the latter option, the tactic
is implemented by means of the Forwarder-
Receiver pattern.4 This pattern provides
transparent interprocess communication
(IPC) within a peer-to-peer interaction model.
The top-level method applyForwarderReceiver()
specifies the arrangement of forwarder and
receiver roles as well as their responsibili-
ties. Subsequent methods and operators pro-
vide implementation details for the pattern.

planning for design
alternatives with SHOp2
The designbots yield control to the plan-
ning engine to get plans for their task net-
works. This engine uses a SHOP2-like algo-
rithm,3 generating the steps of a plan in the
same order those steps are to be executed.
We took SHOP2 mainly because of its per-

formance and substantial expressive power.
As in SHOP2, when the planning engine is
decomposing a task network, methods can
specify subtasks that are just partially or-
dered. This way, the engine (and the archi-
tect) has freedom to decide the tasks to work
on, and task precedence is enforced only
when necessary. A sketch of our algorithm
dbotsSHOP2 appears in Figure 5. This al-
gorithm takes as inputs an initial state S (the
designbot’s scope), a task network Goals, the
name of a SelectedTactic, and a domain D. Ba-
sically, dbotsSHOP2 is a loop that picks a
task t in Goals that has no predecessors and
searches for reductions <primTask, subtasks>
for that task. The termination conditions
are either failure or no more goals. If Goals is
empty, dbotsSHOP2 returns a plan outputPlan
and a modified state Snew to the requesting
designbot. Although SHOP2 was originally
designed to avoid backtracking, we equipped
dbotsSHOP2 with backtracking points at
which designbots can ask the planning en-
gine for alternative-path decomposition if
needed. The main backtracking points com-
prise generation of a task network for a tac-
tic, execution of a task without predecessors
within the network, and selection of HTN
methods and operators whose preconditions
hold in the world state.

A graphical interface controls the plan-
ning process. This supports plan construc-
tion through dialogues between the architect
and the planning engine. Furthermore, the
architect can selectively enable or disable
backtracking points, undo or redo capabili-
ties, and perform step-by-step execution at
configuration time. When the planning en-
gine recognizes a user-query task primTask,
the system adds the task to todoGUIList and
the planning engine suspends treating the
successors of primTask. Through todoGUIList,
the architect is aware of the decisions pend-
ing for the design solution under consider-
ation and can opportunistically answer the
required tasks. As long as the planning
engine finds tasks ready for execution, it
keeps processing the task network.

So far, we’ve talked about how a design-
bot pursues one quality-attribute scenario
at a time. To account for quality-attribute
trade-offs, the framework must handle in-
teractions among goals and their plans from
a unified perspective. The mediator comes
with two techniques to coordinate design-
bots’ activities.

One technique is to order the goals and
solve them linearly. This technique assumes

The designbots rely on a set

of architectural patterns

and mechanisms—that is,

design elements with different

levels of granularity that serve

to make tactics concrete.

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 73

#method: checkDependencyChain(?primary, ?secondary, ?dependency) ->// Starting method for applying the tactic
 #pre: [someDependency(?primary, ?secondary)]
 #applyWhen: [tacticChosen(insertIntermediary), directive(insertIntermediary, reduceNumber,?primary), primaryComponent(?primary),
 secondaryComponent(?secondary), equal(?dependency, dataServices)]
 #body: [
 #tasks: [
 n1: #eval: @selectOption("Can the dependency: "+?primary+" - "+?secondary +" be (further) broken?", [yes,no], ?yesno),
 n2: breakDependency(?primary, ?secondary, ?dependency, ?yesno)]
 #order: [n1 before n2]] #end-method.

#method: breakDependency (?primary, ?secondary, ?dependency, ?break) ->
 #pre: []
 #applyWhen: [tacticChosen(insertIntermediary), directive(insertIntermediary, reduceNumber, ?primary), primaryComponent(?primary),
 secondaryComponent(?secondary), equal(?break, no)]
 #body: [
 #tasks: [
 n1: #eval: @warning("Breakup of dependency: "+?primary+" - "+?secondary+" may not be achieved?")]
 #order: []] #end-method.

#method: breakDependency(?primary, ?secondary, ?dependency, ?break) -> // Alternative method for task “breakDependency”
 #pre: []
 #applyWhen: [tacticChosen(insertIntermediary), directive(insertIntermediary, reduceNumber, ?primary), primaryComponent(?primary),
 secondaryComponent(?secondary), equal(?break, yes)]
 #body: [
 #tasks: [
 n1: #eval: @selectOption("What strategy is better for you?", [lowerCouplingConnector,intermediaryComponent], ?option),
 n2: insertIntermediaryFor(?primary, ?secondary, ?option) , // Using an intermediary to break the dependency
 n3: checkDependency(?primary, ?secondary, ?dependency)]
 #order: [n1 before n2, n2 before n3]] #end-method.

#method: insertIntermediaryFor(?primary, ?secondary, ?strategy) ->
 #pre: [someDependency(?primary, ?secondary)]
 #applyWhen: [tacticChosen(insertIntermediary), equal(?strategy, intermediaryComponent)]
 #body: [
 #tasks: [
 n1: #eval: @selectOption("What kind of communication in: "+?primary+" should be tackled ?, [send,receive,both], ?ptype),
 n2: #eval: @selectOption("What kind of communication in: "+?secondary+" should be tackled ?, [send,receive,both], ?stype),
 n3: applyForwarderReceiver(?primary,?ptype, yes) , // Materializing the tactic with a forwarder-receiver pattern
 n4: applyForwarderReceiver(?secondary,?stype, yes)]
 #order: [n1 before n3, n2 before n4]] #end-method.

method: applyForwarderReceiver(?peer, ?variant, ?continue) ->
 #pre: [component(?peer)]
 #applyWhen: [equal(?variant, send), equal(?continue, yes)]
 #body: [
 #tasks: [
 n1: #eval: @selectResponsibilities("Responsibilities for sending data/services in peer: "+?peer, ?list),
 n2: defineForwardersForPeer(?peer,?list, yes),
 n3: defineReceiversForPeer(?peer,?list, yes),
 n4: updateInteractionsOfPeerWithRest(?peer, ?list)]
 #order: [n1 before n2, n1 before n3, n2 before n4, n3 before n4]] #end-method.
…

Tactics and patterns

#method: addComponent(?name, ?creation) ->
 #pre: [equal(?creation, new), not(component(?name, ?anyTemplate)]
 #body: [
 #tasks: [
 n1: #eval: @getIntput ("Provide template for component: "+ ?name, ?template),
 n2: createComponent(?name, ?template)]
 #order: [n1 before n2]] #end-method.

#operator: createComponent(?name, ?template) ->
 #pre: [not(component(?name, ?template), componentTemplate(?template), architecturalModel(?current)]
 #add: [component(?current, ?name, ?template)]
 #delete: [] #end-operator.

#operator: createComponent(?name, ?template) ->
 #pre: [not(component(?name, ?template), not (componentTemplate(?template)), architecturalModel(?current)]
 #add: [componentTemplate(?template), component(?current, ?name, ?template)]
 #delete: [] #end-operator.

#operator: moveResponsibility(?responsibility, ?target, ?source) ->
 #pre: [component(?target,?someTemplate), component(?source, ?otherTemplate), architecturalModel(?current) ,
 hasResponsibillity(?responsibility, ?someTemplate, ?any1), not(hasResponsibility(?otherTemplate, ?responsibility, ?any2))]
 #add: [hasResponsibility(?otherTemplate, ?responsibility, ?any2)]
 #delete: [hasResponsibility(?someTemplate, ?responsibility, ?any1)] #end-operator.
…

Architectural mechanisms

…

Figure 4. HTN scripts for tactics and architectural patterns. The code at the bottom contains scripts for basic architectural
mechanisms, and the code at the top shows composite scripts for tactics and patterns. The arrows illustrate the task
decomposition structure.

74	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o f t w a r e D e s i g n

that an architect (or a computer) can achieve
the goals sequentially, in any order. This as-
sumption relies on the notion of quality driv-
ers.1 When selecting a transformation, the
mediator will prefer plans associated with
scenarios marked as drivers over the rest of
the plans. Figure 6a shows the results of this
strategy in BCS, applying the modifiability
and performance solutions sequentially. Al-
though transformations aren’t always com-
mutative, this strategy performs well and is
straightforward to implement. However, this
strategy has a drawback: early commitment
to a solution that focuses on a specific qual-
ity can hinder the consideration of better so-
lutions later (even with backtracking).

The second technique is to merge groups
of plans for different goals. This technique
relies on a plan-merging heuristic6 based on
special categories of interactions among the
actions in the designbots’ plans. Unlike the
previous strategy, the mediator constructs
several equivalence classes to combine plans
for different qualities into a joint transforma-
tion. Figure 6b shows the BCS architecture
after the mediator merged the modifiability
and performance solutions. According to
the table in Figure 6, this strategy is closer
to what architects do when faced with trade-
offs among solutions. Nonetheless, the heu-
ristic is more complex to implement (for ex-
ample, identifying interactions is domain
specific), and it doesn’t guarantee a success-
ful combination of plans. If this happens,
the mediator might replace specific plans by
asking a designbot for another plan for the
same goals.

Evaluation
As a proof of concept, we developed a
DesignBots prototype and conducted de-
sign-related case studies. The main objec-
tive was to demonstrate that we can model
PAD with a planning approach. The suc-
cessful criterion was then to exercise the
search engine by generating a set of solu-
tions with trade-offs. Because the focus was
the framework itself rather than the amount
of architectural knowledge embedded in
the agents, we specified tactics and patterns
to the extent necessary to produce differ-
ent solutions. At this stage, rather than run-
ning experiments with architects using the
tool, we performed a postmortem analysis
in which the case studies provided material
to reproduce design situations with Design-
Bots. That is, initial architectures and sce-
narios fed the tool, and we configured the

ALGORITHM dbotsSHOP2(S, D, SelectedTactic, Goals): < Plan , Snew > {
 outputPlan ← Ø pendingTasks ← Ø
 tasksAvailable ← {t ∈ Goals: no other task in Goals precedes t}
 WHILE (Goals is not empty) {
 t ← choose nondeterministically some task in tasksAvailable that is not in pendingTasks
 // Backtracking point
 < primTask , subtasks > ← findReduction(S, SelectedTactic, t, D)
 IF (primTask is NULL) RETURN FAILURE // The task is either unknown or it cannot be handled
 ELSE IF (primTask is a primitive task) { // Backtracking point
 select < op , �> so that op is a ground instance of an operator in D, θ is a
 substitution that unifies {head(op),primTask} and makes S satisfies preconditions(op)
 IF (θ is not successful) RETURN FAILURE // No operator matches this task
 ELSE { // This part executes the operator and updates the world state
 S ← S - deleteList(op) U addList(op)
 outputPlan ← append(outputPlan,head(op))
 Goals ← applySubstitution (Goals – { primTask } U subtasks , θ) constraining
 each task in subtasks to precede those tasks that t preceded in Goals
 handle " protection requests" for logical atoms
 }
 }
 ELSE IF (primTask is a built-in task) {
 IF (primTask needs to be answered by the user) {
 send primTask to todoGUIList for execution // Hook for tasks requiring mixed-initiative
 pendingTasks = pendingTask U { primTask }
 }
 ELSE { // The task has been answered/processed
 θ ← getResult(primTask, todoGUILIst)
 IF (θ is not successful) RETURN FAILURE // The user’s answer was negative
 ELSE Goals ← applySubstitution (Goals – { primTask } , θ)
 }
 }
 // Those built-in tasks answered (or processed) are removed from pending status
 pendingTasks ← updateReadyTasks(pendingTasks, todoGUIList)
 // This part selects the tasks ready for the next iteration
 tasksAvailable ← {t ∈ Goals: no other task in Goals precedes t}
 } // end while
 RETURN (< outputPlan, S >)
} // End dbotsSHOP2

// It applies successive decompositions until finding the first primitive or built-in task
// whose execution will modify the world state
FUNCTION findReduction(S, Tactic, initialTask, D): < Task , Decomposition > {
 current ← initialTask decomp ← Ø
 WHILE (current is not primitive or built-in task) {
 select < met , � > so that met is a ground instance of a method in D, θ is a substitution
 that unifies {head(met), primTask}, met aligns with Tactic and makes S satisfies
 preconditions(met) // Backtracking point
 IF (θ is not successful) RETURN FAILURE // No method matches this task
 ELSE { // This part executes the method and computes a decomposition for the task
 decomp ← decomp – { current } U body(met) constraining each task in body (met) to
 precede those tasks that current preceded in decomp
 }
 }
 RETURN (< current, decomp >)
} // End findReduction

Figure 5. The HTN planning algorithm used by the designbots. The main part of the
algorithm (at the top) handles the goals (tasks) that are directly achievable by HTN
operators or the user-query tasks. The second part (at the bottom) decomposes
nonprimitive goals by means of HTN methods.

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 75

agents with adequate tactics and patterns.1,4
Then, we compared the DesignBots solu-
tions against the human designs.

We built the prototype on top of a Java
framework that permits the construction of
designbots with planning and architectural
design capabilities. An ADLite toolkit sup-
ports the visual editing of components, con-
nectors, responsibilities, and scenarios. As
for planning, we provided default imple-
mentations of both the dbotsSHOP2 and
merging algorithms. On this basis, we car-
ried out three case studies involving modifi-
ability and performance concerns. Initially,
the BCS case study allowed us to deploy and
tune the DesignBots infrastructure. Then,
we applied DesignBots in a moderate-size
project for a software design course: we
asked graduate students to produce solu-
tions for the design of a home-alarm mon-
itoring system (HAS). Finally, in the third
case study, we tested DesignBots in the con-
text of a telecommunications project as part
of consulting activities made for the com-
pany Delsat Group.

As a sample of the case studies, the HAS
case study comprised three modifiability
and three performance scenarios, which
were assigned to six different designbots.

When exploring alternatives, a notable de-
sign aspect was the recommendation of a
blackboard to coordinate action tasks, diag-
nosis, and high-level policies.4 Among other
transformations for the HAS architecture,
the designbots helped us in architecting for
support for adding new sensor types, con-
figuration of reactive and diagnosis func-
tionality, timing issues for reactive actions,
and personalization of action rules. For the
HAS case study, Table 1 (see p. 76) summa-
rizes the architectural mechanisms speci-
fied for the planning domain and which of
them were actually selected by the design-
bots to achieve the scenarios. The two right-
most columns of the table show a qualita-
tive evaluation of the solutions applied by
the designbots. The most relevant optimi-
zation during merging was about relaxing
the constraints of the blackboard style in
order to apply a blackboard variant that ac-
counts for performance issues. (The origi-
nal blackboard style is good for reducing
rippling of changes but may have negative
consequences on execution times and task
priorities.)

Deciding the best way to write tactics
and patterns was a central concern for the
planning domain. In general, the HTN

formalism admits many implementations of
the same concepts. This depends on issues
such as modularity, the level of the architect’s
intervention, or default values, among others.
Because a clear task decomposition helps
the architect visualize the relationships
of tactics with patterns, we preferred to
codify the domain as modularly as possible.
Furthermore, opportunities for the architect’s
intervention were included only when this
would avoid extra planning work. Figure 7
(see p. 77) presents planning data gathered
from the case studies.

The planning engine was very useful
in finding variants for a base solution the
architects were familiar with and then
improve that solution’s quality-attribute
measures. These variants showed structural
similarities with those developed by people.
Of the patterns applied by the design-
bots, the architects supervising the case
studies considered 70 percent correct. We
observed small differences in component
configurations when compared to those
arranged manually by architects. Although
not a fundamental limitation of the planning
approach, the fact that ADLite covers only a
structural view of the architecture somehow
restricted the analyses and transformations

(b)(a)

sensor1

 Scenario Initial estimations Sequential transformation Merged transformation

 1 Average cost change = 55% Average cost change = 38% Average cost change = 42%

 2 Average throughput = 10% Average throughput = 12% Average throughput = 18%
 Average latency = 0.65 msec Average latency = 0.61 msec Average latency = 0.45 msec

commander

locationRegistry

Modifiability
solution

Performance
solution

Compression
(optimization)

rpc8

rpc7

rpc7

rpc6

rpc5

rpc2

rpc10

rpc2

rpc9
rpc5

rpc3

pc7

pc3 pc3

pc6

pc5
pc5

pc6

pc8

comChannel

comChannel

channelManager

channelManager

commander

fighter1
fighter1

fighter2

fighter2

guiPanel guiPanel

receiver1

pc1

pc1

notification2

notification3
notification5

notification4

notification6
notification1

notification2
notification3 notification5

notification4

notification6

forwarder3

sharedForwarder

forwarder2

forwarder1

notification1

sensor3

sensor2
sensor2

sensor3

sensor1

Figure 6. Application of modifiability and performance solutions for BCS: (a) sequential and (b) merged. The two solutions
have different trade-offs regarding the scenarios’ performance and modifiability responses, as shown by the cost, latency, and
throughput figures in the table.

76	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o f t w a r e D e s i g n

derivable from it (for example, ADLite can’t
model a dynamic architectural view for
performance).

Analyzing the HAS and Delsat case
studies, we found that the planning en-
gine elaborated more valid solutions for the
HAS architecture and provided fewer and
flawed solutions for the Delsat architecture.
In addition to these case studies’ different
domain and problem sizes, the level of ex-
pertise required for each case study’s design

explains that finding. The former case study
involved novice architects, whereas the
latter involved experts in telecommunication
systems. Even after equipping the design-
bots with sufficient tactics and patterns, they
weren’t always capable of emulating design
experience. To deal with this technical hitch,
the planning engine must incorporate more
heuristic knowledge from experts.

The alternatives that the designbots built
clearly influenced the quality-attribute an-

alyses that set the goals. The relationships
between architectural structures and qualities
weren’t always well reflected in the human
designs. Because PAD is at the framework’s
core, an advantage of DesignBots is that it
makes those relationships more visible in
the resulting designs. The “constructive”
procedures of HTN planning and the pos-
sibility of backtracking are two factors that
sustain this assistance. Nonetheless, owing
to the limited GUI and the lack of design

Table 1. Alternatives generated for the home-alarm monitoring system case study.

Scenarios

Main
design
issue

Architectural tactics
and patterns available to the
designbots

HTN planning system Response analysis*

Supported Suggested Choice
Sequential
solution

Merged
solution

M1 Support
adding new
types of sen-
sors within
the device
layer.

1. Separate the sensor interface
from its implementation

Yes Yes Within
option 2, the
first mecha-
nism was
selected.

+ +

2. Insert an intermediary between
the devices and the data they
produce or consume

 - AbstractDataRepository
 - DataIndirection
 - PublisherSubscriber

Yes Yes

M2 Configuration
of reactive
and diagno-
sis function-
ality should
be easy for
the user.

1. Provide customization of devices
and their interactions

 - PublisherSubscriber
 - Façade
 - ClientDispatcherServer

Yes Yes Within
option 1, the
first mecha-
nism was
selected.

+ +/–

2. Defer binding time
 - ConfigurationFiles
 - UniformProtocol

No No

M3 New config-
uration rules
should be
made avail-
able for the
devices.

1. Provision of some kind of
interpreter

 - RuleBasedEngine

Yes Yes Option 1
was the only
available
one.

+/– –

P1 Fulfill the
deadlines
associated
with the pro-
duction and
consumption
of data.

1. Define scheduling policy
 - PriorityBasedDispatcher
 - RoundRobinScheduling

Yes Yes Within
option 1, the
first mecha-
nism was
selected.

+/– +

P2 The level of
response
should
be kept
bounded.

1. Define scheduling policy
 - PriorityBasedDispatcher
 - RoundRobinScheduling

Yes Yes Within
option 1, the
first mecha-
nism was
selected.

+/– +/–

2. Manage event rate
 - NotificationDispatcher

Yes No

P3 The vocabu-
lary of noti-
fications can
be updated,
but main-
taining the
above level of
response.

1. Define scheduling policy
 - PriorityBasedDispatcher
 - RoundRobinScheduling

Yes Yes Within
option 1, the
first mecha-
nism was
selected.

+/– +

*Symbols +, –, and +/– reflect the relative variations in the scenario responses when applying two solutions, using the sequential and merged strategies, respectively.

Trade-off

Trade-off

Trade-off

Trade-off

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 77

rationale about what the planning engine
was doing, the tool demanded considerable
intellectual effort from the architects to
understand the exploration.

Software architects are good at produc-
ing creative solutions, and they often

use their experience to decide on quality-
attribute trade-offs. On the other hand,
recent advances in both planning and ar-
chitectural techniques enable automating
design tasks that had been reserved for hu-
mans. Planning-based assistants can aug-
ment architects’ capabilities by reminding
them about design constraints, pointing
out promising directions to explore, and
attending to implementation details of
architectural patterns. Specifically, the
contribution of the HTN planning model
proposed for DesignBots is that of con-
sidering quality-attribute goals as drivers
for the process in order to represent archi-
tectural tactics and patterns as hierarchi-
cal procedures whose function is to meet
these goals.

Overall, this work reinforces the argu-
ment that AI-based tools can facilitate the
design of architectures driven by quality-
attribute issues. To enable the adoption of
such tools, we must develop better con-
trol strategies and heuristics to guide the
selection and instantiation of architec-
tural patterns. Furthermore, we need em-
pirical data about tool performance and

users’ acceptance. Provided that support
is present, the integration of agents with
planning techniques holds promise for a
new generation of tools that can make ar-
chitectural design less complex and more
productive.

References
 1. L. Bass, P. Clements, and R. Kazman, Soft-

ware Architecture in Practice, 2nd ed.,
Addison-Wesley, 2003.

 2. F. Bachmann et al., “Designing Software
Architectures to Achieve Quality Attribute
Requirements,” IEE Proc. Software, vol.
152, no. 4, 2005, pp. 153–165.

 3. D. Nau et al., “SHOP2: An HTN Plan-
ning System,” J. Artificial Intelligence
Research, vol. 20, 2003, pp. 379–404.

 4. F. Buschmann et al., Pattern-Oriented
Software Architecture: A System of Pat-
terns, John Wiley & Sons, 1996.

 5. R. Kazman, M. Klein, and P. Clements,
ATAM: Method for Architecture Evalua-
tion, tech. report CMU/SEI-2000-TR-004,
Software Eng. Inst., Carnegie Mellon
Univ., 2002.

 6. Q. Yang, Intelligent Planning: A Decom-
position and Abstraction-Based Approach,
Springer, 1997.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/csdl.

 T h e A u t h o r s
J. Andrés Díaz-pace is a member of the technical staff at the Software Engineering Institute,
Carnegie Mellon University. His research interests include quality-driven architecture design,
AI techniques, automated design tools, and architecture-based system evolution. Díaz-Pace re-
ceived his PhD in computer science from Argentina’s Unicen University. Contact him at adiaz@
sei.cmu.edu.

Marcelo r. campo is a professor in the Computer Science Department and head of the isistan
Research Institute, both at Unicen University. He is also a research fellow at Argentina’s National
Scientific and Technical Research Council. His research interests include intelligent tools for
software engineering, software architectures and frameworks, agent technology, and software
visualization. Campo received his PhD in computer science from Brazil’s Universidade Federal
do Rio Grande do Sul. Contact him at mcampo@exa.unicen.edu.ar.

FIgure 7. Planning data gathered from the home-alarm system case study. Using the problem and domain specifications,
the graphs give an idea of the complexity of the planning process. About two-thirds of the valid solutions were oriented to
modifiability. The architects considered only three or four of these solutions acceptable.

N
um

be
r o

f p
re

di
ca

te
s

or
 ta

sk
s

Battlefield
control system

Home-alarm
monitoring system

Delsat
0

20

40

60

80

100

120

140

160

180

200 Domain size (no. of HTN constructs)
 Problem size (no. of architectural facts)
 Average plan size (operators per plan)
 Number of user-query tasks

Sco
pe

Dom
ain siz

e

Int
era

cti
on

pla
nslev

el

Sce
na

rio

ele
men

ts
0

20

100

120

140

160 BCS
 HAS
Delsat

