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The DesignBots 

framework supports 

architects in searching 

for design alternatives 

by capturing quality-

attribute design 

concepts into a 

hierarchical, 

mixed-initiative 

planning model.

Software architecture designs give us blueprints to build systems, enabling key 

early decisions that can help us achieve a system’s functional and quality-attribute 

requirements.1 Architectural decisions have far-reaching effects on development in terms 

of quality, time, and cost. Architects apply technical knowledge and experience to guide

their decision making, choosing among multiple de-
sign solutions to find a reasonable balance of qual-
ity attributes such as performance, modifiability, or 
security. This is complex and time consuming be-
cause qualities can conflict and lead to trade-offs. A 
trade-off means that the improvement of one qual-
ity comes at the cost of degrading another—for ex-
ample, modifiability versus performance.

Since the mid-2000s, abstractions and tech-
niques for architectural design have been steadily 
improving. Of particular interest are the pioneering 
efforts of the Software Engineering Institute, which 
has developed a “theory for predictable architecture 
design” to manage the relationships between qual-
ity-attribute issues and architectural decisions.2 Ac-
cording to this theory, qualities don’t arise sponta-
neously from an architecture; rather, architects plan 
for qualities by articulating predefined architectural 
mechanisms.1

Architects usually start with an initial archi-
tectural solution, and then progressively consider 
improvements regarding a few quality-attribute 
drivers. As decision making proceeds, architects 
explore, evaluate, and compose architectural trans-
formations. Approaches such as predictable archi-
tecture design (PAD) can help them explore alter-

natives systematically. Moreover, architects can 
benefit from tools that intelligently navigate the 
design space. Nonetheless, PAD concepts don’t 
support design’s explorative aspects per se. To ad-
dress this problem, we treat exploration as a type 
of search in which architectural knowledge prunes 
options and directs the architect toward “good-
enough” solutions. Along this line, AI planning is 
a suitable technique to (semi)automate that search. 
Essentially, the quality-attribute drivers would be 
the goals that appropriate architectural transfor-
mations (that is, basic actions operating on compo-
nents and connectors) must satisfy. Our objective is 
to develop a design assistant that lets architects fo-
cus on the key decisions for shaping the architec-
ture by delegating to a planning engine the routine 
search work derived from those decisions.

The DesignBots framework is a prototype for 
such an assistant. It provides a multiagent infra-
structure that maps PAD concepts to a hierarchical 
task network (HTN) planning model.3 HTN plan-
ning represents plans as task hierarchies that can 
be gradually refined into subplans. In the context of 
PAD, HTN planning helps identify tactical solutions 
for quality attributes and then provide separately 
the details of their materialization via architectural 
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patterns. This enables the (semi)automated 
exploration of alternatives for an input ar-
chitecture and a set of quality-attribute sce-
narios. To study this approach’s feasibility, 
we equipped DesignBots with architectural 
knowledge for modifiability and perfor-
mance. Then, we empirically compared the 
prototype outputs against human designs 
from case studies. The results regarding 
mappings and search capabilities show po-
tential for planning techniques to support 
architectural tools based on quality-driven 
constructive principles.

Architectural design  
as a planning problem
One premise of the software architecture 
community is that quality attributes can be 
realized by applying specific architectural 
patterns.1,4 In this context, a central ques-
tion is how to move from a set of quality- 
attribute requirements to an architectural 
structure that satisfies those requirements. 
For instance, let’s suppose a modifiability 
scenario stating that component A should in-
corporate new features with reduced change 
impact. A possible architectural strategy for 
the scenario is to insert an intermediary be-
tween A and its interacting components so 

that the intermediary can break A’s depen-
dencies on other parts of the system. De-
pending on the dependency type, the archi-
tect would use various patterns to flesh out 
a solution—namely, a repository, a naming 
server, a publisher-subscriber, layers, and so 
on.4 Several researchers have investigated 
providing systematic “reasoning threads” 
for this kind of design (see the sidebar “Re-
lated Work in Automated Design Support”). 
Currently, one of the most representative ap-
proaches is PAD,2 which establishes guide-
lines for building architectures with predict-
able quality-attribute properties based on 
three essential concepts: quality-attribute 
scenarios, reasoning frameworks, and ar-
chitectural tactics. Figure 1 depicts the links 
among these concepts, given a particular 
quality attribute.

The PAD process is as follows. We as-
sume an initial architecture arch as a formal 
specification of components, allocation of 
responsibilities to components, and con-
nectors among components. We express a 
quality-attribute requirement as a scenario, 
which is a textual description of a use case 
for the system. A scenario scen defines an 
envelope of allowed quality-attribute mea-
sures. An interpretation function |(arch, scen) 

analyzes the architecture through a reason-
ing framework and instantiates a model in-
stance. This reasoning framework in turn 
applies an evaluation function E(model, scen) 
to determine the quality-attribute value (or 
response) that such an architecture will 
achieve for a scenario stimulus. If the eval-
uated value is inside the region defined by 
the scenario, the architecture will be “good 
enough” to satisfy the scenario. If not, a tac-
tic changes the architecture using a trans-
formation function T(arch) so that a param-
eter of the reasoning framework moves in a 
known direction and its (re)evaluation falls 
into the desired region. Tactics capture the 
logic behind architectural patterns to tackle 
“classes of quality-attribute problems” (for 
example, rippling of changes for modifiabil-
ity and bottlenecks for performance).1 Fur-
thermore, a tactic gives directives to con-
trol reasoning-framework parameters. In 
the example just given, the tactic of “insert-
ing an intermediary” affects the probability 
of change rippling, which is one of the pa-
rameters used by the modifiability frame-
work to compute the total cost of modifica-
tions. Tactical directives are made concrete 
through one or more architectural patterns 
that can actually transform the architecture.

Software architectures (SA) 
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Figure 1. Architectural theory for reasoning about quality-attribute design.2 The design space is divided into four planes: the 
quality-attribute scenario plane, the quality-attribute measure plane, the software architecture plane, and the quality-attribute 
reasoning framework plane. The first two planes represent the problem space, the third represents the solution space, and the 
fourth captures the quality-attribute analysis that connects the problem and solution spaces.
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From an operational perspective, archi-
tects use tactics and patterns to explore the 
design space and build architectural so-
lutions. Note, however, that the choice of 

suitable mechanisms to transform an ar-
chitecture is implicit in PAD and thus left 
to search. To provide automated assistance 
for this search, we argue that the transfor-

mational knowledge embedded in tactics 
and patterns fits well with HTN planning 
techniques.3 Assuming tactics and patterns 
as the planning domain, the two assets re-

Researchers have done considerable work in automated de-
sign support, but little in architectural-design approaches 
using AI. Interesting automated-design-support approaches 
include rule-based systems,1 goal-feature graphs,2 planning 
for project management,3–5 multiobjective optimization,6 
and reconfiguration of distributed systems.7,8

The NFR (nonfunctional requirements) Framework treats 
quality attributes as a graph of synergistic or conflicting 
goals.2 This approach has codified knowledge about satis-
fying these goals into methods, which work like their hier-
archical task network counterparts, and correlation rules, 
which deal with general trade-off analysis. However, this 
framework doesn’t provide details regarding architectural 
structure. A later version of the NFR Framework added a 
feature-solution graph that connects requirements with 
architectural fragments. One difference with DesignBots is 
the lack of (automatable) guidelines for exploring alterna-
tives through the feature-solution graph.

The first experiments with rule-based architectures for 
design can be traced to the Programmer’s Apprentice proj-
ect at MIT. Unfortunately, much of that work failed because 
of the underlying design theory’s weak support. The Soft-
ware Engineering Institute developed the ArchE expert 
system (www.sei.cmu.edu/architecture/arche.html) on the 
basis of predictable architecture design (PAD) concepts to 
help architects quickly explore design alternatives. The use 
of rules imposes limitations when specifying complex deci-
sion procedures. Open issues for both ArchE and Design-
Bots include the amount of data generated during search, 
interaction with the architect, and the management of 
trade-offs. Currently, research efforts are oriented toward 
improving assistance using other AI techniques.

John Clarke and his colleagues discuss a view of software 
engineering as a search framework.6 According to early re-
sults, a well-defined mapping from software concepts to a 
particular optimization technique is an important require-
ment. Overall, we still don’t know whether optimizations 
can handle complex design spaces in acceptable time and 
with a good diversity of solutions.

Other researchers have applied temporal planning to dis-
tributed-systems reconfiguration.7 Although this approach 
is still in an experimental stage, it concurs with our observa-
tions about domain writing and planner scalability. David 
Garlan, Shan-Weng Cheng, and Bradley Schmerl8 propose 
a more flexible reconfiguration approach that makes archi-
tectural information explicit at runtime and provides a map-
ping between architecture and code. This permits detection 
when system behavior falls outside the acceptable range 
and modification of component configuration accordingly. 
Even though this reconfiguration is based on rules, it ap-
plies many architectural strategies that designbots use.

Two planning approaches related to project manage-
ment are RealPlan4 and Cabma.5 RealPlan treats resources as 
separate from causal reasoning, using scheduling to allocate 

enough resources after selecting actions to reach the goals. 
This is expected to improve planner efficiency when resources 
are at work and replanning might be needed. Because the 
algorithm considers architectural elements as resources, 
DesignBots could apply it to manage interactions between 
solutions. Cabma combines HTN planning and case-based rea-
soning to reuse pieces of project plans, helping users create 
new projects. Thus, Cabma naturally supports a mixed-initiative 
modality of interaction. Barbara Dellen and Frank Maurer 
have also used planning for process management; their tool 
performs the processes and guides project members to carry 
out activities.3 The approach includes tasks, methods, and 
agents (both human and machine), all of which resemble 
some of the DesignBots concepts. Because it concerns ar-
chitectural design, however, the process gives just a general 
schema of the product design. Additional subprocesses are 
scheduled as the design proceeds. In contrast, DesignBots has a 
more elaborated design theory in which the artifacts are more 
important than the enactment of processes. Thus, the design 
process in DesignBots doesn’t need agents to be able to work. 
DesignBots (as inherited from PAD) includes criteria to measure 
the degree of quality-attribute achievement of the solutions. 
Moreover, the agents in our framework reduce the complexity 
of designing with quality-attribute knowledge. 
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quired to complete the mapping of PAD 
to HTN are the initial architecture as the 
world state, and this architecture’s scenarios 
as the quality-attribute goals to plan for. Fi-
nally, the resulting plans are actually what 
will generate the architectural alternatives.

The HTN planning problem for PAD is 
stated formally as the 4-tuple <ArchitectureState, 
QATaskNetwork, PatternDomain, Plan> with the fol-
lowing elements:

ArchitectureState is a set of ground atoms 
(logical predicate names, each followed 
by a list of arguments that are all bound 
to constant values). Within the software 
architectures (SA) plane, these ground 
atoms describe the components, connec-
tors, and main functions that constitute 
the architecture.
QATaskNetwork is a pair <Tasks, O>, where 
Tasks is a sequence of ground tasks and O is 
a partial order for them. A task is an atom 
denoting an activity to be accomplished. 
In the quality-attribute scenarios (QAS) 
plane and the quality-attribute reasoning 
frameworks (RF) plane, QATaskNetwork is 
a partial order of outstanding goals to be 
satisfied in the specified order. Tasks cap-
ture actual quality-attribute issues com-
ing from the analyses performed via the 
I(arch, scen) and E(model, scen) functions.
PatternDomain is a collection of HTN pro-
cedures for individual tasks. Architec-
tural tactics and patterns are represented 
in terms of HTN methods and operators 
whose instantiation implements the T(arch) 
function.
Plan is a sequence of ground tasks that 
defines a transformation T(arch). When 
the planning engine generates a success-
ful plan, the plan instance is also a plan-
ning state. So, Plan is the partial solution 
found so far, and the engine has already 
applied the corresponding transforma-
tion to the architecture. This transfor-
mation is quality driven in the sense 
that it follows from goals for a quality 
attribute, and it’s also ruled by a tactic 
adequate for that attribute. Reevaluating 
the reasoning framework can quantify 
the architectural improvement.

A HTN method within PatternDomain has 
the form <Head, Pre, ApplyWhen, Body>. Head re-
fers to the atom used as the method name 
(which the planning engine can match 
against tasks). Pre defines a list of logical pre-
conditions that must be true on ArchitectureState 

•

•

•

•

for the method to be applied. Body specifies 
a task refinement as a new network <Tasks, 
O>. Within the SA plane, this refinement 
will capture the design decisions leading 
to a pattern (or part of it), but it won’t make 
any changes to ArchitectureState. ApplyWhen 
acts as a filtering condition for the method to 
check its alignment with a particular tactic. 

A HTN operator within PatternDomain has 
the form <Head, Pre, ListAdd, ListDel>. Head and 
Pre are similar to the method counterparts, 
whereas ListAdd and ListDel are lists of logical 
atoms. An operator changes ArchitectureState 
by removing the atoms in ListDel and adding 
the atoms in ListAdd. Within the SA plane, 
an operator will fill in pattern implementa-
tion details (left blank by precedent meth-

ods) that lead to concrete architectural 
modifications.

The basic HTN planning strategy entails 
a trial-and-error search evaluating multiple 
possibilities until it finds a transformation 
that works for the current architecture. Al-
gorithms such as SHOP2 provide efficient 
implementations of this strategy.3 Nonethe-
less, because of the inherent complexity of 
designing with quality-attribute trade-offs, 
additional features are necessary to keep 
the search computationally tractable. Ac-
cording to PAD, we design for an individ-
ual quality, as the set of planes in Figure 1 
show. This procedure (and thus the set of 
planes) can be replicated to deal with other 
qualities of interest, assuming all the par-
ties share the SA plane. If the architecture 
doesn’t meet a scenario, PAD suggests two 
alternative courses of action:

the planning engine keeps examining the 
design space for alternative transforma-
tions, or

•

when no alternatives exist, the architect 
“softens” the quality-attribute response 
of one or more scenarios.

DesignBots tackles these aspects by com-
plementing the HTN planning formulation 
with multiagent technology and a mixed-
initiative modality of interaction.

The DesignBots approach
DesignBots is a multiagent framework that 
supports planning-based design assistance. 
The framework divides the architectural 
knowledge into agents, referred to as design-
bots. Different types of designbots have com-
petencies in different qualities (for example, 
performance-oriented agents and modifi-
ability-oriented agents). This view captures 
the usual division of expertise regarding 
quality-attribute design techniques.1 The 
framework also receives two inputs: an ini-
tial architecture and a weighted list of qual-
ity-attribute scenarios for that architecture. 
Design alternatives to improve the initial ar-
chitecture are expected to emerge from the 
cooperative work of all the agents (along 
with the architect). 

Figure 2 (see p. 70) shows the main 
DesignBots workflow. During setup, each 
designbot is configured with a reasoning 
framework and architectural tactics and 
patterns as PAD has prescribed. The agents 
process their respective scenarios to derive 
goals and then rely on a HTN planning en-
gine to generate architectural transforma-
tions. A special agent called a mediator 
combines the designbots’ plans into a global 
transformation. The designbots’ goals are 
prioritized according to the scenarios’ rel-
evance for the system to balance the indi-
vidual plans’ effects on the architecture. 
Once candidate transformations are avail-
able, the architect can select any of them 
and proceed to modify his or her architec-
ture. This exploration continues until the ar-
chitect achieves a design that satisfies his or 
her expectations.

Even with PAD, agents can’t make certain 
decisions, simply because the agents cannot 
have complete knowledge (or enough evi-
dence) to prefer one option over others. Usu-
ally, architects are good at solving certain 
parts of a problem on the basis of their ex-
perience (for example, trade-off resolution, 
preferences for pattern variants, and business 
considerations), although they’re not always 
able to provide a rule for their decisions. 
For this reason, DesignBots implements a 

•

Design alternatives to improve 

the initial architecture  

are expected to emerge  

from the cooperative work  

of all the agents (along  

with the architect). 
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mixed-initiative planning modality that puts 
the architect in the search loop. As long as 
the architect makes the principal decisions, 
the planning engine can consider subsidiary 
decisions for the plans as well as ensure a 
correct application of patterns. For instance, 
if the planning engine detects a problematic 
component dependency, it would show the 
architect a list of available patterns for break-
ing the dependency. Once the architect picks 
a particular pattern, the engine can continue 
the search on the basis of that pattern.

Later, we’ll explain the “constructive” 
aspects of our planning system when ex-
ploring modifiability and performance al-
ternatives. A simplified battlefield con-
trol system (BCS), adapted from the 
work of Rick Kazman and his colleagues, 
illustrates the approach.5 BCS involves a 
central commander and a collection of army 
units (for example, troops, tanks, planes, 
sensors, and maps). The initial architecture 
follows a client-server pattern4 in which 
the commander acts as the server and the 
units are its clients, either making requests 
or updating the commander’s database. 
Internode communication occurs through 
messages sent via a shared communication 
channel. All these components display their 
computations in a graphical interface.

The architectural model   
and quality-attribute goals
Architectures are commonly represented 
as graphs of interacting components. This 
view is supported by architectural notations 
known as architectural description lan-
guages (ADLs). For DesignBots, we’ve de-
fined an ADL called ADLite that gives a ba-
sic vocabulary of components, connectors, 
and responsibilities. The main units of com-
putation are the components (processes, cli-
ents, servers, and repositories). Connectors 
model pathways of interaction between com-
ponents (procedure calls, events, and access 
to shared data). Responsibilities capture ap-
plication-specific functions that the architect 
assigns to components. In addition, ADLite 
elements can be annotated with properties. 
An architectural transformation is meant 
to change the actual configuration of com-
ponents, connectors, and responsibilities. A 
special translator compiles ADLite specifi-
cations into world-state facts. Figure 3 shows 
the BCS architecture in ADLite and the 
corresponding HTN script. We simplified 
ADLite’s ADL constructs to facilitate the 
analysis and transformation of architectural 
models. However, architectures expressed in 
ADLite can be equivalently specified with 
other notations such as UML2 or Acme.

A list of scenarios accompanies the in-
put architecture. A quality-attribute sce-
nario captures a textual story of (desired) 
system usage. Each scenario must involve 
a single quality and a response level (for 
example, throughput for performance and 
cost of changing components for modifi-
ability). Two scenarios elicited for BCS ap-
pear at the bottom of Figure 3 (along with 
initial estimates of responses). The archi-
tect determines a ranking for the scenarios 
and distributes them among the designbots 
according to target quality. Let’s assume 
Designbot 1 is a specialist in modifiability 
and Designbot 2 is a specialist in perfor-
mance, and both are set to BCS Scenarios 1 
and 2, respectively. Let’s also consider that 
Scenario 1 is more important for the archi-
tecture than Scenario 2.

The designbots employ architectural 
scopes to analyze the scenarios via reason-
ing frameworks. A scope isolates the area 
of the architecture affected by a scenario. 
We added scopes to PAD interpretation and 
evaluation to narrow the planning engine’s 
world state and to help designbots better de-
rive the goals they’re pursuing. Identifying 
scopes requires the architect’s cooperation. 
He or she must specify the responsibilities 
implied by the scenario and then execute 
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• Allocation of quality-attribute scenarios to the designbots (Step 1)
• Analysis of individual scenarios to determine suitable goals and tactics (Step 2)
• Execution of the planning process at the designbots (Steps 3 & 4)
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Figure 2. Flow of activities in the DesignBots framework. The architectural description and its quality-attribute scenarios 
are compiled into planning problems. The hierarchical task network (HTN) planning engine tries to find plans that solve the 
problems. During the planning process, the engine can call the user (architect) for intervention. The final plans are merged in 
the form of architectural transformations.
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algorithms (provided by the framework) to 
traverse the architecture and create a view 
(the scope) containing the components that 
are related to the responsibilities. Once the 
scope is determined, the reasoning frame-
work runs its quality-attribute analysis as 
usual. DesignBots implements two reason-
ing frameworks: a queuing model for evalu-
ating performance and a dependency-chain 
model for evaluating modifiability. (A rea-
soning framework is considered here as a 
black-box library for computing scenario 
responses.) During analysis, the compo-
nents, connectors, and responsibilities par-

ticipating in the scope are annotated with 
quality-related properties.

On the basis of the scope information, 
screening rules decide which reasoning-
framework parameters should be manipu-
lated to affect the scenario response.2 Specif-
ically, each designbot applies these rules to 
establish a list of candidate tactics and a net-
work of goals (that is, tasks) for its scenario. 
From these tactics, the architect chooses 
one tactic per scenario as the driving force 
for further task-network refinements via 
planning.

For example, in the case of Scenario 1 

for modifiability, Designbot 1 calls a depen-
dency-chain reasoning framework to com-
pute the cost of changing the sensors. In 
short, the interpretation considers a graph 
with three types of elements: primary nodes, 
secondary nodes, and the links among them. 
A primary node is a component whose re-
sponsibilities are directly affected by the 
specific change. A secondary node is a com-
ponent that interacts with a primary node. A 
link is a connector through which changes 
can propagate from primary to second-
ary nodes. Each node, whether primary or 
secondary, is characterized by several cost 

#goals: [ // According to scenarios #1 and #2 in BCS
#tasks: [  

#state: [ 

// Available types of components for BCS 
componentTemplate(tFighter). 
hasResponsibility(tFighter,executeOrder,public). 
hasResponsibility(tFighter,provideVisualizationData,public). 
hasResponsibility(tFighter,getOrder,public). 
hasResponsibility(tFighter,reportToCommander,public). 
hasPort(tFighter,guiPort). 
providesInPort(tFighter,guiPort,provideVisualizationData). 
hasPort(tFighter,unitPort). 
providesInPort(tFighter,unitPort,executeOrder). 
providesInPort(tFighter,unitPort,getOrder). 
providesInPort(tFighter,unitPort,reportToCommander). 
requiresInPort(tFighter,unitPort,storeInformation). 

componentTemplate(tCommander).   // Template for commander
hasResponsibility(tCommander,storeInformation,public). 
hasResponsibility(tCommander,processInformation,private). 
hasPort(tCommander,guiPort). 

componentTemplate(tSensor).  // Template for sensors 
hasResponsibility(tSensor,reportToCommander,public). 
hasResponsibility(tSensor,acquireRawData,private). 
componentTemplate(tGuiPanel).  // Template for guiPanel

hasResponsibility(tSensor,displayData,public). 
componentTemplate(tComChannel). // Template for comChannel  

  // Template for fighters

// Responsibilities for BCS 
responsibility(provideVisualizationData,'Provide data for …'). 
responsibility(reportToCommander,'Send information to …'). 
responsibility(acquireRawData,'Acquire raw data from devices …'). 
responsibility(executeOrder,'Execute an order from …'). 
responsibility(storeInformation,'Store information items that …'). 
...

// BCS architectural model (components and connectors) 
architecturalModel(bcsInitial). 
component(bcsInitial,sensor1,tSensor), 
component(bcsInitial,sensor2,tSensor), 
component(bcsInitial,commander,tCommander), 
component(bcsInitial,fighter1,tFighter), 
component(bcsInitial,fighter2,tFighter), 
component(bcsInitial,fighter3,tFighter), 
component(bcsInitial,guipanel,tGuiPanel), 
component(bcsInitial,comChannel,tComChannel), 
connector (bcsInitial,comChannel,sensor1), 
connector (bcsInitial,comChannel,sensor2), 
connector (bcsInitial,comChannel,sensor3), 
connector (bcsInitial,comChannel,commander), 
connector (bcsInitial,guiPanel,commander), 
connector (bcsInitial,guiPanel,fighter1), 
connector (bcsInitial,guiPanel,sensor1) 
...

]. // End HTN state

n1: checkDependencyChain(sensor1,comChannel, dataServices),   // For modifiability
n2: checkDependencyChain(sensor2, comChannel, dataServices),   // For modifiability
n3: deferBindingTime(tSensor, runtime),   // For modifiability
n4:n4: reduceComputationalOverhead(tFighter, comChannel), // For performance
n5: reduceComputationalOverhead(comChannel, commander) // For performance

]
#order: [n1 before n3, n2 before n3, n1 before n4, n2 before n4, n4 before n5]   ]. 

#          Main quality  Scenario description     Estimated measure

1 Modifiability   The system administrator adds a new type of sensor to the  Average cost change = 55% 
   network, and the architecture should take account of it.

2 Performance   The number of fighter and sensor nodes increases, and the system Average throughput = 10% 
   should keep the level of service bounded.   Average latency = 0.65 msec 
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Figure 3. Initial architecture of and quality-attribute scenarios from our example battlefield control system. The graphical model 
of components and connectors in ADLite (on the left) becomes a set of facts for the world state. The textual scenarios (at the 
bottom) lead to a network of goals. The world-state facts and the goals are the inputs to the HTN planning algorithm.
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properties, whereas each link is assigned to a 
change-propagation probability. A weighted 
sum over the scope elements gives the total 
cost as the scenario response. Looking at the 
response for Scenario 1 (see the table in Fig-
ure 3), the architect would judge that a value 
above 50 percent isn’t good. Then, screening 
rules would point out a problematic depen-
dency chain from the sensors to the com-
mander. To minimize the cost of change, 
Designbot 1 can suggest the tactic of insert-
ing an intermediary between the sensors and 
other components. Here, the rationale is that 
the fewer components reached by the change, 
the less effort required to support it. So, we’d 
expect a better modifiability response. Anal-
ogously, Designbot 2 suggests the tactic of 
keeping the communications latency under 
a specific value to control Scenario 2’s per-
formance response. At last, the designbots 
will infer their goals by relating the quality-
attribute analysis results to the components 
and connectors within their scopes. Actu-
ally, when used in conjunction with scenar-
ios, goal-based networks are useful for di-
recting design efforts. Figure 3 shows a task 
network inferred for the two BCS scenar-
ios. (Because of space limitations, we can’t 
provide the whole analysis process through 
which the designbots arrive at these goals.) 
We can generate ordering constraints on the 
basis of scenario priorities.

Tactics and architectural patterns
The designbots rely on a set of architectural 
patterns and mechanisms—that is, design 
elements with different levels of granular-
ity that serve to make tactics concrete.1,4 An 
architectural mechanism is fine grained and 
implements a single tactic, whereas an ar-
chitectural pattern is coarse grained and 
usually encapsulates one or more tactics at 
the same time. When mapped to the HTN 
domain, architectural patterns and mecha-
nisms can range from basic actions (creation 
and deletion of components or allocation of 
responsibilities) to more complex ones (del-
egation of responsibilities or insertion of a 
blackboard as intermediary). The bottom 
of Figure 4 shows scripts for basic mecha-
nisms. We can write more elaborate mecha-
nisms and patterns on top of basic ones un-
til they reach the level of tactical tasks. The 
top of Figure 4 shows examples of compos-
ite scripts. In particular, the thread starts with 
the tactic of breaking the dependency chain 
and the high-level task checkDependencyChain 
(?primary, ?secondary, ?dependency). The first two 

goals in Figure 3 (for Scenario 1 in BCS) are 
instances of that schema.

The arrows in Figure 4 indicate how de-
composition proceeds. Initially, the task check-
DependencyChain() verifies whether the archi-
tect wants to act on  the dependency between 
two designated components. According to 
the mixed-initiative modality, user-query 
tasks permit information gathering at plan-
ning time (@selectOption(), @warning(), and  
@getInput()). The task @selectOption() displays a 
GUI panel and asks the architect for a de-
cision. If the architect enters a positive an-
swer, the next task is to effectively break the 
dependency with an intermediary. If not, the 
system sends a warning message to the GUI 
panel. There are various implementations for 

the intermediary following this tactic. The 
first option would replace the actual connec-
tor with a new one that confers weak cou-
pling; the second option would insert a new 
component to bridge the components. If the 
architect selects the latter option, the tactic 
is implemented by means of the Forwarder-
Receiver pattern.4 This pattern provides 
transparent interprocess communication 
(IPC) within a peer-to-peer interaction model. 
The top-level method applyForwarderReceiver() 
specifies the arrangement of forwarder and 
receiver roles as well as their responsibili-
ties. Subsequent methods and operators pro-
vide implementation details for the pattern.

planning for design   
alternatives with SHOp2
The designbots yield control to the plan-
ning engine to get plans for their task net-
works. This engine uses a SHOP2-like algo-
rithm,3 generating the steps of a plan in the 
same order those steps are to be executed. 
We took SHOP2 mainly because of its per-

formance and substantial expressive power. 
As in SHOP2, when the planning engine is 
decomposing a task network, methods can 
specify subtasks that are just partially or-
dered. This way, the engine (and the archi-
tect) has freedom to decide the tasks to work 
on, and task precedence is enforced only 
when necessary. A sketch of our algorithm 
dbotsSHOP2 appears in Figure 5. This al-
gorithm takes as inputs an initial state S (the 
designbot’s scope), a task network Goals, the 
name of a SelectedTactic, and a domain D. Ba-
sically, dbotsSHOP2 is a loop that picks a 
task t in Goals that has no predecessors and 
searches for reductions <primTask, subtasks> 
for that task. The termination conditions 
are either failure or no more goals. If Goals is 
empty, dbotsSHOP2 returns a plan outputPlan 
and a modified state Snew to the requesting 
designbot. Although SHOP2 was originally 
designed to avoid backtracking, we equipped 
dbotsSHOP2 with backtracking points at 
which designbots can ask the planning en-
gine for alternative-path decomposition if 
needed. The main backtracking points com-
prise generation of a task network for a tac-
tic, execution of a task without predecessors 
within the network, and selection of HTN 
methods and operators whose preconditions 
hold in the world state.

A graphical interface controls the plan-
ning process. This supports plan construc-
tion through dialogues between the architect 
and the planning engine. Furthermore, the 
architect can selectively enable or disable 
backtracking points, undo or redo capabili-
ties, and perform step-by-step execution at 
configuration time. When the planning en-
gine recognizes a user-query task primTask, 
the system adds the task to todoGUIList and 
the planning engine suspends treating the  
successors of primTask. Through todoGUIList, 
the architect is aware of the decisions pend-
ing for the design solution under consider-
ation and can opportunistically answer the 
required tasks. As long as the planning 
engine finds tasks ready for execution, it 
keeps processing the task network.

So far, we’ve talked about how a design-
bot pursues one quality-attribute scenario 
at a time. To account for quality-attribute 
trade-offs, the framework must handle in-
teractions among goals and their plans from 
a unified perspective. The mediator comes 
with two techniques to coordinate design-
bots’ activities. 

One technique is to order the goals and 
solve them linearly. This technique assumes 

The designbots rely on a set  

of architectural patterns  

and mechanisms—that is, 

design elements with different 

levels of granularity that serve 

to make tactics concrete.
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#method:  checkDependencyChain( ?primary, ?secondary, ?dependency ) ->// Starting method for applying the tactic 
                   #pre: [ someDependency(?primary, ?secondary) ]
                   #applyWhen: [ tacticChosen(insertIntermediary), directive(insertIntermediary, reduceNumber,?primary), primaryComponent(?primary),  
                                   secondaryComponent(?secondary), equal(?dependency, dataServices) ]
           #body: [ 
                #tasks: [ 
                       n1: #eval: @selectOption("Can the dependency: "+?primary+" - "+?secondary +" be (further) broken?", [yes,no], ?yesno), 
                       n2:  breakDependency(?primary, ?secondary, ?dependency, ?yesno)     ] 
                #order: [ n1 before n2 ] ]  #end-method.

#method:  breakDependency ( ?primary, ?secondary, ?dependency, ?break ) ->
           #pre: []
           #applyWhen: [ tacticChosen(insertIntermediary), directive(insertIntermediary, reduceNumber, ?primary), primaryComponent(?primary),  
                                   secondaryComponent(?secondary), equal(?break, no)     ]
           #body: [ 
                #tasks: [ 
                       n1: #eval: @warning("Breakup of dependency: "+?primary+" - "+?secondary+" may not be achieved?")     ]
                #order: [ ]  ]  #end-method. 

#method: breakDependency( ?primary, ?secondary, ?dependency, ?break ) -> // Alternative method for task “breakDependency” 
           #pre: [ ]
           #applyWhen: [ tacticChosen(insertIntermediary), directive(insertIntermediary, reduceNumber, ?primary), primaryComponent(?primary),  
                                    secondaryComponent(?secondary), equal(?break, yes)]
           #body: [ 
                  #tasks: [
                       n1: #eval:  @selectOption("What strategy is better for you?", [lowerCouplingConnector,intermediaryComponent], ?option), 
                       n2: insertIntermediaryFor(?primary, ?secondary, ?option) , // Using an intermediary to break the dependency
                       n3: checkDependency(?primary, ?secondary, ?dependency)    ]
                  #order: [ n1 before n2, n2 before n3 ]     ]    #end-method. 

#method:  insertIntermediaryFor( ?primary, ?secondary, ?strategy ) ->
           #pre: [  someDependency(?primary, ?secondary) ]
           #applyWhen: [ tacticChosen(insertIntermediary), equal(?strategy, intermediaryComponent)]
           #body: [ 
                  #tasks: [
                       n1: #eval:  @selectOption("What kind of communication in: "+?primary+" should be tackled ?, [send,receive,both], ?ptype), 
                       n2: #eval:  @selectOption("What kind of communication in: "+?secondary+" should be tackled ?, [send,receive,both], ?stype), 
                       n3:  applyForwarderReceiver(?primary,?ptype, yes) , // Materializing the tactic with a forwarder-receiver pattern
                       n4:  applyForwarderReceiver(?secondary,?stype, yes)     ]
                  #order: [ n1 before n3, n2 before n4 ]   ]    #end-method.

method:  applyForwarderReceiver(?peer, ?variant, ?continue)  ->
           #pre: [  component(?peer)  ]
           #applyWhen: [ equal(?variant, send), equal(?continue, yes)  ]
           #body: [ 
                  #tasks: [
                       n1: #eval: @selectResponsibilities("Responsibilities for sending data/services in peer: "+?peer, ?list), 
                       n2: defineForwardersForPeer(?peer,?list, yes), 
                       n3: defineReceiversForPeer(?peer,?list, yes), 
                       n4:  updateInteractionsOfPeerWithRest(?peer, ?list) ]
                  #order: [ n1 before n2, n1 before n3, n2 before n4, n3 before n4 ]   ]     #end-method. 
…

Tactics and patterns 

#method:  addComponent( ?name, ?creation ) ->
     #pre: [ equal(?creation, new), not(component(?name, ?anyTemplate) ]
          #body: [ 
                  #tasks: [ 
                       n1: #eval: @getIntput  ("Provide template for component: "+ ?name, ?template), 
                       n2: createComponent(?name, ?template)     ]
                  #order: [ n1 before n2 ]      ]  #end-method. 

#operator: createComponent( ?name, ?template ) ->
     #pre: [ not(component(?name, ?template), componentTemplate(?template), architecturalModel(?current) ]
     #add: [ component(?current, ?name, ?template) ]
     #delete: []  #end-operator. 

#operator:  createComponent( ?name, ?template ) ->
     #pre: [ not(component(?name, ?template), not (componentTemplate(?template)), architecturalModel(?current) ]
     #add: [ componentTemplate( ?template), component(?current, ?name, ?template) ]
     #delete: []  #end-operator.

#operator:  moveResponsibility( ?responsibility, ?target, ?source ) ->
     #pre: [ component(?target,?someTemplate), component(?source, ?otherTemplate), architecturalModel(?current) ,  
                 hasResponsibillity(?responsibility, ?someTemplate, ?any1), not(hasResponsibility(?otherTemplate, ?responsibility, ?any2)) ]
     #add: [ hasResponsibility(?otherTemplate, ?responsibility, ?any2) ]
     #delete: [ hasResponsibility(?someTemplate, ?responsibility, ?any1) ]  #end-operator. 
…

Architectural mechanisms 

…

Figure 4. HTN scripts for tactics and architectural patterns. The code at the bottom contains scripts for basic architectural 
mechanisms, and the code at the top shows composite scripts for tactics and patterns. The arrows illustrate the task 
decomposition structure.
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that an architect (or a computer) can achieve 
the goals sequentially, in any order. This as-
sumption relies on the notion of quality driv-
ers.1 When selecting a transformation, the 
mediator will prefer plans associated with 
scenarios marked as drivers over the rest of 
the plans. Figure 6a shows the results of this 
strategy in BCS, applying the modifiability 
and performance solutions sequentially. Al-
though transformations aren’t always com-
mutative, this strategy performs well and is 
straightforward to implement. However, this 
strategy has a drawback: early commitment 
to a solution that focuses on a specific qual-
ity can hinder the consideration of better so-
lutions later (even with backtracking).

The second technique is to merge groups 
of plans for different goals. This technique 
relies on a plan-merging heuristic6 based on 
special categories of interactions among the 
actions in the designbots’ plans. Unlike the 
previous strategy, the mediator constructs 
several equivalence classes to combine plans 
for different qualities into a joint transforma-
tion. Figure 6b shows the BCS architecture 
after the mediator merged the modifiability 
and performance solutions. According to 
the table in Figure 6, this strategy is closer 
to what architects do when faced with trade-
offs among solutions. Nonetheless, the heu-
ristic is more complex to implement (for ex-
ample, identifying interactions is domain 
specific), and it doesn’t guarantee a success-
ful combination of plans. If this happens, 
the mediator might replace specific plans by 
asking a designbot for another plan for the 
same goals.

Evaluation
As a proof of concept, we developed a 
DesignBots prototype and conducted de-
sign-related case studies. The main objec-
tive was to demonstrate that we can model 
PAD with a planning approach. The suc-
cessful criterion was then to exercise the 
search engine by generating a set of solu-
tions with trade-offs. Because the focus was 
the framework itself rather than the amount 
of architectural knowledge embedded in 
the agents, we specified tactics and patterns 
to the extent necessary to produce differ-
ent solutions. At this stage, rather than run-
ning experiments with architects using the 
tool, we performed a postmortem analysis 
in which the case studies provided material 
to reproduce design situations with Design-
Bots. That is, initial architectures and sce-
narios fed the tool, and we configured the 

ALGORITHM dbotsSHOP2(S, D, SelectedTactic, Goals): < Plan , Snew > {
 outputPlan ← Ø  pendingTasks ← Ø
 tasksAvailable ← {t ∈ Goals: no other task in Goals precedes t}
 WHILE ( Goals is not empty ) {
  t ← choose nondeterministically some task in tasksAvailable that is not in pendingTasks 
      // Backtracking point
  < primTask , subtasks > ← findReduction(S, SelectedTactic, t, D)
 IF (primTask is NULL) RETURN FAILURE // The task is either unknown or it cannot be handled
 ELSE IF (primTask is a primitive task) { // Backtracking point
  select < op , �> so that op is a ground instance of an operator in D, θ is a
  substitution that unifies {head(op),primTask} and makes S satisfies preconditions(op)
  IF (θ is not successful) RETURN FAILURE // No operator matches this task
  ELSE { // This part executes the operator and updates the world state
   S ← S - deleteList(op) U addList(op)
   outputPlan ← append(outputPlan,head(op))
   Goals ← applySubstitution (Goals – { primTask } U subtasks , θ) constraining
     each task in subtasks to precede those tasks that t preceded in Goals
   handle " protection requests" for logical atoms
  }
 }
 ELSE IF (primTask is a built-in task) {
  IF (primTask needs to be answered by the user) {
   send primTask to todoGUIList for execution // Hook for tasks requiring mixed-initiative
   pendingTasks = pendingTask U { primTask }
  }
  ELSE { // The task has been answered/processed
   θ ← getResult(primTask, todoGUILIst)
   IF (θ is not successful) RETURN FAILURE // The user’s answer was negative
   ELSE Goals ← applySubstitution (Goals – { primTask } , θ)
  }
 }
 // Those built-in tasks answered (or processed) are removed from pending status
 pendingTasks ← updateReadyTasks(pendingTasks, todoGUIList)
 // This part selects the tasks ready for the next iteration
 tasksAvailable ← {t ∈ Goals: no other task in Goals precedes t}
 } // end while
 RETURN (< outputPlan, S > )
} // End dbotsSHOP2

// It applies successive decompositions until finding the first primitive or built-in task
// whose execution will modify the world state
FUNCTION findReduction(S, Tactic, initialTask, D): < Task , Decomposition > {
 current ← initialTask  decomp ← Ø
 WHILE (current is not primitive or built-in task) {
  select < met , � > so that met is a ground instance of a method in D, θ is a substitution
  that unifies {head(met), primTask}, met aligns with Tactic and makes S satisfies
  preconditions(met) // Backtracking point
  IF (θ is not successful) RETURN FAILURE // No method matches this task
  ELSE { // This part executes the method and computes a decomposition for the task
   decomp ← decomp – { current } U body(met) constraining each task in body (met) to
     precede those tasks that current preceded in decomp
  }
 }
 RETURN (< current, decomp >)
} // End findReduction

Figure 5. The HTN planning algorithm used by the designbots. The main part of the 
algorithm (at the top) handles the goals (tasks) that are directly achievable by HTN 
operators or the user-query tasks. The second part (at the bottom) decomposes 
nonprimitive goals by means of HTN methods.
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agents with adequate tactics and patterns.1,4 
Then, we compared the DesignBots solu-
tions against the human designs.

We built the prototype on top of a Java 
framework that permits the construction of 
designbots with planning and architectural 
design capabilities. An ADLite toolkit sup-
ports the visual editing of components, con-
nectors, responsibilities, and scenarios. As 
for planning, we provided default imple-
mentations of both the dbotsSHOP2 and 
merging algorithms. On this basis, we car-
ried out three case studies involving modifi-
ability and performance concerns. Initially, 
the BCS case study allowed us to deploy and 
tune the DesignBots infrastructure. Then, 
we applied DesignBots in a moderate-size 
project for a software design course: we 
asked graduate students to produce solu-
tions for the design of a home-alarm mon-
itoring system (HAS). Finally, in the third 
case study, we tested DesignBots in the con-
text of a telecommunications project as part 
of consulting activities made for the com-
pany Delsat Group.

As a sample of the case studies, the HAS 
case study comprised three modifiability 
and three performance scenarios, which 
were assigned to six different designbots. 

When exploring alternatives, a notable de-
sign aspect was the recommendation of a 
blackboard to coordinate action tasks, diag-
nosis, and high-level policies.4 Among other 
transformations for the HAS architecture, 
the designbots helped us in architecting for 
support for adding new sensor types, con-
figuration of reactive and diagnosis func-
tionality, timing issues for reactive actions, 
and personalization of action rules. For the 
HAS case study, Table 1 (see p. 76) summa-
rizes the architectural mechanisms speci-
fied for the planning domain and which of 
them were actually selected by the design-
bots to achieve the scenarios. The two right-
most columns of the table show a qualita-
tive evaluation of the solutions applied by 
the designbots. The most relevant optimi-
zation during merging was about relaxing 
the constraints of the blackboard style in 
order to apply a blackboard variant that ac-
counts for performance issues. (The origi-
nal blackboard style is good for reducing 
rippling of changes but may have negative 
consequences on execution times and task 
priorities.)

Deciding the best way to write tactics 
and patterns was a central concern for the 
planning domain. In general, the HTN 

formalism admits many implementations of 
the same concepts. This depends on issues 
such as modularity, the level of the architect’s 
intervention, or default values, among others. 
Because a clear task decomposition helps 
the architect visualize the relationships 
of tactics with patterns, we preferred to 
codify the domain as modularly as possible. 
Furthermore, opportunities for the architect’s 
intervention were included only when this 
would avoid extra planning work. Figure 7 
(see p. 77) presents planning data gathered 
from the case studies.

The planning engine was very useful 
in finding variants for a base solution the 
architects were familiar with and then 
improve that solution’s quality-attribute 
measures. These variants showed structural 
similarities with those developed by people. 
Of the patterns applied by the design-
bots, the architects supervising the case 
studies considered 70 percent correct. We 
observed small differences in component 
configurations when compared to those 
arranged manually by architects. Although 
not a fundamental limitation of the planning 
approach, the fact that ADLite covers only a 
structural view of the architecture somehow 
restricted the analyses and transformations 

(b)(a)

sensor1

 Scenario Initial estimations Sequential transformation Merged transformation

 1 Average cost change = 55% Average cost change = 38% Average cost change = 42%

 2 Average throughput = 10% Average throughput  = 12% Average throughput  = 18%
  Average latency = 0.65 msec Average latency = 0.61 msec Average latency = 0.45 msec
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Figure 6. Application of modifiability and performance solutions for BCS: (a) sequential and (b) merged. The two solutions 
have different trade-offs regarding the scenarios’ performance and modifiability responses, as shown by the cost, latency, and 
throughput figures in the table.
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derivable from it (for example, ADLite can’t 
model a dynamic architectural view for 
performance).

Analyzing the HAS and Delsat case 
studies, we found that the planning en-
gine elaborated more valid solutions for the 
HAS architecture and provided fewer and 
flawed solutions for the Delsat architecture. 
In addition to these case studies’ different 
domain and problem sizes, the level of ex-
pertise required for each case study’s design 

explains that finding. The former case study 
involved novice architects, whereas the 
latter involved experts in telecommunication 
systems. Even after equipping the design-
bots with sufficient tactics and patterns, they 
weren’t always capable of emulating design 
experience. To deal with this technical hitch, 
the planning engine must incorporate more 
heuristic knowledge from experts.

The alternatives that the designbots built 
clearly influenced the quality-attribute an-

alyses that set the goals. The relationships 
between architectural structures and qualities 
weren’t always well reflected in the human 
designs. Because PAD is at the framework’s 
core, an advantage of DesignBots is that it 
makes those relationships more visible in 
the resulting designs. The “constructive” 
procedures of HTN planning and the pos-
sibility of backtracking are two factors that 
sustain this assistance. Nonetheless, owing 
to the limited GUI and the lack of design 

Table 1. Alternatives generated for the home-alarm monitoring system case study.

Scenarios

Main  
design 
issue

Architectural tactics  
and patterns available to the 
designbots

HTN planning system Response analysis*

Supported Suggested Choice
Sequential 
solution

Merged 
solution

M1 Support 
adding new 
types of sen-
sors within 
the device 
layer.

1. Separate the sensor interface 
from its implementation

Yes Yes Within 
option 2, the 
first mecha-
nism was 
selected.

+ +

2. Insert an intermediary between 
the devices and the data they 
produce or consume 

 - AbstractDataRepository
 - DataIndirection
 - PublisherSubscriber

Yes Yes

M2 Configuration 
of reactive 
and diagno-
sis function-
ality should 
be easy for 
the user.

1. Provide customization of devices  
and their interactions

 - PublisherSubscriber
 - Façade
 - ClientDispatcherServer

Yes Yes Within 
option 1, the 
first mecha-
nism was 
selected.

+ +/–

2. Defer binding time
 - ConfigurationFiles
 - UniformProtocol

No No

M3 New config-
uration rules 
should be 
made avail-
able for the 
devices.

1. Provision of some kind of  
interpreter

 - RuleBasedEngine

Yes Yes Option 1 
was the only 
available 
one.

+/– –

P1 Fulfill the 
deadlines 
associated 
with the pro-
duction and 
consumption 
of data.

1. Define scheduling policy
 - PriorityBasedDispatcher
 - RoundRobinScheduling

Yes Yes Within 
option 1, the 
first mecha-
nism was 
selected.

+/– +

P2 The level of 
response 
should 
be kept 
bounded.

1. Define scheduling policy
 - PriorityBasedDispatcher
 - RoundRobinScheduling

Yes Yes Within 
option 1, the 
first mecha-
nism was 
selected.

+/– +/–

2. Manage event rate 
 - NotificationDispatcher

Yes No

P3 The vocabu-
lary of noti-
fications can 
be updated, 
but main-
taining the 
above level of 
response.

1. Define scheduling policy
 - PriorityBasedDispatcher
 - RoundRobinScheduling

Yes Yes Within 
option 1, the 
first mecha-
nism was 
selected.

+/– +

*Symbols +, –, and +/– reflect the relative variations in the scenario responses when applying two solutions, using the sequential and merged strategies, respectively.

Trade-off

Trade-off

Trade-off

Trade-off
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rationale about what the planning engine 
was doing, the tool demanded considerable 
intellectual effort from the architects to 
understand the exploration.

Software architects are good at produc-
ing creative solutions, and they often 

use their experience to decide on quality- 
attribute trade-offs. On the other hand, 
recent advances in both planning and ar-
chitectural techniques enable automating 
design tasks that had been reserved for hu-
mans. Planning-based assistants can aug-
ment architects’ capabilities by reminding 
them about design constraints, pointing 
out promising directions to explore, and 
attending to implementation details of 
architectural patterns. Specifically, the 
contribution of the HTN planning model 
proposed for DesignBots is that of con-
sidering quality-attribute goals as drivers 
for the process in order to represent archi-
tectural tactics and patterns as hierarchi-
cal procedures whose function is to meet 
these goals. 

Overall, this work reinforces the argu-
ment that AI-based tools can facilitate the 
design of architectures driven by quality-
attribute issues. To enable the adoption of 
such tools, we must develop better con-
trol strategies and heuristics to guide the 
selection and instantiation of architec-
tural patterns. Furthermore, we need em-
pirical data about tool performance and 

users’ acceptance. Provided that support 
is present, the integration of agents with 
planning techniques holds promise for a 
new generation of tools that can make ar-
chitectural design less complex and more 
productive.
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FIgure 7. Planning data gathered from the home-alarm system case study. Using the problem and domain specifications, 
the graphs give an idea of the complexity of the planning process. About two-thirds of the valid solutions were oriented to 
modifiability. The architects considered only three or four of these solutions acceptable.
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