1 ET_CSDLL: A DLL for the Computation of Reference and Crop

- 2 Evapotranspiration
- 3 Marcello Donatelli^{*}, Claudio O. Stöckle, Roger L. Nelson, Gianni Bellocchi
- 4
- 5 M. Donatelli, and G. Bellocchi, Research Institute for Industrial Crops, Bologna, Italy;
- 6 C.O. Stöckle, and R.L. Nelson, Biological Systems Engineering Department, Pullman,
- 7 WA, USA
- 8 *Corresponding author (<u>m.donatelli@isci.it</u>)
- 9

10 ACKNOWLEDGEMENTS

- 11 The authors gratefully acknowledge Marco Acutis of the University of Milan (Italy) for
- 12 his comments and the software evaluation.
- 13 Research under the auspices of the Project SIPEAA (<u>http://www.isci.it/sipeaa</u>), paper
- 14 no. 2. Project supported by MiPAF.
- 15

1 ETCS_DLL: A DLL for the Computation of Reference and Crop

- 2 Evapotranspiration
- 3

4 ABSTRACT

- 5 ET_CSDLL is a MS Windows library containing routines to estimate reference crop
- 6 evapotranspiration (ET_0) following the guidelines of the FAO Irrigation and Drainage
- 7 Paper No. 56 for implementing the Penman-Monteith (P-M) equation. In addition, the
- 8 Priestley-Taylor equation is also included for calculating ET_0 for conditions where
- 9 meteorological data are insufficient to apply the P-M equation. The DLL (dynamic link
- 10 library) can be used in MS Excel spreadsheets and in code developed using a visual MS
- 11 Windows programming language. Examples are shown to illustrate the use of the DLL
- 12 in MS Excel and MS Visual Basic applications.

1 One of the main goals of modelers in the area of agro-ecology is to advance in the 2 development and application of models that represent the systems under study. To help 3 reaching that goal, modular approaches are recommended (Jones et al., 2001), thus 4 facilitating more systematic model development, documentation, maintenance, and 5 sharing. Evapotranspiration (ET) – i.e. the water removed as vapor from the soil-plant system by 6 7 direct evaporation and plant transpiration - is a major variable in irrigation design and 8 scheduling, watershed hydrology, mechanistic crop growth models and other models 9 that attempt to simulate the soil water budget. 10 Reference crop evapotranspiration (ET_0) refers to water evaporation from a unit ground 11 area completely covered by a 0.12-m grass, healthy and unstressed, and with ample 12 water supply. Evaporation from such a surface can be partitioned into soil evaporation 13 and plant transpiration from a unit ground area occupied by a crop of interest. 14 One-dimensional equations based on aerodynamic theory and energy balance, the so-15 called combination equations, have proved useful for ET estimation because they take 16 into account both the canopy properties and meteorological conditions. The Penman-17 Monteith (P-M) equation (Monteith, 1965) is a biophysically-based combination 18 equation that has become popular and shown to be a good estimator of ET for a wide 19 variety of climatic conditions (Allen et al., 1998). 20 The Priestley-Taylor (P-T) equation for the calculation of ET_0 (Priestley and Taylor, 21 1972) is a simpler, semi-empirical model that has been successfully applied in many 22 areas (e.g., Jamieson, 1982; Steiner et al. 1991; Rana, 1998; German, 1999). The P-T 23 model is useful for conditions where P-M cannot be applied due to the lack of required 24 weather data.

Routines for ET_0 calculation using both P-M and P-T have been implemented in several crop growth and hydrologic models, generally with minor attention to code 1 transparency. The consequence is the re-implementation of the approach every time an

- 2 estimate of ET_0 is needed in one application. Therefore, we chose to develop
- 3 ET_CSDLL, a public DLL (dynamic link library) that incorporates all relevant aspects
- 4 of daily *ET* computation, and which can be plugged into existing application software
- 5 running on a Microsoft Windows-based operating system.
- 6

7 BACKGROUND

- 8 The set of equations coded in the DLL are intended to calculate ET_0 (mm day⁻¹) using
- 9 the P-M equation as implemented in the FAO Irrigation and Drainage Paper No. 56
- 10 (Allen et al., 1998). ET_0 is also calculated using the P-T equation, following the
- 11 implementation of Steiner et al. (1991).
- 12 Potential crop evapotranspiration (*ET_P*), assuming disease-free, well-fertilized crops,
- 13 grown in large fields under optimum soil water conditions is estimated as:

$$14 \qquad ET_P = K'_c ET_0 \tag{1}$$

- 15 with K'_c fluctuating from a value of 1.0 at a leaf area index (*LAI*, m² m⁻²) equal to zero 16 (no crop) to a value K_c for a full grown crop with *LAI* \geq 3, as given for different crops 17 and climate conditions by Allen et al. (1998):
- 18 $K'_{c} = 1 + (K_{c} 1) \frac{LAI}{3}$ for LAI<3
- 19

(2)

- $20 K'_c = K_c for LAI \ge 3$
- 21 ET_P is partitioned into potential crop transpiration (T_P) and potential soil water 22 evaporation (E_P):
- $23 T_P = ET_P f (3)$
- $24 E_P = ET_P T_P (4)$

1 where f is the fraction of incident radiation intercepted by the crop canopy:

$$2 \qquad f = 1 - exp(-kLAI) \tag{5}$$

3 where k is crop extinction coefficient for incident global solar radiation (unitless). The

4 parameter k typically ranges from 0.35-0.40 for canopies with vertical tendencies to

5 0.55-0.65 for heliotropic crops.

- 6 ET_0 in MJ m⁻² day⁻¹ is computed as:
- 7 FAO Penman-Monteith equation:

8
$$ET_{0} = \frac{s(R_{n} - G) + \frac{VPD \rho C_{p}}{r_{a}}}{s + \gamma \left(1 + \frac{r_{c}}{r_{a}}\right)}$$
(6)

9 - Priestley-Taylor equation:

10
$$ET_0 = \left[1 + \left(PTc - 1\right) \quad VPD\right] \frac{s\left(R_n - G\right)}{s + \gamma}$$
(7)

11 The value of ET_0 in MJ m⁻² day⁻¹ is converted to kg m⁻² day⁻¹ (which is equivalent to 12 mm day⁻¹), dividing it by the latent heat of vaporization (λ , MJ kg⁻¹). Input variables 13 required by the DLL are given in Table 1. Symbols and equations used are described in 14 Table 2.

15

16 APPLICATIONS

17 Public functions are made available in ET_CSDLL. The DLL must be referenced in

18 projects under development that are written using a visual MS Windows programming

19 language (Visual Basic, C++, Delphi, etc.). Examples are provided in the installation

20 package to illustrate the use of the DLL in MS Excel and MS Visual Basic 6.

21

1 MS Excel application

2 The public functions made available in the DLL can be accessed from MS Excel easily,

3 without the need to declare the functions, provided that the DLL was registered. The

4 code can be browsed by opening the VBA editor window of the MS Excel. Inputs and

5 outputs are interfaced in the spreadsheet, as shown in Figure 1.

6

7 MS Visual Basic 6 application

8 MS Visual Basic 6 project allows performing the same computations done by the

9 spreadsheet sample. Access to public functions is allowed by either providing the inputs

10 needed or returning the values requested.

11

12 AVAILABILITY AND FEEDBACK

13 ETCS_DLL is made available free of charge for non commercial purposes. The

14 installation package is available for downloading at: http://www.isci.it/tools. The

15 system requires about 4 MB of hard disk space. Both the techniques implemented and

16 the scientific background are fully documented by the help file. Comments about

17 ET_CSDLL may be sent to <u>agronomy@isci.it</u>.

1 **REMARKS**

2 The DLL for computation of ET_0 , T_P and E_P is a first step towards a commonly-agreed 3 architecture for agronomic/agrometeorological modeling. It serves as a convenient means to support collaborative model development among a large, distributed network 4 5 of scientists involved in creating object-oriented models. It can be used as a submodel 6 of any model, written in any language. Code sharing of the modules significantly 7 increases transparency of the underpinning science. Any improvement in the science 8 can be automatically transferred into the DLL routines. ET CSDLL is consistent with 9 the ET implementation of the cropping systems model CropSyst (Stöckle at al., 2003).

1 **REFERENCES**

- 2 Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration:
- 3 Guidelines for computing crop water requirements. Irr. & Drain. Paper 56. UN-
- 4 FAO, Rome, Italy.
- 5 German, E.R. 1999. Regional evaluation of evapotranspiration in the Everglades. In
- 6 CD-ROM Proc. 3rd International Symposium Ecohydraulics, 13-16 July, Salt Lake
 7 City, USA.
- 8 Jamieson, P.D. 1982. Comparison of methods of estimating maximum
- 9 evapotranspiration form barley crop. N.Z.J. Sci. 25:175-181.
- Jones, J.W., B.A. Keating, and C.H. Porter. 2001. Approaches to modular model
 development Agric. For. Meteorol. 70:421-443.
- 12 Linacre, E. 1992. Climate data and resources: a reference and guide. Routledge,
- 13 London, United Kingdom.
- 14 Monteith, J. 1965. Climate and the efficiency of crop production in Britain. Phil. Tans.
- 15 Res. Soc. London 281:277-329.
- 16 Priestley, C.H.B., and R.J. Taylor. 1972. On the assessment of surface heat flux and
- 17 evaporation using large-scale parameters. Mon. Weat. Rev. 100:81-82.
- 18 Rana, G. 1998. A model of the Priestley-Taylor α coefficient for evapotranspiration
- 19 estimates: the reference crop case in a Mediterranean region. Agr. Med. 128:11-20.
- 20 Steiner, J.L., T.A. Howell, and A.D. Schneider. 1991. Lysimetric evaluation of daily
- 21 potential evapotranspiration models for grain sorghum. Agron. J. 83:240-247.
- 22 Stöckle, C.O., M. Donatelli, and R.L. Nelson. 2003 CropSyst, a cropping systems
- simulation model. Eur. J. Agron. 18:289-307.

2 variables, where inputs are entered and a summary report output is produced.

Input variable	Unit
R_s , incoming solar radiation	MJ m ⁻² day ⁻¹
<i>J</i> , day number in the year	unitless
<i>lat</i> , latitude	deg
z, elevation above see level	m
U_z , wind speed	m s ⁻¹
z_m , height wind speed measurement above ground surface	m
T_{x} , maximum air temperature	°C
T_n , minimum air temperature	°C
T_d , dew-point air temperature [*]	°C
RH_x , maximum relative air humidity	%
RH_n , minimum relative air humidity	%
a, aridity factor	kPa ⁻¹
PTc, Priestley-Taylor constant	unitless

Table 1. Input variables required by the DLL.

* If T_{dew} is set to zero, then $T_d = 0.52T_n + 0.67T_x - 0.009T_x^2 - 2$ (Linacre, 1992)

Agronomy Journal manuscript #A02-0229 submitted 9/6/2002 first revision 2/11/2003

Variable	Unit	Formulation
R_n , net radiation	MJ m ⁻² day ⁻¹	$R_{n} = 0.77R_{s} - \left[1.35\left(\frac{R_{s}}{R_{so}}\right) - 0.35\right] \left(0.34 - 0.14\sqrt{e_{a}}\right)\sigma\left(\frac{T_{Kx}^{4} + T_{Kn}^{4}}{2}\right)$
R_{so} , clear sky solar radiation	MJ m ⁻² day ⁻¹	$R_{so} = max(R_{s}, 0.75R_{a})$
R_a , extraterrestrial radiation	MJ m ⁻² day ⁻¹	$R_a = 0.31831K_{sc}d_r(\omega_s \sin\theta\sin\delta + \cos\theta\cos\delta\sin\omega_s)$
K_{sc} , solar constant	MJ m ⁻² day ⁻¹	$K_{sc} = 108.08$
d_r , inverse relative distance between the earth and sun	unitless	$d_r = 1 + 0.033 \cos(0.0172J)$
ω_s , summer hour angle	rad	$\omega_s = \arccos(-\tan\phi\tan\partial)$
ϕ , latitude	rad	$\phi = 1.74 \text{E-02lat}$
δ , solar declination	rad	$\delta = 0.409 \sin(0.0172J - 1.39)$
σ , Stefan-Boltzman constant	$MJ m^{-2} K^{-1} day^{-1}$	σ=4.903E-09
T_{Kx} , maximum air temperature	K	$T_{Kx}=273.15+T_x$
T_{Kn} , minimum air temperature	K	$T_{Kn} = 273.15 + T_n$
G, soil heat flux	MJ m ² day	G=0 for the 24-h period
γ , psychrometric constant	kPa °C	$\gamma = 0.00163(P/\lambda)$
<i>P</i> , atmospheric pressure	kPa	$P = 101.3[(293 - 0.0065z)/293]^{5.26}$
λ , latent heat of vaporization	MJ kg ⁻¹	$\lambda = 2.501 - 0.002361T_{mean}$
T_{mean} , daily mean air temperature	°C	$T_{mean} = (T_x + T_n)/2$
ρ , atmospheric density	Kg m ⁻³	$\rho = 3.486 \frac{P}{1.01(T_{mean} + 273)}$
C_p , specific heat capacity of moist air	MJ kg ⁻¹ °C ⁻¹	C_p =0.001013
r_a , aerodynamic resistance for the grass reference surface	day m ⁻¹	$r_a = 208/U_2$
U_2 , wind speed at 2 m above ground surface	m day ⁻¹	$U_2 = U_z \frac{4.87}{\ln(67.8z_m - 5.42)}$
r_c , canopy resistance for reference grass	day m ⁻¹	r _c =0.00081
s, slope of the saturation vapor pressure curve	kPa °C ⁻¹	$s = 2503 \frac{exp[(17.23T_{mean})/(T_{mean} + 237.3)]}{(T_{mean} + 237.3)^2}$
		Penman-Monteith: $VPD = e_s - e_a$
VPD, vapor pressure deficit	kPa	Priestlev-Taylor: $VPD = 0.475VPD_{\star}$
		17 777
$e^{\theta}(T)$, saturation vapor pressure	kPa	$e^{0}(T) = 0.6108 \exp \frac{17.27T}{T + 237.3}$
T, air temperature	°C	T_{x} , T_{n} , T_{d}
<i>e_s</i> , daily mean saturation vapor pressure	kPa	$e_{s} = \frac{e^{0}(T_{x}) + e^{0}(T_{n})}{2}$
e_a , actual vapor pressure	kPa	if RH_x and RH_n available: $e_a = \frac{e^0(T_n)(RH_x/100) + e^0(T_x)(RH_n/100)}{2}$ if T_d available: $e_a = e^0(T_d)$
<i>VPD_x</i> , vapor pressure deficit	kPa	$VPD_{x} = \frac{e^{0}(T_{x}) - e^{0}(T_{n})}{1 - a[e^{0}(T_{x}) - e^{0}(T_{n})]}$

Table 2. Components of the Penman-Monteith and the Priestley-Taylor equations.

Agronomy Journal manuscript #A02-0229 submitted 9/6/2002 first revision 2/11/2003 Figure 1

Microsoft Excel - ETCS_dll.xls											
x =											
	A	В	С	D	E F	G	н				
1		INPUT	Excel demo of ETCS_DLL v.1.00			1	OUTPUT				
2	Method	PENMAN MONTEITH					3.9 Reference ET (mm d-1)				
3	DOY	187		Ru		4	.68 Crop ET (mm d-1)				
4	Tx	21.5	°C	L		3	99 Pot Crop Transp (mm d-1)				
5	Tn	12.3	°C			0	.69 Pot Soil Evap (mm d-1)				
6	RAD	22.07	MJ m-2	Abo		122	78 AereoDynamicResistance (s m-1)				
7	Wspeed	2.78	m s-1	~~~~	u.	3	.73 Isothermal LWNR (MJ m-2 d-1)				
8	HumX	84	%			2	.46 LatentHeatVaporization (MJ kg-1)				
9	HumN	63	%			0	.85 % CropInterceptedRAD				
10	WMeasH	10	m			13	26 NetRad (MJ m-2 d-1)				
11	LAI	4	(0-8)			40	.99 PotRad (MJ m-2 d-1)				
12	Kc	1.2	(0.9-1.25)			16	US Daylength (h)				
13	K DT	0.48	(0.4-0.5)			2	156 SVP (kPa)				
14	PIconst	1.26	(1.26-1.3)			0.000	12 SlopeSVP				
15	ArFact	0.08	(0-0.08)			0.00	21 VolHeatCapacity (MJ m-3 C-1)				
10	Lat	50.8	deg			0	CS VPD (KPa)				
1/	Lievation	100	m			1	17 ala humidita anno atlan fantas (unitian)				
10	Idew	0	·L			0	17 air numidity correction factor (unitiess)				
19						1	actual vapour pressure (kPa)				
I I I Foglio1 / Foglio2 / Foglio3 /											
) Eo	ogen - HS										
Pro	Pronto										