## About

210

Publications

32,944

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

2,434

Citations

Introduction

**Skills and Expertise**

## Publications

Publications (210)

Policy-based algorithms are among the most widely adopted techniques in model-free RL, thanks to their strong theoretical groundings and good properties in continuous action spaces. Unfortunately, these methods require precise and problem-specific hyperparameter tuning to achieve good performance, and tend to struggle when asked to accomplish a ser...

Stochastic multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a stochastic reward. Within the context of best-arm identification (BAI) problems, the goal of the agent lies in finding the optimal arm, i.e., the one with highest expected reward, as accurately and ef...

In Reinforcement Learning, the performance of learning agents is highly sensitive to the choice of time discretization. Agents acting at high frequencies have the best control opportunities, along with some drawbacks, such as possible inefficient exploration and vanishing of the action advantages. The repetition of the actions, i.e., action persist...

Uncertainty quantification has been extensively used as a means to achieve efficient directed exploration in Reinforcement Learning (RL). However, state-of-the-art methods for continuous actions still suffer from high sample complexity requirements. Indeed, they either completely lack strategies for propagating the epistemic uncertainty throughout...

Behavioral Cloning (BC) aims at learning a policy that mimics the behavior demonstrated by an expert. The current theoretical understanding of BC is limited to the case of finite actions. In this paper, we study BC with the goal of providing theoretical guarantees on the performance of the imitator policy in the case of continuous actions. We start...

In the sequential decision making setting, an agent aims to achieve systematic generalization over a large, possibly infinite, set of environments. Such environments are modeled as discrete Markov decision processes with both states and actions represented through a feature vector. The underlying structure of the environments allows the transition...

According to the main international reports, more pervasive industrial and business-process automation, thanks to machine learning and advanced analytic tools, will unlock more than 14 trillion USD worldwide annually by 2030. In the specific case of pricing problems, which constitute the class of problems we investigate in this paper, the estimated...

Policy-based algorithms are among the most widely adopted techniques in model-free RL, thanks to their strong theoretical groundings and good properties in continuous action spaces. Unfortunately, these methods require precise and problem-specific hyperparameter tuning to achieve good performance, and tend to struggle when asked to accomplish a ser...

In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simul...

Distribution drift is an important issue for practical applications of machine learning (ML). In particular, in streaming ML, the data distribution may change over time, yielding the problem of concept drift, which affects the performance of learners trained with outdated data. In this article, we focus on supervised problems in an online nonstatio...

The most relevant problems in discounted reinforcement learning involve estimating the mean of a function under the stationary distribution of a Markov reward process, such as the expected return in policy evaluation, or the policy gradient in policy optimization. In practice, these estimates are produced through a finite-horizon episodic sampling,...

One of the central issues of several machine learning applications on real data is the choice of the input features. Ideally, the designer should select only the relevant, non-redundant features to preserve the complete information contained in the original dataset, with little collinearity among features and a smaller dimension. This procedure hel...

We investigate the problem of bandits with expert advice when the experts are fixed and known distributions over the actions. Improving on previous analyses, we show that the regret in this setting is controlled by information-theoretic quantities that measure the similarity between experts. In some natural special cases, this allows us to obtain t...

Uncertainty quantification has been extensively used as a means to achieve efficient directed exploration in Reinforcement Learning (RL). However, state-of-the-art methods for continuous actions still suffer from high sample complexity requirements. Indeed, they either completely lack strategies for propagating the epistemic uncertainty throughout...

Although immunotherapy (IO) has changed the paradigm for the treatment of patients with advanced non-small cell lung cancers (aNSCLC), only around 30% to 50% of treated patients experience a long-term benefit from IO. Furthermore, the identification of the 30 to 50% of patients who respond remains a major challenge, as programmed Death-Ligand 1 (PD...

With the continuous growth of the global economy and markets, resource imbalance has risen to be one of the central issues in real logistic scenarios. In marine transportation, this trade imbalance leads to Empty Container Repositioning (ECR) problems. Once the freight has been delivered from an exporting country to an importing one, the laden will...

Autoregressive processes naturally arise in a large variety of real-world scenarios, including e.g., stock markets, sell forecasting, weather prediction, advertising, and pricing. When addressing a sequential decision-making problem in such a context, the temporal dependence between consecutive observations should be properly accounted for converge...

This paper is in the field of stochastic Multi-Armed Bandits (MABs), i.e., those sequential selection techniques able to learn online using only the feedback given by the chosen option (a.k.a. arm). We study a particular case of the rested and restless bandits in which the arms' expected payoff is monotonically non-decreasing. This characteristic a...

Behavioral Cloning (BC) aims at learning a policy that mimics the behavior demonstrated by an expert. The current theoretical understanding of BC is limited to the case of finite actions. In this paper, we study BC with the goal of providing theoretical guarantees on the performance of the imitator policy in the case of continuous actions. We start...

Real-world sequential decision-making tasks are usually complex , and require trade-offs between multiple-often conflicting-objectives. However, the majority of research in reinforcement learning (RL) and decision-theoretic planning assumes a single objective, or that multiple objectives can be handled via a predefined weighted sum over the objecti...

In reinforcement learning, the performance of learning agents is highly sensitive to the choice of time discretization. Agents acting at high frequencies have the best control opportunities, along with some drawbacks, such as possible inefficient exploration and vanishing of the action advantages. The repetition of the actions, i.e., action persist...

In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether...

In recent years, the request for batteries to employ in emerging technologies like smart grids or electric vehicles shows constant growth. To maintain these systems over time, it is crucial to have a mechanism to monitor the battery State of Health (SoH), determine when it is not of use for the current application, and eventually reuse it in anothe...

Policy gradient (PG) algorithms are among the best candidates for the much-anticipated applications of reinforcement learning to real-world control tasks, such as robotics. However, the trial-and-error nature of these methods poses safety issues whenever the learning process itself must be performed on a physical system or involves any form of huma...

With the continuous growth of the global economy and markets, resource imbalance has risen to be one of the central issues in real logistic scenarios. In marine transportation, this trade imbalance leads to Empty Container Repositioning (ECR) problems. Once the freight has been delivered from an exporting country to an importing one, the laden will...

Warehouse Management Systems have been evolving and improving thanks to new Data Intelligence techniques. However, many current optimizations have been applied to specific cases or are in great need of manual interaction. Here is where Reinforcement Learning techniques come into play, providing automatization and adaptability to current optimizatio...

Warehouse Management Systems have been evolving and improving thanks to new Data Intelligence techniques. However, many current optimizations have been applied to specific cases or are in great need of manual interaction. Here is where Reinforcement Learning techniques come into play, providing automatization and adaptability to current optimizatio...

Keeping risk under control is a primary objective in many critical real-world domains, including finance and healthcare. The literature on risk-averse reinforcement learning (RL) has mostly focused on designing ad-hoc algorithms for specific risk measures. As such, most of these algorithms do not easily generalize to measures other than the one the...

Learning in a lifelong setting, where the dynamics continually evolve, is a hard challenge for current reinforcement learning algorithms. Yet this would be a much needed feature for practical applications. In this paper, we propose an approach which learns a hyper-policy, whose input is time, that outputs the parameters of the policy to be queried...

Several recent works have been dedicated to unsupervised reinforcement learning in a single environment, in which a policy is first pre-trained with unsupervised interactions, and then fine-tuned towards the optimal policy for several downstream supervised tasks defined over the same environment. Along this line, we address the problem of unsupervi...

We propose a novel formulation for the Inverse Reinforcement Learning (IRL) problem, which jointly accounts for the compatibility with the expert behavior of the identified reward and its effectiveness for the subsequent forward learning phase. Albeit quite natural, especially when the final goal is apprenticeship learning (learning policies from a...

We study the problem of identifying the policy space available to an agent in a learning process, having access to a set of demonstrations generated by the agent playing the optimal policy in the considered space. We introduce an approach based on frequentist statistical testing to identify the set of policy parameters that the agent can control, w...

There is a rising interest in industrial online applications where data becomes available sequentially. Inspired by the recommendation of playlists to users where their preferences can be collected during the listening of the entire playlist, we study a novel bandit setting, namely Multi-Armed Bandit with Temporally-Partitioned Rewards (TP-MAB), in...

Automated Reinforcement Learning (AutoRL) is a relatively new area of research that is gaining increasing attention. The objective of AutoRL consists in easing the employment of Reinforcement Learning (RL) techniques for the broader public by alleviating some of its main challenges, including data collection, algorithm selection, and hyper-paramete...

When the agent's observations or interactions are delayed, classic reinforcement learning tools usually fail. In this paper, we propose a simple yet new and efficient solution to this problem. We assume that, in the undelayed environment, an efficient policy is known or can be easily learned, but the task may suffer from delays in practice and we t...

Real-world sequential decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear co...

In reinforcement learning, we encode the potential behaviors of an agent interacting with an environment into an infinite set of policies, the policy space, typically represented by a family of parametric functions. Dealing with such a policy space is a hefty challenge, which often causes sample and computation inefficiencies. However, we argue tha...

In the sequential decision making setting, an agent aims to achieve systematic generalization over a large, possibly infinite, set of environments. Such environments are modeled as discrete Markov decision processes with both states and actions represented through a feature vector. The underlying structure of the environments allows the transition...

In the maximum state entropy exploration framework, an agent interacts with a reward-free environment to learn a policy that maximizes the entropy of the expected state visitations it is inducing. Hazan et al. (2019) noted that the class of Markovian stochastic policies is sufficient for the maximum state entropy objective, and exploiting non-Marko...

The classic Reinforcement Learning (RL) formulation concerns the maximization of a scalar reward function. More recently, convex RL has been introduced to extend the RL formulation to all the objectives that are convex functions of the state distribution induced by a policy. Notably, convex RL covers several relevant applications that do not fall i...

Several recent works have been dedicated to unsupervised reinforcement learning in a single environment, in which a policy is first pre-trained with unsupervised interactions, and then fine-tuned towards the optimal policy for several downstream supervised tasks defined over the same environment. Along this line, we address the problem of unsupervi...

Learning in a lifelong setting, where the dynamics continually evolve, is a hard challenge for current reinforcement learning algorithms. Yet this would be a much needed feature for practical applications. In this paper, we propose an approach which learns a hyper-policy, whose input is time, that outputs the parameters of the policy to be queried...

In recent years, the use of Lithium-ion batteries in smart power systems and hybrid/electric vehicles has become increasingly popular since they provide a flexible and cost-effective way to store and deliver power. Their full integration into more complex systems requires an accurate estimate of the energy a battery is currently storing, a.k.a. Sta...

We study the role of the representation of state-action value functions in regret minimization in finite-horizon Markov Decision Processes (MDPs) with linear structure. We first derive a necessary condition on the representation, called universally spanning optimal features (UNISOFT), to achieve constant regret in any MDP with linear reward functio...

Equilibrium computation with continuous games is currently a challenging open task in artificial intelligence. In this paper, we design an iterative algorithm that finds an ε-approximate Markov perfect equilibrium with two-player zero-sum continuous stochastic games with switching controller. When the game is polynomial (i.e., utility and state tra...

Online learning algorithms often have the issue of exhibiting poor performance during the initial stages of the optimization procedure, which in practical applications might dissuade potential users from deploying such solutions. In this paper, we study a novel setting, namely conservative online convex optimization, in which we are optimizing a se...

The Multi-armed Bandit (MAB) framework has been applied successfully in many application fields. In the last years, the use of active approaches to tackle the nonstationary MAB setting, i.e., algorithms capable of detecting changes in the environment and re-configuring automatically to the change, has been widening the areas of application of MAB t...

In real-world applications, inferring the intentions of expert agents (e.g., human operators) can be fundamental to understand how possibly conflicting objectives are managed, helping to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforcement learning (IRL) can be employed to retrieve the reward function implicitly...

Stuck-pipe phenomena can have disastrous effects on drilling performance, with outcomes that can range from time delays to loss of expensive machinery. In this work, we develop three indicators based on mudlog data, which aim to detect three different physical phenomena associated with the insurgence of a sticking. In particular, two indices target...

The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation as a sequence of elements selected from a finite base of universal quantum gates. The Solovay-Kitaev theorem guarantees the existence of such an approximating sequence. Though, the solutions to the quantum compiling problem s...

Many real-world domains are subject to a structured non-stationarity which affects the agent's goals and the environmental dynamics. Meta-reinforcement learning (RL) has been shown successful for training agents that quickly adapt to related tasks. However, most of the existing meta-RL algorithms for non-stationary domains either make strong assump...

The architecture of circuital quantum computers requires computing layers devoted to compiling high-level quantum algorithms into lower-level circuits of quantum gates. The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation, as a sequence of elements selected from a finite base o...

Many real-world domains are subject to a structured non-stationarity which affects the agent's goals and the environmental dynamics. Meta-reinforcement learning (RL) has been shown successful for training agents that quickly adapt to related tasks. However, most of the existing meta-RL algorithms for non-stationary domains either make strong assump...

Many learning problems involve multiple agents optimizing different interactive functions. In these problems, the standard policy gradient algorithms fail due to the non-stationarity of the setting and the different interests of each agent. In fact, algorithms must take into account the complex dynamics of these systems to guarantee rapid convergen...

Policy Optimization (PO) is a widely used approach to address continuous control tasks. In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space. The additional available information, compared to the standard bandit feedback, allows reusing samples generated by one policy to esti...

In a reward-free environment, what is a suitable intrinsic objective for an agent to pursue so that it can learn an optimal task-agnostic exploration policy? In this paper, we argue that the entropy of the state distribution induced by finite-horizon trajectories is a sensible target. Especially, we present a novel and practical policy-search algor...

The linear contextual bandit literature is mostly focused on the design of efficient learning algorithms for a given representation. However, a contextual bandit problem may admit multiple linear representations, each one with different characteristics that directly impact the regret of the learning algorithm. In particular, recent works showed tha...

Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a single objective, or that multiple objectives can be adequately handled via a simple linear combination....

Policy Optimization (PO) is a widely used approach to address continuous control tasks. In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space. The additional available information, compared to the standard bandit feedback, allows reusing samples generated by one policy to esti...

Stuck-pipe phenomena can have disastrous effects on drilling performance, with outcomes that may range from time delays to loss of expensive machinery. In this work, we develop three indicators based on the mudlog data, which aim to detect three different physical phenomena associated to the insurgence of a sticking. In particular, two indices targ...

In the contextual linear bandit setting, algorithms built on the optimism principle fail to exploit the structure of the problem and have been shown to be asymptotically suboptimal. In this paper, we follow recent approaches of deriving asymptotically optimal algorithms from problem-dependent regret lower bounds and we introduce a novel algorithm i...

In this paper we show how risk-averse reinforcement learning can be used to hedge options. We apply a state-of-the-art risk-averse algorithm: Trust Region Volatility Optimization (TRVO) to a vanilla option hedging environment, considering realistic factors such as discrete time and transaction costs. Realism makes the problem twofold: the agent mus...

Reinforcement Learning (RL) is an effective approach to solve sequential decision making problems when the environment is equipped with a reward function to evaluate the agent’s actions. However, there are several domains in which a reward function is not available and difficult to estimate. When samples of expert agents are available, Inverse Rein...

Many learning problems involve multiple agents optimizing different interactive functions. In these problems, the standard policy gradient algorithms fail due to the non-stationarity of the setting and the different interests of each agent. In fact, algorithms must take into account the complex dynamics of these systems to guarantee rapid convergen...

Inverse Reinforcement Learning addresses the problem of inferring an expert's reward function from demonstrations. However, in many applications, we not only have access to the expert's near-optimal behavior, but we also observe part of her learning process. In this paper, we propose a new algorithm for this setting, in which the goal is to recover...

In a reward-free environment, what is a suitable intrinsic objective for an agent to pursue so that it can learn an optimal task-agnostic exploration policy? In this paper, we argue that the entropy of the state distribution induced by limited-horizon trajectories is a sensible target. Especially, we present a novel and practical policy-search algo...

We are interested in how to design reinforcement learning agents that provably reduce the sample complexity for learning new tasks by transferring knowledge from previously-solved ones. The availability of solutions to related problems poses a fundamental trade-off: whether to seek policies that are expected to achieve high (yet sub-optimal) perfor...

The use of reinforcement learning in algorithmic trading is of growing interest, since it offers the opportunity of making profit through the development of autonomous artificial traders, that do not depend on hard-coded rules. In such a framework, keeping uncertainty under control is as important as maximizing expected returns. Risk aversion has b...

The design of high-level decision-making systems is a topical problem in the field of autonomous driving. In this paper, we combine traditional rule-based strategies and reinforcement learning (RL) with the goal of achieving transparency and robustness. On the one hand, the use of handcrafted rule-based controllers allows for transparency, i.e., it...

In most transfer learning approaches to reinforcement learning (RL) the distribution over the tasks is assumed to be stationary. Therefore, the target and source tasks are i.i.d. samples of the same distribution. In the context of this work, we will consider the problem of transferring value functions through a variational method when the distribut...

Multi-Armed Bandit (MAB) techniques have been successfully applied to many classes of sequential decision problems in the past decades. However, non-stationary settings -- very common in real-world applications -- received little attention so far, and theoretical guarantees on the regret are known only for some frequentist algorithms. In this paper...

We study finite-armed stochastic bandits where the rewards of each arm might be correlated to those of other arms. We introduce a novel phased algorithm that exploits the given structure to build confidence sets over the parameters of the true bandit problem and rapidly discard all sub-optimal arms. In particular, unlike standard bandit algorithms...

What is a good exploration strategy for an agent that interacts with an environment in the absence of external rewards? Ideally, we would like to get a policy driving towards a uniform state-action visitation (highly exploring) in a minimum number of steps (fast mixing), in order to ease efficient learning of any goal-conditioned policy later on. U...

Traditional model-based reinforcement learning approaches learn a model of the environment dynamics without explicitly considering how it will be used by the agent. In the presence of misspecified model classes, this can lead to poor estimates, as some relevant available information is ignored. In this paper, we introduce a novel model-based policy...

Pay-per-click advertising includes various formats (\emph{e.g.}, search, contextual, social) with a total investment of more than 200 billion USD per year worldwide. An advertiser is given a daily budget to allocate over several, even thousands, campaigns, mainly distinguishing for the ad, target, or channel. Furthermore, publishers choose the ads...