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RESUMO 

A atividade agrícola tem impacto na sustentabilidade ambiental, em que a medição a 

eficiência dessa atividade e a identificação das melhores práticas é de suma importância. Assim, a 

definição eco-eficiência (produzir mais com menos recursos e diminuindo os impactos ambientais) 

desempenha um papel fundamental. Nesta pesquisa, a eco-eficiência das práticas de um grupo de 

vinhedos na região central do Chile é avaliada utilizando o método Carbon Footprint (FC) e a 

Análise Envoltória de Dados (DEA), CF + DEA. Depois de realizar da avaliação do ciclo de vida 

dos vinhedos, o CF é determinado. Os dados obtidos são utilizados nos modelos CCR e BCC para 

avaliar sua eco-eficiência e identificar melhores práticas, para os vinhedos ineficientes são 

determinadas metas a serem atingidas, a fim de implementar planos de melhoria em sua busca por 

práticas agrícolas mais sustentáveis. O CF alvo é usado posteriormente para determinar mudanças 

no uso dos recursos que contribuem para a CF. 

PALAVRAS CHAVE. Eco-eficiência, LCA+DEA, práticas em agricultura. 

Tópicos DEA, AG&MA – PO 

 

ABSTRACT 

The agricultural activity has impact on environmental sustainability, thus measuring the 

efficiency of this activity and identifying the best practices is of paramount importance. In this 

sense, the definition eco-efficiency (producing more with fewer resources and decreasing 

environmental impacts) plays a fundamental role. In this research, we assess the eco-efficiency of 

the practices of a group of vineyards in the central region of Chile using the Carbon Footprint (CF) 

and Data Envelopment Analysis (DEA) method, CF+DEA. After a Life Cycle Assessment (LCA) 

of the vineyards is performed, the CF is determined. We use both the CCR and BCC models to 

assess their eco-efficiency, to identify best practices, for those inefficient, targets to be reached are 

set, to implement improvement plans in their search for more sustainable agricultural practice. The 

target CF is used later to determine changes in the use of resources that contribute to the CF.  

KEYWORDS. Eco-efficiency. LCA+DEA. Agricultural practices.  

Paper topics DEA, AG&MA – PO 



1. Introduction  

 

In the last decades, the agriculture has taken an important place in the economic 

development of Chile (ODEPA, 2014). According to the Foreign Trade Indicators of the Central 

Bank of Chile, the agricultural and livestock sector exports accounted for 15.2% of total exports in 

2014, where agricultural products accounted for 88.7% of the sector. Highlighting the fruit category 

(US $ 6,348.5 million), followed by wine (US $ 1.856 million), seeds (US $ 430.8 million) and 

vegetables (US $ 297.3 million) (Banco Central, 2014).  

Conversely, the agricultural activity leads to implications and impacts on environmental 

sustainability. As (Rebolledo-Leiva et al., 2017) stated, these impacts include contribution to 

emissions of greenhouse gases (Page, 2011), use of pesticides, herbicides and fungicides (Cross 

and Edwards-Jones, 2006; Mamy et al., 2010), among others. Furthermore, there is a request for a 

rational use of resources in agriculture, with a sustainable management, due to a low resilience of 

ecosystems (Strano et al., 2013). Additionally, global markets are favouring products from 

sustainable production or processes, with respect for environmental and social standards, especially 

for export products. In this way, assessing the eco-efficiency in the production activity has been of 

increasing concern, following the Business Council for Sustainable Development (WBCSD) for 

eco-efficiency, that means creating more goods and services with ever less use of resources, waste 

and pollution; that is, creating more value with less impact (Schmidheiny and Stigson, 2000). 

In recent years, a tool to quantify and assess the environmental impacts throughout the 

life cycle of a product is Life Cycle Assessment (LCA). This tool assesses the impacts of a product 

through all the supply chain until its use/disposal, for this, multiple practices/processes concerned 

with said product are analysed. In the presence of multiple data sets, an average inventory is 

calculated. This may be a problem in the presence of high degree of variability (Vázquez-Rowe et 

al. 2010) because erroneous conclusions could be derived.  

On the other hand, Data Envelopment Analysis (DEA) is a non-parametric method that 

measures the efficiency of units, called decision-making units (DMUs), which perform similar 

activities (Charnes et al., 1978). DEA provides an efficiency index, identifies best practices 

(benchmarks) and for those inefficient DMUs, targets to become efficient are set along with their 

benchmarks, providing both operational and managerial efficient practices to follow.  

The link between LCA and DEA was initially proposed by (Lozano et al., 2009) to 

compare the operational and environmental performance of entities operating in mussel cultivation. 

With the DEA models to analyse and assess efficiency using the LCA data from different practices, 

average inventory is avoided and the eco-efficiency indexes of said practices are known along with 

additional information on improving the inefficient ones. Since the initial joint use of LCA and 

DEA, called LCA + DEA, many researchers have used this approach to assess the eco-efficiency 

of different practices, mainly agricultural. This was done because it allows identifying sources of 

operational inefficiency and of unnecessary environmental impact. A review of applications can 

be found in (Vázquez-Rowe and Iribarren, 2015) and also a review focused in energy systems in 

(Martín-Gamboa et al., 2017) which includes a review of LCA with multicriteria methods. 

Among the many indicators determined by LCA to evaluate different impacts to 

environment, the CF seeks to assess the GHG emissions that contribute to Climate Change. In this 

paper, we use a CF + DEA approach proposed by (Rebolledo-Leiva et al., 2017), the so-called 

Four-Step method, for using the LCA+DEA approach focusing on the CF. This method is applied 

for evaluating the eco-efficiency of nine Chilean vineyards for identifying the best vineyard 

practices. We also identify sources of inefficiency both operational and environmental; determine 

targets for production and CF and new levels for contributing factors to CF. 

 

2. Materials and Methods 

 

Life Cycle Assessment (LCA) is a methodology for assessing the environmental impacts 

of products and services throughout the supply chain, from the extraction of raw materials to its 

use or disposal. In this way, it has emerged as a tool for estimating the environmental impacts of a 



product or process (Lozano et al., 2009). Figure 1 shows the simplified life cycle (Klöpffer and 

Grahl, 2014), in which we can observe the extent of LCA.  

 

 
Figure 1. Simplified life cycle of a tangible product 

 

This tool has been implemented in a wide range of agricultural activities as can be seen 

in (Blengini and Busto, 2009), (Iriarte et al., 2011), (Yang et al., 2013) and (Keyes et al., 2015), 

among others. However, LCA inventories, called Life Cycle Inventory (LCI), often present high 

variability, a fact that would result in important differences. In this case, two choices are common 

solution. The first is to use average inventory and in this case, it is important to quantify this 

variability. The second is to carry individualized inventory. In this case, a second tool would be 

useful to carry a data analysis to interpret the results. Thus, (Lozano et al., 2009) proposed the use 

of Data Envelopment Analysis for analysing the data obtained from the inventory phase of the 

LCA.  

Data Envelopment Analysis (DEA) (Charnes et al., 1978) uses linear programming to 

evaluate the efficiency of DMUs that use multiples resources, called inputs, to produce the same 

multiple products, called outputs. They work under similar conditions and are homogeneous in the 

sense that use the same variables with differences in performance, in the way units are managed 

(Golany and Roll, 1989). A DMU is efficient if its score is 1 and inefficient otherwise. Besides the 

efficiency scores, targets and benchmarks (best practices) for inefficient units are set for an 

inefficient DMU to become efficient. This is done by defining a best-practice frontier, based on 

observed DMUs (Cook et al., 2014). This way, it provides a tool for planning and management for 

improving efficiency. In the literature, many DEA models have been proposed. To choose among 

them, one should first determine in which scale the DMUs operate, constant or variable are the 

most frequent. Simply put, in the first case, DMUs are said to be working at the optimum scale, 

without taking into account size or scale, or in competitive market, also because the increase in 

inputs produces a proportional increase in outputs and this proportion is constant. If these 

conditions are not present, DMUs operate at variable returns to scale, accounting for size and scale. 

In addition, an orientation has to be defined. The usual orientations are input or output oriented 

models. In the input oriented models, the objective is to minimize the inputs (resources) while 

maintaining outputs (products), whereas in the output oriented models the objective is to maximize 

the outputs (products) while maintaining the consumption of inputs (resources). Other assumptions 

concerning returns to scale or orientation can be made. For more models and details about their 

characteristics see (Cooper et al., 2007). Moreover, DEA has been applied to a variety of fields. 

For a survey on the DEA literature see (Emrouznejad and Yang, 2017), on DEA applications see 

(Liu et al., 2013) and on DEA on sustainability see (Zhou et al., 2018). 

The first publication integrating the LCA and DEA methodologies was by (Lozano et al., 

2009). In this paper, the authors compared the operational and environmental performance of rafts 

in mussel cultivation. This method was later called by (Iribarren et al., 2010) the Five-Step 

approach, which was later formally formulated by (Vázquez-Rowe et al., 2010). The Three-Step 

approach was presented by (Lozano et al., 2010). All these methods try to reflect the definition of 

eco-efficiency by the Business Council for Sustainable Development (WBCSD), which means 

creating more goods and services with ever less use of resources, waste and pollution (Schmidheiny 

and Stigson, 2000). Later, for a better interpretation of the eco-efficiency definition, (Rebolledo-

Leiva et al., 2017) proposed the Four-Step method. This method includes an output oriented DEA 

model in Step 3 as we explain later.  Figure 2 shows the step-by-step of this method. 

 



 
Figure 2. Four-Step method 

 

As can be seen in Figure 2, Step 1 is the complete inventory performed by LCA. This 

step accounts for all inputs and outputs of the system under study, including raw resources or 

materials, energy by type and emissions to air, water and land by specific substances. For this case 

study, data of the season 2015/2016 from nine vineyards located in the Chilean Central Valley were 

collected. 

The environmental characterization, specifically the Carbon Footprint (CF), is 

determined for each vineyard in Step 2. In this step, we consider as functional unit, 1 kg of 

harvested grape. The system boundary is set from cradle-to-farm gate. The method used to evaluate 

the CF for each vineyard follows the ISO 14040 general framework (ISO, 2006) and the CF is 

calculated according to PAS 2050 standard (BSI, 2011) with its specification for horticulture PAS 

2050-1 (BSI, 2012). Thus, to estimate the CF of each agricultural factor that contributes do CF 

(e.g., pesticides, diesel use, fertilizers), the following steps are necessary (Rebolledo-Leiva et al., 

2017). First, equation (1) indicates that the mass of GHG e (eg, CO2, CH4) emitted during activity 

ac (e.g., fertilizer transport, fertilizer production, fertilizer application) is obtained by multiplying 

the mass of resource used during activity ac times the emission factor e (the ratio between the 

amount of a given GHG and the amount of a given resource or raw material) for the agricultural 

factor k. 

𝐺𝐻𝐺𝑒,𝑎𝑐,𝑘 = 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑎𝑐,𝑘 × 𝐸𝐹𝑒,𝑎𝑐,𝑘     (1) 

Where, for using an agricultural factor k, 𝐺𝐻𝐺𝑒,𝑎𝑐,𝑘 is the mass of GHG e, 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑎𝑐,𝑘 is 

the mass of resource used in activity ac and 𝐸𝐹𝑒,𝑎𝑐,𝑘 is the emission factor e. 

 Second, in equation (2), the GHG emissions e from all activities carried out for using 

agricultural factor k (𝐺𝐻𝐺 𝑎𝑔𝑟𝑖𝑓𝑎𝑐𝑡𝑜𝑟𝑘,𝑒) are added up to estimate the total mass of GHG emitted. 

𝐺𝐻𝐺 𝑎𝑔𝑟𝑖𝑓𝑎𝑐𝑡𝑜𝑟𝑘,𝑒 =  ∑ 𝐺𝐻𝐺𝑒,𝑎𝑐,𝑘𝑎𝑐∈𝐴𝑘
    (2) 

Finally, in equation (3), the CF of each agricultural factor k is obtained by multiplying the 

mass of GHG in each activity times their respective global warming potential (the total contribution 

to global warming resulting from the emission of one unit of a gas relative to one unit of the 

reference gas, carbon dioxide, which is assigned a value of 1). 

𝐶𝐹 𝑎𝑔𝑟𝑖𝑓𝑎𝑐𝑡𝑜𝑟𝑘 =  ∑ 𝐺𝐻𝐺 𝑎𝑔𝑟𝑖𝑓𝑎𝑐𝑡𝑜𝑟𝑘,𝑒 × 𝐺𝑊𝑃𝑒𝑒∈𝐸    (3) 

Where, 𝐶𝐹 𝑎𝑔𝑟𝑖𝑓𝑎𝑐𝑡𝑜𝑟𝑘 is the CF of the agricultural factor k (kg CO2-eq), 

𝐺𝐻𝐺 𝑎𝑔𝑟𝑖𝑓𝑎𝑐𝑡𝑜𝑟𝑘,𝑒 is the total amount of GHG e emitted from agricultural factor k and 𝐺𝑊𝑃𝑒 is 

the global warming potential of greenhouse gas e, over a timeframe of 100 years. 

The assessment of CF was modelled in Ccalc2 v1.43. 

In Step 3, the data obtained in the inventory and the CF are used within an output oriented 

model, namely production and CF, for the eco-efficiency assessment. We can notice that the CF is 

an undesirable output, then we propose to deal with undesirable outputs using the multiplicative 

inverse transformation proposed by (Golany and Roll, 1989). In using an output oriented model, 

we are able to identify efficient vineyards that maximize production with low CF emissions. 

Moreover, we use both the CCR model (Charnes et al., 1978), that assumes constant returns to 

scale (CRS), and the BCC model (Banker et al., 1984), that assumes variable returns to scale 

(VRS). In (4), the output oriented version of the BCC model (Banker et al., 1984) is presented.  
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Where o is the proportional increase of the outputs, so the efficiency of DMUo is 1/o, 

j is the contribution intensity of benchmark j to the target of DMUo, xij is the input i of DMU j, 

and yrj is the output r of DMU j. If the CCR model is chosen for a DEA output oriented assessment, 

the constraint j

j

1   must not be included. This version of the model is called the envelopment 

model. The dual of this model is called the multipliers model. 

The complete system boundary, the variables of LCI and for the DEA assessment can be 

seen in Figure 3.  

 

 
Figure 3. System boundary. 

 

Finally, in Step 4, the new levels for factors (resources) that contribute to the CF are 

determined for the inefficient producers based on the information of benchmarks determined in the 

previous step. These are the “input targets” to be reached in order to achieve the target CF 

determined in the previous Step. The use of benchmarks on this step aims to replicate benchmark 

practices (the best practices of real vineyards). The sub-steps of Step 4 are shown in Figure 4 

(Rebolledo-Leiva et al., 2017). 

 
Figure 4. Sub-steps to determine factor targets, Step 4. 



 

Thus, the sub-steps to determine the new levels for the factors that contribute to CF, that 

is, the factor targets procedure is as follows: 

a) Identify, for each inefficient DMUo, the set of benchmarks, Bo, and the benchmark 

intensities, 𝜆𝑗,jBo, from DEA results. 

b) Identify the percentage contribution of factor k, of benchmark j, 𝑓𝑘𝑗, to the CF, kK, 

jBo. 

c) Determine the new percentage contribution of factor k to the CF of DMUo, ℎ𝑘𝑜, as in 

equation (5): 

 ℎ𝑘𝑜 = ∑ 𝑓𝑘𝑗𝑗𝜖𝐵𝑜
∗ 𝜆𝑗, 𝑘 ∈ 𝐾    (5) 

d) Calculate the target for factor k (in kg CO2-eq), 𝑧𝑘𝑜
∗ , using the new percentage 

contribution according to equation (6): 

 𝑧𝑘𝑜
∗ = ℎ𝑘𝑜. 𝑔𝐶𝐹𝑜

∗      (6) 

e) Transform the target for factor k, previously calculated (𝑧𝑘𝑜
∗ ), into its respective unit 

(𝑎𝑘𝑜
∗ ), using equation (7). For calculating 𝑎𝑘𝑜

∗ , it is assumed that each factor is directly 

proportional to the CF. 

 𝑎𝑘𝑜
∗ = 𝑎𝑘𝑜 × 𝑧𝑘𝑜

∗ /𝑔𝐶𝐹𝑘𝑜
    (7) 

where 𝑎𝑘𝑜is the current amount of factor k, in its respective unit, and 𝑔𝐶𝐹𝑘𝑜
 is the current 

kg CO2-eq of factor k as calculated by equation (3) (𝐶𝐹 𝑎𝑔𝑟𝑖𝑓𝑎𝑐𝑡𝑜𝑟𝑘). 

This can be seen as an inverse procedure of the Step 2, with an initial CF for determining 

the mix of factors to reach the target CF in Step 3. 

 

3. Results  

 

In Step 1, for each vineyard, the data were obtained in several face-to-face interviews. 

The non-productive stages of the crop (e.g., planting and growing) and pruning residue treatments 

(burning, mulching, etc.) are excluded from this evaluation.  

Next, in Step 2, we determine the CF of the vineyards considering operational variables 

as presented in Figure 3. In Figure 5, it is possible to note that, in average, 50% of CF comes from 

fertilizers, while 46% corresponds to pesticides. On the other hand, energy contributes only 4% in 

average. 

 

 
Figure 5. Contribution of the vineyards’ resources to the CF 

 

The next step is the eco-efficiency assessment. As mentioned before, the CCR and BCC 

models are used. The inputs and outputs for this assessment are presented in Table 1, as well as, 

the efficiency indexes.  It is important to notice that Energy is not included in this assessment; this 

is done because of the number of DMUs (nine) and the number of variables (five), when the 

recommended relation is 3 to 1 (Cooper et al., 2007). We decided to maintain the largest 

contributors to CF, fertilizers and pesticides, and exclude Energy. These two inputs with the two 

outputs exceed this relation, but represented well the production process. 
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 Inputs Outputs  
Efficiency Index 

(%) 

DMU 
Fertilizers 

(kg) 

Pesticides 

(kg) 

Production 

 (kg) 

CF  

(kg CO2-eq) 
CCR BCC 

V1 6000 797 147049 19195 20 80 

V2 610 111 23436 2348 30 50 

V3 3644 415 72650 11143 20 60 

V4 325 3 41243 689 100 100 

V5 7832 821 131847 23504 10 60 

V6 1068 393 63063 6124 50 90 

V7 7000 5039 362143 70343 40 100 

V8 8090 775 220387 26182 20 100 

V9 731 890 44547 13240 50 70 

Table 1. Data and efficiency indexes of the vineyards using the CCR and BCC models 
 

 

In this table, we can see that there are three efficient vineyards (V4, V7, V8), three best 

practices, while CCR model identifies only one efficient vineyard (V4). Even though vineyards are 

homogenous, they have differences in size and scale; therefore, we will focus on the results of the 

BCC model to go on Step 4. Thus, the targets for Production and CF for the six inefficient 

vineyards, their actual levels and their benchmark intensities are shown in Table 2. 

 

Inefficient 

Vineyards 

Production 

(kg) 

Production 

Target 

(kg) 

CF  

(kg CO2-eq) 

CF Target 

(kg CO2-eq) 
Benchmarks 

V1 147049 180968 19195 15597 V4 = 0,262; V7 = 0,053; V8 = 0,686 

V2 23436 50820 2348 716 V4 = 0,961; V7 = 0,018; V8 = 0,021 

V3 72650 120954 11143 1186 V4 = 0,570; V7 = 0,019; V8 = 0,411 

V5 131847 217207 23504 12290 V4 = 0,031; V7 = 0,017; V8 = 0,953 

V6 63063 70422 6124 769 V4 = 0,894; V7 = 0,072; V8 = 0,034 

V9 44547 60762 13240 733 V4 = 0,939; V7 = 0,061 

Table 2. Target for Production and CF and benchmarks intensities 

 

In this Table, we notice that the vineyards V1 and V5 have best practice vineyard V8 as 

their main benchmark; vineyards V2, V6 and V9 have best practice V4 as their main benchmark; 

whereas, vineyard V3 has both, V4 and V8. Best practice vineyard V7 is the benchmark with the 

lowest intensity for every inefficient vineyard, which may indicate that is using the resources in a 

way somewhat different to be efficient. 

Next, following Step 4, the information in Table 2 is used to determine the new levels of 

the factors in order to reach the target CF for each inefficient vineyard. The new levels for fertilizers 

and pesticides are shown in Table 3.  

 

Inefficient  

Vineyards 

Fertilizers  

 (kg) 

Target of 

Fertilizers  

(kg) 

Pesticides  

 (kg) 

Target of 

Pesticides  

(kg) 

V1 6000 5312 797 441 

V2 610 331 111 4 

V3 3644 472 415 20 

V5 7832 3769 821 403 

V6 1068 338 393 7 



V9 731 59 890 9 

Table 3. Input targets for CF reduction 

 

The changes in production and CF and the impacts of the reductions in fertilizers and 

pesticides are better observed by comparing actual levels with their targets graphically. Therefore, 

in Figure 6, this comparison for the outputs, production and CF for each inefficient vineyard is 

depicted. As expected because of its efficiency index (50%), V2 has the largest changes in 

production and CF. 

 

  
Figure 6. Comparison of actual and target levels for production and CF. 

 

Additionally, Figure 7 shows a comparison actual and target levels for fertilizers and 

pesticides obtained by copying their benchmarks practices. The most dramatic change in the use 

of fertilizers corresponds to V5, which has to increase their use more than 3 times and reduce its 

use in pesticides in approximately 70%. This may seem to make no sense, to increase the 

consumption of a resource to reduce CF; however, this increase with the reduction in pesticides, 

together with changes in the operational process that copy their benchmarks (V4, V7 and mainly 

V8) makes the target CF possible. In general, the average reduction of fertilizers is approximately 

59%, while an average decrease of approximately 81% of pesticides is estimated. 

 

 
Figure 7. Comparison of actual and target levels for fertilizers and pesticides. 

 

4. Conclusions and Final Comments 

 

In this paper, we use the Four-step method that implements the LCA+DEA approach to 

determine the eco-efficiency and to identify best practices in a group of vineyards in the central 

zone of Chile. In total, 9 vineyards were analyzed. In the DEA eco-efficiency assessment not all 

variables from the LCI were used. This was done because of the relation between the number of 

DMUs and the number of variables. The variables selected for the eco-efficiency assessment were 

those that contributed more to the CF.  

On the other hand, the CCR and the BCC model were applied. As expected, the CCR 

efficiency indexes were lower than the BCC and the CCR model identify one vineyard as efficient, 

whereas the BCC model identify three vineyards as efficient. Moreover, we focus on the BCC 



results because of the differences in size and scale of the vineyards. However, the use of the CCR 

model was interesting because it allows verifying the efficiency scores when considering that all 

vineyards are operating at optimum scale. In a case, where all vineyards work in a competitive 

market then it can be assumed that they work at their optimal scale and the CCR model has to be 

used. 

Finally, we expect that inefficient vineyards follow the operational and managerial 

guidelines of their related benchmarks. When an inefficient vineyard has more than one 

benchmark, it is necessary to identify which ones have greater intensities, because that means these 

benchmarks have similar characteristics than the inefficient vineyard. 

Concerning targets for inefficient DMUs, as expected, those obtained by the CCR model 

are more demanding than those obtained by the BCC. Again, the targets chosen to be used depend 

on the market conditions and scale. However, it can be said that both targets may be used to achieve 

efficiency in two stages, taking into account size or scale and then market conditions. 

It is important to point that the use of the Four-Step method with an output oriented DEA 

model allows us to identify the eco-efficient vineyards, those who produce more with less CF, and 

the necessary changes in the use of resources for an inefficient vineyard to become efficient. This 

in a way more aligned to the eco-efficiency definition: to produce more with fewer resources and 

with decreasing environmental emissions. 

For future works, other variables that affect eco-efficiency will be considered and using 

other DEA models to consider simultaneously the reduction of inputs and increase of outputs. 
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