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ARTICLE INFO ABSTRACT

Article history: The electrode material is a key element in the design of long-term neural implants and neuroprostheses.
Received 24 November 2014 To date, the ideal electrode material offering high longevity, biocompatibility, low-noise recording and
Received in revised form high stimulation capabilities remains to be found. We show that 3D-nanostructured boron doped dia-
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mond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio
structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows
neural cell attachment, survival and neurite extension. Further, we developed arrays of 20-pm-diameter
3D-nanostructured BDD microelectrodes for neural interfacing. These microelectrodes exhibited low
impedances and low intrinsic recording noise levels. In particular, they allowed the detection of low
amplitude (10—20 pV) local-field potentials, single units and multiunit bursts neural activity in both

Keywords:
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Neural prosthesis

Electrode acute whole embryonic hindbrain-spinal cord preparations and long-term hippocampal cell cultures.
Biocompatibility Also, cyclic voltammetry measurements showed a wide potential window of about 3 V and a charge
Electrophysiology storage capacity of 10 mC.cm~2, showing high potentiality of this material for neural stimulation. These
Electrical stimulation results demonstrate the attractiveness of 3D-nanostructured BDD as a novel material for neural inter-

facing, with potential applications for the design of biocompatible neural implants for the exploration

and rehabilitation of the nervous system.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction pathological tremors [8], visual impairments [9,10], or paralysis
[11-15]. These devices make use of microelectrode arrays (MEAs)
Neuroengineering more efficient neural interfaces is crucial to [16—19] to record the electrical activity from neural structures and

better explore neural networks [1—6] and to offer advanced clinical can deliver electrical microstimulation in these structures to
rehabilitation solutions based on neural prosthesis and brain- restore previously lost functions. One way to improve such systems
computer interfaces to target pathologies such as hearing loss [7], is to increase their electrode number and density. For instance,

increasing the number of recorded channels improves the effi-
ciency of brain machine interfaces [14] and neural prosthesis [20].
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decipher their dynamics beyond characterizing their structural
aspects [22—24|. However, increasing the density of microelec-
trodes implies the reduction of their dimensions [22,24—27], which
has two major consequences [28]. First, small diameter electrodes
lead to a high intrinsic noise level and thus low signal to noise ratio,
precluding sensitive neural recordings. Second, charge injection
capacity is reduced, hindering efficient electrical neural stimula-
tion. Therefore, a current challenge is to find new biocompatible
and more efficient electrode materials to optimize the electro-
de—tissue interface [3,29].

Boron doped diamond (BDD) is one of the materials of choice for
electrodes of long-term neural implants since it combines proper-
ties of biocompatibility [30—39], chemical inertness [40], and
structural stability at current charge densities typically applied for
neural stimulation [41,42]. Previous studies have shown that BDD
MEAs can successfully be used to resolve electrochemical signals
with high-time resolution from whole living cells [43] or micro-
areas of functional neuroendocrine cells [44]. Moreover, it exhibits
a wide potential window in aqueous media [45], making it partic-
ularly suitable for neural stimulation [46—48]. Although BDD nor-
mally suffers from a low double layer capacitance and high
impedance in comparison to other competitive materials for neural
interfacing, Hebert et al. recently proposed an innovative solution
where the specific surface area of BDD electrodes is increased using
vertically aligned carbon nanotubes (VACNTSs) as a template inter-
layer [49], a strategy in line with previous studies using nano-
structuration strategies to enhance the electrode performance for
neural recording and stimulation [28,50—55].

Moreover, the advantage of using nanostructures to modify the
electrode geometry seems to be two-fold. First, in vitro studies have
indeed evidenced that specific nanotopographies can support the
sprouting of neurons from the central and peripheral nervous
system without favoring the spread of glial cells [56—61]. Second,
the use of nanostructures appears to be beneficial to interface
neural tissues [61—65].

There has been only few attempts of neural recording using BDD
microelectrodes [66—68], however yielding to rather high
recording noise due to the high interface impedance and low
double-layer capacitance of diamond. Moreover, Halpern et al. have
shown that a single needle microelectrode coated with BDD could
successfully be used to stimulated single neurons [46]. Such tech-
nology has however not yet been integrated into microelectrode
arrays. Here, we investigated the possible use of 3D-nanostructured
BDD as a material for efficient bidirectional neural interfacing in a
configuration of 20-um-diameter-microelectrode arrays. For this,
the suitability of nanostructured BDD for culturing embryonic
neural cells was first evaluated. We then developed a micro-
fabrication process to design microelectrode arrays made of
either conventional BDD or 3D-nanostructured BDD, consisting of
vertically aligned carbon nanotubes (VACNTSs) inter-layer template
embedded in two BDD nanolayers. We finally evaluated the per-
formance of both types of BDD microelectrodes for ex vivo neural
tissue and in vitro cell culture recording and stimulation.

2. Methods

All experimental protocols conformed to recommendations of the European
Community Council Directive of November 24, 1986 (86/609/EEC) and local French
legislation for care and use of laboratory animals, and have been approved by the
Bordeaux ethical committee for experimental research (Approval No A5012082).

2.1. Hippocampal and spinal cord cell cultures on 3D-nanostructured BDD films

2.1.1. Fabrication of BDD substrates

BDD films were produced on silicon substrates. Detonation diamond nano-
particules (6-nm) dispersed in water (0.1% wg) were spread by spin coating on
these substrates. Then a 600-nm-thick nano-crystalline diamond film was grown at
low temperature in a AX6500X Microwave Plasma Chemical Vapor Deposition

(MPCVD) system (Seki Technotron Corp.). The growth was performed during 10 h
under the following parameters: MW power of 2.6 kW, temperature of 650 °C,
pressure of 26 mbar, gas concentration: 1% methane in approx. 99% hydrogen. Tri-
methylboron was added to the gas phase as dopant so that the resulting Boron
concentration in the diamond film was approximately 2.10>' at.cm > as determined
by Secondary lon Mass Spectrometry measurements. This was found to be optimum
in terms of electrode performance [69]. Surfaces were then oxygenated using an
ozone treatment during 2 h in order to obtain an oxygen-terminated BDD and thus a
hydrophilic surface.

2.1.2. Fabrication of 3D-nanostructured BDD substrates

VACNTSs were grown on BDD films, and then coated with a second BDD film. The
full fabrication process has been described previously [49]. In brief, a 7 nm nickel
layer was deposited on the diamond surface by e-beam evaporation and turned into
50 nm nanoparticles by heating at 700 °C for 3 min. The samples are then trans-
ferred into a plasma enhanced CVD reactor (“Black Magic” AIXTRON) where the
nickel particles are used for the catalysis of 3-um-long vertically aligned carbon
nanotubes. These VACNTSs are then coated with a layer of 25 nm diamond particles
using an electrostatic grafting method described elsewhere [70]. Finally the dia-
mond seeds were grown in a home-made MPCVD reactor until a BDD thin film of
50 nm was obtained on the bundles. Boron concentration in this case was also
2.10%! at.cm 3. Surfaces were then oxygenated using an ozone treatment during 2 h
in order to obtain an oxygen-terminated BDD and thus a hydrophilic surface.

2.1.3. Spinal cord and hippocampal cell cultures

A digestion solution was prepared containing papain (30 Units/mL, Roche Life
Science, code 10108014001) diluted at 0.1 mg/mL (3 Units/mL) and L-cysteine (Sigma
Aldrich; code C7477) at 0.5 pg/mL in Neurobasal Medium (1x, Gibco Life Tech-
nologie; code 21103-049). The digestion solution was incubated at 37 °C during
10 min, filtered with a 0.22-pm-pore filter (SARSTEDT, Germany; code 83-1826-001)
and used within 1 h. The hippocampi of both hemispheres of four E14.5 OF1 mice
(Charles River, I'Arbresle, France) embryos were dissected and collected in a
dissection medium [F-12 Nut Mix (Ham) medium with 2% of L-glutamine-penicillin-
streptomycin (Sigma Aldrich, code G6784) and 1% of Gentamycin (Gibco Life Tech-
nologie; code 15710_049)]. Another E14.5 mouse embryo was decapitated, its spinal
cord below the medulla was dissected and collected in the same dissection medium.
Each tissue type was then treated separately but using the same procedure. The
tissue was digested in a falcon tube for 30 min at 37 °C, carefully rinsed with
3 x 3 mL Neurobasal medium. Subsequently, 3 mL of culture medium [Neurobasal
medium with 0.5% of L-glutamine-penicillin-streptomycin (Sigma Aldrich, code
G6784), 0.25% of Gentamycin (Gibco Life Technologie; code 15710_049), 1% of Glu-
tamax (Gibco Life Technologie; code 35050_038) and 1% of B27-supplement (Invi-
trogen Life Technologies; code 17504-044)] were added to the tissue, which was
then gently triturated mechanically. The suspension was then spun down for 5 min
at 1220 rpm at 20 °C (Eppendorf AG, Centrifuge 5810R). The supernatant was
removed and the cell pellet was re-suspended in 3 mL of culture medium, dissoci-
ated mechanically and respun down. The cell pellet was then resuspended again in
800 pL of culture medium and passed through a 40 um cell strainer (Biologix
Research, ref 15—1040). 100 uL were then seeded onto the 3D-nanostructured BDD
MEA and onto each substrate type. Before cell seeding, substrates were placed
overnight in an oven at 60 °C, then incubated in 70% ethanol for 10 min, air-dried
overnight, and finally placed separately in one well of a sterile 12-well plate
(Nunc, Cat No 150628). No chemical coating was performed to augment cell adhe-
sion so as to evaluate the bare material and the effect of the 3D-nanostructured BDD
topography compared to the conventional BDD one. The plate was placed in the
incubator during 15 min in order to allow for cell seeding. Further, 1.9 mL of culture
medium were added to each well. Cultures were performed on different days and on
9 replicates of each substrate type.

2.14. Immunocytochemistry and fluorescence microscopy

Following 8 DIV, the cultured cells were fixed in 4% paraformaldehyde (PFA) in
PBS (10 mM), rinsed 3 x 10 min in PBS (10 mM, pH 7.2), and then blocked and
permeabilized by pre-incubation for 30 min at room temperature with PBS (10 mM,
pH 7.2) containing 0.25% Triton X-100 (PBS-T) and 2% bovine serum albumin (BSA).
Cells were subsequently incubated for 60 min at room temperature with a mouse
monoclonal antibody against B-tubulin, isotype III (Covance, MRB435P0100; 1:500
in PBS-T 1% BSA) followed by three 10 min washes with PBS-T with 1% BSA. The cells
were further incubated with the secondary antibody: Alexa Fluor 488 goat anti-
rabbit (Invitrogen; ref A11008) at 1:1000 for 60 min at room temperature, fol-
lowed by three 10 min washes with PBS-T with 1% BSA. Cell samples were mounted
with Slowfade gold antifade reagent with DAPI (Invitrogen molecular probes,
536938) examined with a wide field fluorescence microscope (Olympus I81) using a
plan-neofluar objective (20x).

2.2. Fabrication of conventional BDD and 3D-nanostructured BDD MEAs

2.2.1. Conventional BDD MEA
The fabrication process of diamond MEAs is shown in Fig. 1A. Planar 60-channel
MEAs were developed with electrodes arranged in a 4 x 15 layout without corners
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Fig. 1. Processing steps for microfabrication of A) the BDD MEA and B) the 3D-nanostructured BDD MEA. Scanning electron microscopy (SEM) picture of the 3D-nanostructured BDD
at the step 6 of the MEA fabrication C) at low magnification and D) at a higher magnification at the interface of the BDD and the 3D-nanostructured BDD. The opening of the SU8

insulation layer will define the 20-um-diameter of the electrode in the last step 8.

covering an area of 900 x 12600 pm? specifically adapted to the geometry of em-
bryonic hindbrain-spinal cord preparations (Fig. S1A and Fig. 4A), and also with
electrodes arranged in a 1 x 60 layout with a 150-pum spacing (Fig. S1B). To fabricate
the arrays, an innovative approach was developed. At first, detonation diamond
nanoparticles were spread onto a 4 inch fused silica (this substrate was used to avoid
any electrical cross talk between the electrodes) using a process described earlier
[71] (Step 1). Next, an aluminum layer, composed of 80-um disks, was deposited to
define the electrode patterns by photolithography (using the AZ4562 photoresist
and AZ 351 B developer) (Step 2) and the diamond nanoparticles outside these
protected areas were etched away using Reactive lon Etching (RIE) under a pure
oxygen plasma (Step 3). The aluminum hard mask was then chemically removed to
reveal the diamond nanoparticles patterns, from which diamond electrodes were
grown using Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in a
diamond growth reactor (Seki AX6500) housing a gas mixture of methane,
hydrogen, and trimethylboron. The fabricated diamond electrodes exhibited a
thickness of 500 nm (Step 4). The electrodes were then individually contacted by
depositing 10/150-nm Cr/Au metal tracks using lift-off with AZ nLof 2020 (Micro-
Chemicals GmbH, Germany) as photoresist material. Contact to the electrodes was
achieved by depositing a metal ring across the edges of the electrodes with a 5-um
overlap (Step 5). Finally a 2-pm-thick SU8 layer (MicroChem, USA) was deposited
onto the substrate in order to isolate the metal tracks from the electrolyte solution
and opened with SU8 developer to define the 20-um-diameter of the microelectrode
(Step 6).

2.2.2. 3D-nanostructured BDD MEAs

We recently reported on enhanced electrochemical properties of the BDD
electrode using a template of carbon nanotubes scaffolds [49]. This technology was
integrated on the MEA fabrication using the process described in Fig. 1B. The first
two steps consist in growing a boron doped diamond layer from diamond seeds on
the fused silica (this substrate was used to avoid any cross talk between the
electrodes). Then an 8-nm-thick nickel layer was selectively deposited at the

locations of the future electrodes (step 3). This metallic layer was used as a catalyst
for the growth of an inter-layer of 3 um vertically aligned carbon nanotubes
(VACNTs) using PECVD after a growth time of 20 min (step 4). The VACNTs were
cleaned in hot aqua regia [HCI(Sigma Aldrich):HNOs(Merck), 3:1] to remove the
catalyst that eventually remained at the tip of the VACNTs. The whole wafer was
then coated with a highly dense nanodiamond layer to fully embed the VACNTs in
the subsequent diamond growth step (step 5). A 50 nm boron doped diamond
coating was performed with soft growth parameters as described in our previous
study [49] (step 6, Fig. 1B—D). The result is the formation of a 3D-nanostructured
BDD structure that has the shape of bundles as shown on Fig. 1D. The electrodes
were locally masked with an aluminum layer using the AZ4562 photoresist and AZ
351 B developer. The boron doped diamond that grew outside of the electrodes was
etched away using RIE under a pure oxygen plasma, and the aluminum mask was
chemically removed (step 7). The electrodes were then individually contacted by
depositing 10/150-nm Cr/Au metal tracks using lift-off with AZ nLof 2020
(MicroChemicals GmbH, Germany) as photoresist material. Contacts to the elec-
trodes were achieved by depositing a metal ring across the edges of the electrodes
with a 5 um overlap. Finally a 2-um-thick SU8 layer (MicroChem, USA) was
deposited onto the substrate in order to isolate the metal tracks from the elec-
trolyte solution and opened with SU8 developer to define the 20-pm-diameter of
the microelectrode (Step 8, and see Fig. S1C).

2.3. Cyclic voltammetry

Ultrapure deionised (DI) water (Millipore Direct Q3) was used to prepare all
solutions. For electrochemical activation and potential window measurement of the
electrodes using cyclic voltammetry (CV), four solution were prepared: an aqueous
solution of phosphate buffered Saline (PBS, Sigma Aldrich), a phosphate buffer
prepared without NaCl, an artificial cerebrospinal fluid solution (aCSF) and lithium
perchlorate (LiClO4, Sigma Aldrich) at 0.5 mM. The CV was performed using a Bio-
logic SP200 potentiostat in a three-electrode setup where the studied
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microelectrode was the working electrode, a platinum wire the pseudo-reference
electrode, and a platinum mesh the counter electrode.

2.4. Microelectrode impedance measurements

Electrochemical impedance spectroscopy (EIS) was performed in PBS and LiClO4
over a frequency range from 0.1 Hz to 1 MHz with logarithmic point spacing and
potential amplitude of 0.01 V rms while the diamond electrode was maintained at
open circuit potential. The EIS was performed using a Biologic SP200 potentiostat in
a three-electrode setup where the studied microelectrode was the working elec-
trode, a platinum wire the pseudo-reference electrode, and a platinum mesh the
counter electrode. Impedance measurements were also performed at 1 kHz using
either a IMP-I Electrode Impedance Tester from Bak Electronics Inc (Mount Airy,
USA) or a NanoZ (Multi Channel Systems GmbH, Reutlingen, Germany).

2.5. Microelectrode intrinsic noise measurements

To measure the intrinsic noise level of the electrodes, the electrical potential was
recorded for 1 min in artificial cerebrospinal fluid (aCSF) between each microelec-
trode and an Ag/AgCl ground electrode pellet. The aCSF was composed of NaCl
(113 mM), KCl (4.5 mM), CaCl,—2H,0 (2 mM), MgCl,—6H,0 (1 mM), NaHCO3
(25 mM), NaHPO4H,0 (1 mM) and b-Glucose (11 mM). Signals were
1100 x amplified and band-pass filtered between 1 Hz and 3 kHz using MCS
MEA1060-Up-BC filter amplifiers from Multi Channel Systems GmbH (Reutlingen,
Germany). Data were acquired at 10 kHz using two synchronized CED Power1401 AD
converters and the Spike2 v7 software from Cambridge Electronic Design (Cam-
bridge, England). The standard deviation of the signal o5 was then calculated over
the 1-min recording for each electrode of the array. Because this noise level was
composed of both the intrinsic noise level of the electrodes . and the electronic
noise level of the amplifiers o, we assumed statistical independence of these two
noise sources and estimated the intrinsic noise level ¢ of each electrode as:
Ce = ,“/cg — o2, where o, (=142 pV) was measured for each channel with the
amplifier inputs connected to the ground. Noise evaluation was performed for
conventional BDD microelectrodes, 3D-nanostructured BDD microelectrodes, as
well as platinum and black platinum microelectrodes (commercially available from
QWANE). Noise evaluation was also performed after physical cleaning of the MEA to
assess its mechanical robustness. For this purpose, the MEA chamber was filled with
a standard housekeeping dishwashing detergent (Paic citron) and the array was
brushed using a soft painting brush. This procedure was repeated 10 times after
which the noise was recorded again.

2.6. Neural recording and stimulation

2.6.1. Acute embryonic spinal cord recording and stimulation

To test the performance of BDD microelectrodes for neural recordings, we
considered a whole acute embryonic mouse hindbrain-spinal cord preparation.
Indeed this preparation displays rhythmic activity occurring every few minutes as
episodes consisting of local field potentials (LFPs) and bursts of spikes, and is
particularly suitable to assess the performances of the MEA in terms of sensitivity
since the signals include spikes of relatively small amplitudes typically around
10—20 pV [28,72]. This is due to the high impedance of the immature cells in this
preparation [73] thus requiring small trans-membrane currents to be depolarized.
E14.5 embryos were surgically removed from pregnant OF1 mice (Charles River
Laboratories, L'Arbresle, France), previously killed by cervical dislocation. Embryos
were decapitated and their whole spinal cord and hindbrain were dissected in aCSF
gassed with carbogen (95% O3, 5% CO;), meninges were removed, and the neural
tube was opened along the rostro—caudal axis (open-book preparation). The em-
bryonic hindbrain-spinal cord preparation was then placed over the MEA (Fig. 4A)
and superfused with physiological liquid, gassed with carbogen. A plastic net with
small holes (70 x 70 um?) was laid on the neural tissue, in order to achieve a tight
and uniform contact with the microelectrodes. Signals were x1100 amplified and
bandpass filtered between 1 Hz and 3 kHz using MCS MEA1060-Up-BC filter am-
plifiers from Multi Channel Systems (Reutlingen, Germany). Data were acquired at
10 kHz using two synchronized CED Power1401 AD converters and the Spike2 v6
software from Cambridge Electronic Design (Cambridge, England). Rhythmic ac-
tivity of this immature preparation was recorded for several hours at room tem-
perature. LFP activity was obtained by smoothing the raw signals with a 200-ms
time window. Spiking activity was extracted as follows: for each data sample, two
moving averages of the signal computed over a 10-ms (DC removing) and a 1-ms
(smoothing) time windows centered on this sample were subtracted from the raw
data. The MEA was cleaned and used several times without any increase of the noise
level, nor degradation of the performances of the BDD microelectrodes to be
observed.

2.6.2. Long-term hippocampal cell culture recording and stimulation

Following 14 DIV, the cells cultured on the 3D-nanostructured BDD MEA were
superfused with physiological liquid, gassed with carbogen and recorded for hours
at room temperature. As for the embryonic spinal cord recording, signals were
x1100-amplified, bandpass filtered between 1 Hz and 3 kHz and acquired at 10 kHz.
Spiking activity was extracted as described above for acute recordings.

3. Results

3.1. Hippocampal and spinal cord cell cultures on 3D-
nanostructured BDD substrates

Cultures of hippocampal and spinal cord cells were used to
evaluate the biocompatibility of the new 3D-nanostructured BDD
substrate, fabricated with a protocol recently published by Hébert
et al. [49], and presenting a novel 3D surface topography different
from that of conventional BDD substrates (Fig. 2A and B). Cultures
on 3D-nanostructured BDD substrates were compared to cultures
on conventional BDD substrates, already known to be suitable for
neural cultures [30—39]. The cell attachment and distribution was
assessed using DAPI to stain cell nuclei. The cell ability to express
the neuron-specific marker B-tubulin Il and their neurite extension
were also investigated. After 8 DIV, although cells were passed
through a cell strainer just before cell seeding on the studied sub-
strates, clusters and single cells were found to attach and extend
neurites on both substrate types in both cell culture types
(Fig. 2C—F). Similarly for the hippocampal cell culture and for the
spinal cord cell culture, cells were found to express f-tubulin IIl and
no difference in their neurite lengths could be observed on 3D-
nanostructured BDD substrates (Fig. 2D and F) when compared
with conventional BDD substrates (Fig. 2C and E).

3.2. Characterization of 3D-nanostructured BDD MEAs

The fabricated MEAs were characterized using cyclic voltam-
metry and impedance spectroscopy. Fig. 3A and B display three CV
plots corresponding to 20 um diameter conventional BDD micro-
electrodes measured in LiClO4 (black dotted), and to 20 um diam-
eter 3D-nanostructured BDD microelectrodes measured in LiClO4
(red) and in PBS (green). Within the 3—3.5 V wide potential win-
dow, a 3D-nanostructured BDD microelectrode leads to double
layer capacitive currents approximately 44 times greater than
values probed on conventional BDD microelectrodes. Indeed, the
double layer capacitance (Cq;) as well as the charge storage capacity
(CSC) of both electrode types can be deduced using the two
following formula; Cy = % and CSC =1 [i,dV where Ai is the dif-
ference between the cathodic and anodic currents at the open
circuit potential, » is the scan speed, i, the anodic current density
and V is the scanning potential. Hence, in LiClO4, a conventional
BDD microelectrode exhibits a double layer capacitance of
70 uF cm~2 and a CSC of 220 puC cm 2 whereas a 3D-nanostructured
BDD microelectrode exhibits a double layer capacitance of
3 mF cm 2 and a CSC of 10 mC cm™2 (for a potential window of
3.3V).In PBS, the structured diamond presents a large peak at 1.3 V
and a lower anodic current (260 pA, Fig. 3B), reducing the potential
window and inducing a double layer capacitance of 2.6 mF cm ™2
and a CSC of 6.8 mC cm 2 (for a potential window of 2.6 V). This
large peak at 1.3 V can also be found when performing CV mea-
surements in aCSF (Fig. S2A). However, it is not visible when aCSF is
replaced by a phosphate buffer, free of NaCl (Fig. S2B). Fig. 3Cand D
show the Bode representation of the typical impedance spectra for
one conventional BDD microelectrode (black dotted) and one 3D-
nanostructured BDD microelectrode (red) in PBS. These figures
show that the impedance modulus is significantly lower (approxi-
mately 40 times) for the 3D-nanostructured BDD microelectrode,
which corroborates the larger double layer capacitance observed
using cyclic voltammetry. The lower phase at high frequency for the
3D-nanostructured BDD microelectrode indicates the lower cut-off
frequency of this interface, a direct result of its higher capacitance
when compared with conventional BDD microelectrodes.

Fig. 3E presents the impedance measurements at 1 KHz for all
microelectrodes of one MEA as recorded in LiClO4, and thus
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Conventional BDD
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Hippocampal cells

3D-nanostructured BDD

Fig. 2. SEM images showing a top view of A) BDD and of B) 3D-nanostructured BDD. Scale bar, 600 nm. Fluorescence microscopy pictures with nuclei labeled with DAPI (in Blue)
and neurons labeled with B-tubulin IIl (in green) of spinal cord cells at 8 DIV on C) a BDD substrate and on D) a 3D-nanostructured BDD substrate, and of hippocampal cells at 8 DIV,
and on E) a BDD substrate, and F) a 3D-nanostructured BDD substrate. Scale bar 50 um. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

providing a view of the microfabrication process steadiness. There
is indeed a small dispersion of the impedance modulus around
50 kQ with more than 75% of the microelectrodes displaying an
impedance modulus below 100 kQ. The intrinsic noise level was
recorded for conventional and 3D-nanostructured BDD MEAs. As
reported in Fig. 3F, the median noise level of 3D-nanostructured
BDD microelectrodes was found to be 3.1 pV. This is lower than the
6.9 nV found for Pt microelectrodes and considerably lower than
the 10.7 pV found for conventional BDD microelectrodes. The
smallest noise corresponds to black Pt microelectrodes showing a
noise of 2.0 uV. As black platinum microelectrodes are highly friable
[28], we also assessed the mechanical robustness of the 3D-nano-
structured BDD microelectrodes after repetitive standard cleaning
(see methods) and found no noticeable change in the noise level of
the MEA (Fig. S3).

3.3. Neural recording and microstimulation

Both conventional and 3D-3 BDD microelectrodes were used for
recording rhythmic activity from the whole embryonic hindbrain-
spinal cord. Consistently with their high intrinsic noise (Fig. 3F),
conventional BDD microelectrodes did not allow reliable

recordings of the low-amplitude activity displayed by this prepa-
ration. By contrast, 3D-nanostructured BDD allowed the detection
of episodes of activity propagating as waves from the hindbrain
down the spinal cord (Fig. 4). These episodes could be recorded as
LFPs on the 3D-nanostructured BDD microelectrodes covering the
hindbrain (Fig. 4C and D). Bursts of spikes could be detected on 3D-
nanostructured BDD microelectrodes along all the preparation, as
shown in Fig. 4E. Noticeably, even small amplitude spiking signals
(within the 10—20 pV range) could be clearly detected. Activity
could also be triggered by applying a 1 ms biphasic (cathodic first)
current of 10 pA through the 3D-nanostructured BDD microelec-
trodes located under the hindbrain. Fig. 4F shows the recording of a
typical burst of spikes elicited by an electrical stimulation delivered
by a BDD microelectrode and lasting about three hundreds
milliseconds.

We also recorded spiking activity from a 14 DIV hippocampal
cell culture on a few 20-um-diameter 3D-nanostructured BDD
microelectrodes of a 1 x 60 linear array with a 100-um inter-
electrode spacing (Fig. 5). Microelectrodes that recorded signals
were generally the ones covered by a dense layer of cells (Fig. 5A).
As shown in Fig. 5B, the activity recorded in these cultures mainly
consists of bursts of spikes, including some with an amplitude
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Fig. 4. A) Picture of the whole embryonic mouse hindbrain-spinal cord preparation opened on a 4 x 15 3D-nanostructured BDD MEA. B) Layout of the 4 x 15 3D-nanostructured
BDD MEA. C) Five minutes recording showing three episodes of the rhythmic activity detected in the rostral region of the preparation by 16 3D-nanostructured BDD microelectrodes
colored in black in B layout. D) A focus on an LFP recorded at the electrode marked with a triangle in B layout. E) Detail of a burst of spikes detected on the marked with a diamond in
B layout for the third episode shown in C. F) Bursts of spikes recorded on electrode marked with a circle in B layout and triggered when applying a 1-ms biphasic (cathodic first)
current of 10 pA on one microelectrode located in the upper medulla (electrode marked with a square in B layout).

below 10 pV. These are similar to those observed by Gavello et al. in
their hippocampal cultures [74]. Also, the application of a 1-ms
biphasic current of 10 pA typically triggered a multiunit response
characterized by a burst of spikes (Fig. 5C).

4. Discussion

To date, although BDD displays excellent biocompatibility
[30—32,35,37], chemical inertness [40], and structural stability
[41,42] properties, it has been poorly considered for neural appli-
cation and there is no report for low-noise neural recording and
stimulation with BDD microelectrode arrays [66—68,75]. Indeed,
the intrinsic impedance and capacitance of conventional BDD do
not match those of its competitor materials. Here however, we
fabricated MEAs with 3D-nanostructured BDD microelectrodes
(20-pm-diameter) and found that this material provides good
performance for neural recording and stimulation.

We found interface impedance of 3D-nanostructured BDD mi-
croelectrodes 40 times lower than that of conventional BDD mi-
croelectrodes, a result consistent with observations previously
reported on larger macroelectrodes [49]. This improvement can be
explained by the increased surface area available on the micro-
electrode due to its nanostructuration [52,76]. Moreover, the
microelectrode surfaces consist of a BDD layer deposited on a
template of vertically aligned carbon nanotube (VACNT). The ver-
tical CNT inter-layer has the advantage to be highly conductive,
thus acting as an efficient current collector and ensuring a high
conductivity through the thickness of the electrode [77].

Altogether, the porosity and resulting enhanced conductivity of 3D-
nanostructured BDD microelectrodes explain their much lower
impedances compared to microelectrodes made of conventional
BDD. The median impedance at 1 kHz, the current standard fre-
quency to evaluate the electrode performance corresponding to the
main spike event frequency, was found to be of 50 kQ for 20-pm-
diameter microelectrodes. This value remains comparable to values
obtained for current state of the art neural electrode materials such
as titanium nitride (TiN) [50 kQ for 30-um-diameter electrodes,
[78]], poly(3,4-éthylenedioxythiophéne) (PEDOT) and PEDOT-CNT
[20 kQ for 30-um-diameter electrodes, [79]], iridium oxide (IrOx)
[14 kQ for 100-pum-diameter electrodes,[80]], and black Pt [80 kQ
for 12-pm-diameter electrodes, [28]].

As a consequence of the low impedance level of these 3D-
nanostructured BDD microelectrodes, we found that their noise
level was notably reduced in comparison to conventional BDD
MEAs. This low intrinsic noise level allows the detection of small
amplitude signals in the range of 10—20 pV in both types of
neural preparations tested in the study. In the hippocampal cell
culture recording, microelectrodes recording signals were
generally the ones covered by a dense layer of cells. This is in line
with previous studies characterizing MEA recording of dissoci-
ated cell cultures [81]. Our results show that when compared
with black platinum electrodes with identical diameter, 3D-
nanostructured BDD exhibits higher intrinsic noise. However,
black platinum microelectrodes are highly friable [28], while the
3D-nanostructured BDD MEA were very robust and reusable
several times.
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Fig. 5. A) Picture of a 3D-nanostructured BDD microelectrode covered with 14 DIV hippocampal cells. B) 10 min recording (middle) showing the 14 DIV hippocampal cell activity
detected by one BDD microelectrode with two close-up views on bursts of spikes. C) Bursts of spikes (bottom right) triggered when applying a 1 ms biphasic current of 10 pA to a

3D-nanostructured BDD microelectrode.

Further electrochemical performances of the electrodes were
characterized by cyclic voltammetry both in LiClO4 and in PBS. The
composition of the first electrolyte is typical for characterizing the
potential window of an electrode, while the second is a physio-
logical medium. The potential window of the diamond, typically of
3V, was not altered during the MEA micro-fabrication steps, in the
case of neither conventional nor 3D-nanostructured BDD. This large
potential window is a strong asset to limit electrochemical reaction
of water hydrolysis when the microelectrode is driven to high po-
tential values. This is important to ensure safe charge injection
avoiding harmful reactions during electrical neural stimulation,
and particularly with microelectrodes of small sizes and thus sub-
ject to higher charge density thresholds [29].

The CV measurements allowed to estimate the gain in devel-
oped surface via the ratio of the capacitive currents measured on
the 3D-nanostructured versus conventional BDD microelectrodes.
An increase factor of 43 was found (3 mF cm~2 versus 70 pF cm™—2)
in coherence with the factor of 40 previously reported for large
surface electrode [49]. The theoretical charge storage capacity (CSC)
of 3D-nanostructured BDD was deduced to be of about 10 mC cm ™2,
a value higher than values reported for TiN [0.9 mC cm 2, for 70-

um-diameter electrodes, [82]], and below than values reported for
IrOx [28 mC cm ™2, for ~20-pm-diameter electrodes, [83]] or PEDOT
[75 mC cm~2 for ~20-pm-diameter electrodes, [83]].

Most employed charge-injection electrodes present three main
types of charge-injection mechanisms [29]. Among the modelled
materials, titanium nitride is a chemically stable metallic conductor
that presents a wide potential window —0.9 to 0.9 V with no irre-
versible reactions and thus uses a capacitive mechanism. Iridium
oxide instead goes through a faradaic mechanism exploiting the
hydrated oxide film created via the reversible reaction of iridium
oxidation and reduction. Platinum displays a pseudo-capacitive
mechanism where faradaic surface reactions of oxide formation
and hydrogen atom plating as well as double layer charging play a
role in most neural stimulation conditions. CV measurement in PBS
evidenced a large peak beyond a potential of +1.3 V suggesting that
the 3D-nanostructured BDD microelectrode undergoes an electro-
chemical reaction at high positive potentials. This phenomenon has
been observed previously for conventional BDD in NaClO4 [41] and
for platinum in PBS [84] that was respectively attributed to an
oxidation of the BDD and to the presence of the chloride ion CI™. In
our case, this peak can mostly be associated to the chloride ion
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present in PBS and aCSF since the peak is not visible when CV
measurements are performed in a phosphate buffer free of NaCl.
Though, the charge injection mechanism for 3D-nanostructured
BDD may remain capacitive within a very wide window -1.5
to +1.1 V where no reactions took place. This is a much larger
window and a much greater CSC of 6.8 mC cm 2 than that of TiN.

A critical aspect for an electrode material is to avoid, at the
electrode-tissue interface, not only the electrochemical reactions
during charge injection [29], but also other chemical reactions
occurring during passive use of the electrode and leading to long-
term material degradation, a further concern for long-term re-
cordings [6]. In comparison to conducting polymers [51,85] and
most metals [86—88], diamond and CNT display far better chemical
stability. Diamond erosion only takes place in severe conditions
that include very high temperatures, much above 37 °C, or when
submitted to high current densities [41]. Also, although CNT is a
chemically robust nanomaterial, the potential release of single
CNTs or CNT bundles from the electrode in the tissue and their
toxicity is not well known and can be a concern for clinical appli-
cations [89]. In such case, it should be noted that other strategies for
BDD nanostructuration could further be envisioned. Yet, in our 3D-
nanostructured BDD electrode approach, CNTs were firmly encap-
sulated between two BDD layers. The embryonic neural cell culture
indicated that neurons could attach, survive, and grow neurites on
3D-nanostructured BDD surfaces, with no visible difference in
neurite extension. The biocompatibility of BDD surfaces was
already assessed with different cell types, among which neural cells
[31-36,38]. Our results thus confirm the suitability of BDD for
neural cell cultures. It could have been expected however that the
3D-nanostructured BDD surfaces would lead to a greater neurite
extension compared to the conventional BDD surface. Indeed, CNT
have been shown to promote the neurite extension [57,90,91]. Also,
the role of the geometry of nanostructures in neurite outgrowth
was evidenced in numerous studies [56,92—94]. Since BDD surfaces
are actually not smooth surfaces (see Fig. 2A), it is possible that
their morphology already favors the neurite outgrowth [36,38]. 3D-
nanostructured BDD thus appears as a reliable and powerful ma-
terial for neural interfaces, which should be investigated and
characterized further with in vivo studies.

5. Conclusion

In conclusion, our results demonstrate that 3D-nanostructured
BDD offers good performances for neural recording and stimula-
tion. The impedance of 20-um-diameter microelectrodes were
found to be 50 kQ at 1 KHz, which is comparable to values obtained
for current state-of-the-art neural microelectrode materials. These
new MEAs also display a high safe charge injection capacity as they
combine advantages of the large electrochemical potential window
of diamond with the large surface area provided by nano-
structuration. The MEA ability in stimulating and recording low
amplitude neural signals, together with the established diamond
biostability and biocompatibility, should significantly benefit to the
future development of new types of MEA-based neural prostheses
and implants for the exploration and rehabilitation of the nervous
system.
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