Marc Toussaint

Marc Toussaint
  • Dr. rer. nat.
  • Full Professor (W3) at Technische Universität Berlin

About

309
Publications
43,860
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,019
Citations
Current institution
Technische Universität Berlin
Current position
  • Full Professor (W3)
Additional affiliations
March 2020 - present
Technische Universität Berlin
Position
  • Professor (Full)
December 2012 - February 2020
University of Stuttgart
Position
  • Professor (Full)
October 2010 - November 2012
Freie Universität Berlin
Position
  • Group Leader

Publications

Publications (309)
Preprint
Generating diverse samples under hard constraints is a core challenge in many areas. With this work we aim to provide an integrative view and framework to combine methods from the fields of MCMC, constrained optimization, as well as robotics, and gain insights in their strengths from empirical evaluations. We propose NLP Sampling as a general probl...
Article
Motion planning for robotic systems with complex dynamics is a challenging problem. While recent sampling-based algorithms achieve asymptotic optimality by propagating random control inputs, their empirical convergence rate is often poor, especially in high-dimensional systems such as multirotors. An alternative approach is to first plan with a sim...
Article
Full-text available
High-dimensional motion planning problems can often be solved significantly faster by using multilevel abstractions. While there are various ways to formally capture multilevel abstractions, we formulate them in terms of fiber bundles. Fiber bundles essentially describe lower-dimensional projections of the state space using local product spaces, wh...
Article
Rearrangement puzzles are variations of rearrangement problems in which the elements of a problem are potentially logically linked together. To efficiently solve such puzzles, we develop a motion planning approach based on a new state space that is logically factored , integrating the capabilities of the robot through factors of simultaneously ma...
Article
State-of-the art deep reinforcement learning has enabled autonomous agents to learn complex strategies from scratch on many problems including continuous control tasks. Deep Q-networks (DQN) and deep deterministic policy gradients (DDPGs) are two such algorithms which are both based on Q-learning. They therefore all share function approximation, of...
Preprint
Full-text available
Quadrotors are agile flying robots that are challenging to control. Considering the full dynamics of quadrotors during motion planning is crucial to achieving good solution quality and small tracking errors during flight. Optimization-based methods scale well with high-dimensional state spaces and can handle dynamic constraints directly, therefore...
Chapter
Multiquery planning algorithms find paths between various different starts and goals in a single search space. They are designed to do so efficiently by reusing information across planning queries. This information may be computed before or during the search and often includes knowledge of valid paths. Using known valid paths to solve an individual...
Preprint
Large language models excel at a wide range of complex tasks. However, enabling general inference in the real world, e.g., for robotics problems, raises the challenge of grounding. We propose embodied language models to directly incorporate real-world continuous sensor modalities into language models and thereby establish the link between words and...
Preprint
The path planning problems arising in manipulation planning and in task and motion planning settings are typically repetitive: the same manipulator moves in a space that only changes slightly. Despite this potential for reuse of information, few planners fully exploit the available information. To better enable this reuse, we decompose the collisio...
Preprint
This paper presents a new approach to Model Predictive Control for environments where essential, discrete variables are partially observed. Under this assumption, the belief state is a probability distribution over a finite number of states. We optimize a \textit{control-tree} where each branch assumes a given state-hypothesis. The control-tree opt...
Preprint
Rearrangement puzzles are variations of rearrangement problems in which the elements of a problem are potentially logically linked together. To efficiently solve such puzzles, we develop a motion planning approach based on a new state space that is logically factored, integrating the capabilities of the robot through factors of simultaneously manip...
Preprint
Full-text available
Robotic planning in real-world scenarios typically requires joint optimization of logic and continuous variables. A core challenge to combine the strengths of logic planners and continuous solvers is the design of an efficient interface that informs the logical search about continuous infeasibilities. In this paper we present a novel iterative algo...
Preprint
Full-text available
Numerical optimization has become a popular approach to plan smooth motion trajectories for robots. However, when sharing space with humans, balancing properly safety, comfort and efficiency still remains challenging. This is notably the case because humans adapt their behavior to that of the robot, raising the need for intricate planning and predi...
Preprint
Full-text available
A factored Nonlinear Program (Factored-NLP) explicitly models the dependencies between a set of continuous variables and nonlinear constraints, providing an expressive formulation for relevant robotics problems such as manipulation planning or simultaneous localization and mapping. When the problem is over-constrained or infeasible, a fundamental i...
Article
Robots often need to solve path planning problems where essential and discrete aspects of the environment are partially observable. This introduces a multi-modality, where the robot must be able to observe and infer the state of its environment. To tackle this problem, we introduce the Path-Tree Optimization (PTO) algorithm which plans a path-tree...
Article
Robotic planning in real-world scenarios typically requires joint optimization of logic and continuous variables. A core challenge to combine the strengths of logic planners and continuous solvers is the design of an efficient interface that informs the logical search about continuous infeasibilities. In this paper we present a novel iterative algo...
Article
Manipulation planning is the problem of finding a sequence of robot configurations that involves interactions with objects in the scene, e.g., grasping and placing an object, or more general tool-use. To achieve such interactions, traditional approaches require hand-engineering of object representations and interaction constraints, which easily bec...
Article
Full-text available
Although collective robotic construction systems are beginning to showcase how multi‐robot systems can contribute to building construction by efficiently building low‐cost, sustainable structures, the majority of research utilizes non‐structural or highly customized materials. A modular collective robotic construction system based on a robotic actu...
Article
Robots operating in the real world must combine task planning for reasoning about what to do with motion planning for reasoning about how to do it -- this is known as task and motion planning. One promising approach for task and motion planning is Logic Geometric Programming (LGP) which integrates a logical layer and a geometric layer in an optimiz...
Preprint
It is a long-standing problem to find effective representations for training reinforcement learning (RL) agents. This paper demonstrates that learning state representations with supervision from Neural Radiance Fields (NeRFs) can improve the performance of RL compared to other learned representations or even low-dimensional, hand-engineered state i...
Preprint
Multiquery planning algorithms find paths between various different starts and goals in a single search space. They are designed to do so efficiently by reusing information across planning queries. This information may be computed before or during the search and often includes knowledge of valid paths. Using known valid paths to solve an individual...
Preprint
Hierarchical coordination of controllers often uses symbolic state representations that fully abstract their underlying low-level controllers, treating them as "black boxes" to the symbolic action abstraction. This paper proposes a framework to realize robust behavior, which we call Feasibility-based Control Chain Coordination (FC$^3$). Our control...
Preprint
Robots often need to solve path planning problems where essential and discrete aspects of the environment are partially observable. This introduces a multi-modality, where the robot must be able to observe and infer the state of its environment. To tackle this problem, we introduce the Path-Tree Optimization (PTO) algorithm which plans a path-tree...
Article
The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic construction has largely been implemented on standardized materials, conducting simple, predictable, and repetitive tasks. We present a novel mobile robotic system and corresponding learning approach t...
Preprint
We consider time-optimal motion planning for dynamical systems that are translation-invariant, a property that holds for many mobile robots, such as differential-drives, cars, airplanes, and multirotors. Our key insight is that we can extend graph-search algorithms to the continuous case when used symbiotically with optimization. For the graph sear...
Preprint
Task and Motion Planning has made great progress in solving hard sequential manipulation problems. However, a gap between such planning formulations and control methods for reactive execution remains. In this paper we propose a model predictive control approach dedicated to robustly execute a single sequence of constraints, which corresponds to a d...
Preprint
Full-text available
We present a motion planner for planning through space-time with dynamic obstacles, velocity constraints, and unknown arrival time. Our algorithm, Space-Time RRT* (ST-RRT*), is a probabilistically complete, bidirectional motion planning algorithm, which is asymptotically optimal with respect to the shortest arrival time. We experimentally evaluate...
Preprint
Full-text available
Optimal sampling based motion planning and trajectory optimization are two competing frameworks to generate optimal motion plans. Both frameworks have complementary properties: Sampling based planners are typically slow to converge, but provide optimality guarantees. Trajectory optimizers, however, are typically fast to converge, but do not provide...
Preprint
We present a method to learn compositional predictive models from image observations based on implicit object encoders, Neural Radiance Fields (NeRFs), and graph neural networks. A central question in learning dynamic models from sensor observations is on which representations predictions should be performed. NeRFs have become a popular choice for...
Chapter
Motion planning problems can be simplified by admissible projections of the configuration space to sequences of lower-dimensional quotient-spaces, called sequential simplifications. To exploit sequential simplifications, we present the Quotient-space Rapidly-exploring Random Trees (QRRT) algorithm. QRRT takes as input a start and a goal configurati...
Article
Robotic construction assembly planning aims to find feasible assembly sequences as well as the corresponding robot-paths and can be seen as a special case of task and motion planning (TAMP). As construction assembly can well be parallelized, it is desirable to plan for multiple robots acting concurrently. Solving TAMP instances with many robots and...
Preprint
Full-text available
Recently, there has been a wealth of development in motion planning for robotic manipulation new motion planners are continuously proposed, each with their own unique strengths and weaknesses. However, evaluating new planners is challenging and researchers often create their own ad-hoc problems for benchmarking, which is time-consuming, prone to bi...
Preprint
Robotic manipulation planning is the problem of finding a sequence of robot configurations that involves interactions with objects in the scene, e.g., grasp, placement, tool-use, etc. To achieve such interactions, traditional approaches require hand-designed features and object representations, and it still remains an open question how to describe...
Article
Full-text available
In this article, we propose deep visual reasoning, which is a convolutional recurrent neural network that predicts discrete action sequences from an initial scene image for sequential manipulation problems that arise, for example, in task and motion planning (TAMP). Typical TAMP problems are formalized by combining reasoning on a symbolic, discrete...
Preprint
Full-text available
Applications of Reinforcement Learning (RL) in robotics are often limited by high data demand. On the other hand, approximate models are readily available in many robotics scenarios, making model-based approaches like planning a data-efficient alternative. Still, the performance of these methods suffers if the model is imprecise or wrong. In this s...
Preprint
Machine learning has long since become a keystone technology, accelerating science and applications in a broad range of domains. Consequently, the notion of applying learning methods to a particular problem set has become an established and valuable modus operandi to advance a particular field. In this article we argue that such an approach does no...
Preprint
Full-text available
Sequential decision-making and motion planning for robotic manipulation induce combinatorial complexity. For long-horizon tasks, especially when the environment comprises many objects that can be interacted with, planning efficiency becomes even more important. To plan such long-horizon tasks, we present the RHH-LGP algorithm for combined task and...
Preprint
This work proposes an optimization-based manipulation planning framework where the objectives are learned functionals of signed-distance fields that represent objects in the scene. Most manipulation planning approaches rely on analytical models and carefully chosen abstractions/state-spaces to be effective. A central question is how models can be o...
Article
Full-text available
Nonlinear programming is a complex methodology where a problem is mathematically expressed in terms of optimality while imposing constraints on feasibility. Such problems are formulated by humans and solved by optimization algorithms. We support domain experts in their challenging tasks of understanding and troubleshooting optimization runs of intr...
Chapter
We investigate active learning in Gaussian Process state-space models (GPSSM). Our problem is to actively steer the system through latent states by determining its inputs such that the underlying dynamics can be optimally learned by a GPSSM. In order that the most informative inputs are selected, we employ mutual information as our active learning...
Preprint
In the context of teleoperation, arbitration refers to deciding how to blend between human and autonomous robot commands. We present a reinforcement learning solution that learns an optimal arbitration strategy that allocates more control authority to the human when the robot comes across a decision point in the task. A decision point is where the...
Preprint
Full-text available
We investigate active learning in Gaussian Process state-space models (GPSSM). Our problem is to actively steer the system through latent states by determining its inputs such that the underlying dynamics can be optimally learned by a GPSSM. In order that the most informative inputs are selected, we employ mutual information as our active learning...
Preprint
Full-text available
In high-dimensional state spaces, the usefulness of Reinforcement Learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the present work, we introduce Final-Volume-Preserving Reward Shaping (FV-RS). FV-RS relaxes the strict optimality guarantees of PB-RS to...
Preprint
Full-text available
In this extended abstract, we report on ongoing work towards an approximate multimodal optimization algorithm with asymptotic guarantees. Multimodal optimization is the problem of finding all local optimal solutions (modes) to a path optimization problem. This is important to compress path databases, as contingencies for replanning and as source of...
Conference Paper
Full-text available
In this paper, we introduce a Grasp Manifold Estimator (GraspME) to detect grasp affordances for objects directly in 2D camera images. To perform manipulation tasks autonomously it is crucial for robots to have such graspability models of the surrounding objects. Grasp manifolds have the advantage of providing continuously infinitely many grasps, w...
Conference Paper
Full-text available
This paper presents a teleoperation system that includes robot perception and intent prediction from hand gestures. The perception module identifies the objects present in the robot workspace and the intent prediction module which object the user likely wants to grasp. This architecture allows the approach to rely on traded control instead of direc...
Preprint
Full-text available
In this paper, we introduce a Grasp Manifold Estimator (GraspME) to detect grasp affordances for objects directly in 2D camera images. To perform manipulation tasks autonomously it is crucial for robots to have such graspability models of the surrounding objects. Grasp manifolds have the advantage of providing continuously infinitely many grasps, w...
Preprint
Full-text available
This paper presents a teleoperation system that includes robot perception and intent prediction from hand gestures. The perception module identifies the objects present in the robot workspace and the intent prediction module which object the user likely wants to grasp. This architecture allows the approach to rely on traded control instead of direc...
Preprint
Full-text available
Robotic assembly planning has the potential to profoundly change how buildings can be designed and created. It enables architects to explicitly account for the assembly process already during the design phase, and enables efficient building methods that profit from the robots' different capabilities. Previous work has addressed planning of robot as...
Conference Paper
Full-text available
In this paper, we tackle the problem of human-robot coordination in sequences of manipulation tasks. Our approach integrates hierarchical human motion prediction with Task and Motion Planning (TAMP). We first devise a hierarchical motion prediction approach by combining Inverse Reinforcement Learning and short-term motion prediction using a Recurre...
Conference Paper
Full-text available
In this paper, we tackle the problem of human-robot coordination in sequences of manipulation tasks. Our approach integrates hierarchical human motion prediction with Task and Motion Planning (TAMP). We first devise a hierarchical motion prediction approach by combining Inverse Reinforcement Learning and short-term motion prediction using a Recurre...
Conference Paper
Full-text available
Long-horizon manipulation tasks require joint reasoning over a sequence of discrete actions and their associated continuous control parameters. While Task and Motion Planning (TAMP) approaches are capable of generating motion plans that account for this joint reasoning, they usually assume full knowledge about the environment (e.g. in terms of shap...
Article
Sampling-based planning methods often become inefficient due to narrow passages. Narrow passages induce a higher runtime, because the chance to sample them becomes vanishingly small. In recent work, we showed that narrow passages can be approached by relaxing the problem using admissible lower dimensional projections of the state space. Those relax...
Preprint
Full-text available
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of reactive grasping by proposing a method for unknown object tracking, grasp point sampling and dynamic trajectory planning. Our object...
Conference Paper
Full-text available
As robots become more present in open human environments, it will become crucial for robotic systems to understand and predict human motion. In this paper, we present a novel dataset of full-body motion for everyday manipulation tasks. We additionally captured eye-gaze using a wearable pupil-tracking device. The dataset includes 180 min of motion c...
Chapter
Full-text available
Multi-robot motion planning problems often have many local minima. It is essential to visualize those local minima such that we can better understand, debug and interact with multi-robot systems. Towards this goal, we present the multi-robot motion explorer, an algorithm which extends previous results on multilevel Morse theory by introducing a com...
Preprint
Nonlinear programming targets nonlinear optimization with constraints, which is a generic yet complex methodology involving humans for problem modeling and algorithms for problem solving. We address the particularly hard challenge of supporting domain experts in handling, understanding, and trouble-shooting high-dimensional optimization with a larg...
Article
Recently, there has been a wealth of development in motion planning for robotic manipulation—new motion planners are continuously proposed, each with their own unique strengths and weaknesses. However, evaluating new planners is challenging and researchers often create their own ad-hoc problems for benchmarking, which is time-consuming, prone to bi...
Conference Paper
Modern developments of construction robotics generally utilize a robot-oriented design approach to develop viable systems for the building industry. This has led to highly sophisticated automation of conventional, but at best slightly altered construction processes. In this paper, we argue for a material-robot oriented design process for the creati...
Preprint
Full-text available
As robots become more present in open human environments, it will become crucial for robotic systems to understand and predict human motion. Such capabilities depend heavily on the quality and availability of motion capture data. However, existing datasets of full-body motion rarely include 1) long sequences of manipulation tasks, 2) the 3D model o...
Preprint
Full-text available
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions of feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the underlying nonlinear mathematical program is decomposed into differentiable equality and inequality constraints, each of which depends onl...
Preprint
Full-text available
Contact-based motion planning for manipulation, object exploration or balancing often requires finding sequences of fixed and sliding contacts and planning the transition from one contact in the environment to another. However, most existing algorithms do not take sliding contacts into account or consider them only for specialized scenarios. We pro...
Preprint
Full-text available
Sparse roadmaps are important to compactly represent state spaces, to determine problems to be infeasible and to terminate in finite time. However, sparse roadmaps do not scale well to high-dimensional planning problems. In prior work, we showed improved planning performance on high-dimensional planning problems by using multilevel abstractions to...
Preprint
Full-text available
Sampling-based planning methods often become inefficient due to narrow passages. Narrow passages induce a higher runtime, because the chance to sample them becomes vanishingly small. In recent work, we showed that narrow passages can be approached by relaxing the problem using admissible lower-dimensional projections of the state space. Those relax...
Preprint
Full-text available
We propose a formalism for shared control, which is the problem of defining a policy that blends user control and autonomous control. The challenge posed by the shared autonomy system is to maintain user control authority while allowing the robot to support the user. This can be done by enforcing constraints or acting optimally when the intent is c...
Article
Physical reasoning is a core aspect of intelligence in animals and humans. A central question is what model should be used as a basis for reasoning. Existing work considered models ranging from intuitive physics and physical simulators to contact dynamics models used in robotic manipulation and locomotion. In this work we propose descriptions of ph...
Preprint
Full-text available
Motion prediction in unstructured environments is a difficult problem and is essential for safe and efficient human-robot space sharing and collaboration. In this work, we focus on manipulation movements in environments such as homes, workplaces or restaurants, where the overall task and environment can be leveraged to produce accurate motion predi...

Network

Cited By