About
101
Publications
29,438
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,484
Citations
Citations since 2017
Introduction
Additional affiliations
March 2010 - July 2015
Publications
Publications (101)
Cyst-forming Apicomplexa (CFA) of the Sarcocystidae have a ubiquitous presence as pathogens of humans and farm animals transmitted through the food chain between hosts with few notable exceptions. The defining hallmark of this family of obligate intracellular protists consists of their ability to remain for very long periods as infectious tissue cy...
The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may res...
Recent reports suggest that cell-surface and intracellular immune receptors function synergistically to activate robust defence against pathogens, but whether they co-evolve is unclear. Here we determined the numbers of cell-surface and intracellular immune receptors in 350 species. Surprisingly, the number of receptor genes that are predicted to e...
Studying how different plant groups deal with heavy metal exposure is crucial to improve our understanding of the diversity of molecular mechanisms involved in plant stress response. Here, we used RNA sequencing (RNA-seq) and epigenotyping by sequencing (epiGBS) to assess gene expression and DNA methylation changes respectively in plants from four...
Pesticides are widely applied in agriculture to combat disease, pests, and weeds, leading to long-lasting contamination of agricultural soils with pesticide residues. While classical risk assessment experiments have repeatedly addressed immediate pesticide effects, we employ an ecological approach to investigate how pesticide residues persisting in...
Here we identified cell-surface (LRR-RLKs, LRR-RLPs, LysM-RLKs and LysM-RLPs) and intracellular immune receptors (NB-ARCs) from the genomes of 350 plant species.
Zip file contains:
Folder 'Immune_receptor_sequences' - FASTA files of the identified LRR-RLPs, Lys-RLKs, LysM-RLPs and NB-ARCs.
Folder 'RLK_sequences' - FASTA files of the identified...
The remarkable capacity of bryophytes to tolerate extremely challenging abiotic conditions allows us to enhance our understanding of the diversity of molecular mechanisms involved in plant stress response. Here, we used next generation sequencing to study DNA methylation and gene expression changes in plants from four populations of the metallophyt...
Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identifi...
Ecological genomics approaches have informed us about the structure of genetic diversity in natural populations that might underlie patterns in trait variation. However, we still know surprisingly little about the mechanisms that permit organisms to adapt to variable environmental conditions. The salt marsh foundation plant Spartina alterniflora ex...
Bryophytes’ remarkable capacity to tolerate extreme abiotic conditions allows us to enhance our understanding of the diversity of molecular mechanisms involved in plant stress response. Here, we used next generation sequencing to study DNA methylation and gene expression changes in plants from four populations of the metallophyte moss Scopelophila...
The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may res...
Recent reports suggest that cell-surface and intracellular immune receptors function synergistically to activate robust defence against pathogens, but whether or not they co-evolve is unclear. Here we determined the copy numbers of cell-surface and intracellular immune receptors in 208 species. Surprisingly, these receptor gene families contract an...
Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identifi...
Background
Previous research in animals and humans has demonstrated a potential role of stress regulatory systems, such as the hypothalamic-pituitary-adrenal (HPA) axis and the endocannabinoid (eCB) system, in the development of substance use disorders. We thus investigated alterations of HPA and eCB markers in individuals with chronic cocaine use...
The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and nongenetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the nongenetic contribut...
1. Plant and soil microbial diversity are linked through a range of interactions, including the exchange of carbon and nutrients but also herbivory and pathogenic effects. Over time, associations between plant communities and their soil microbiota may strengthen and become more specific, resulting in stronger associations between plant and soil mic...
Plant and soil microbial diversity are linked through a range of interactions, including the exchange of carbon and nutrients but also herbivory and pathogenic effects. Over time, associations between plant communities and their soil microbiota may strengthen and become more specific, resulting in stronger associations between plant and soil microb...
Chromosomes have an intrinsic tendency to segregate into compartments, forming long-distance contacts between loci of similar chromatin states. How genome compartmentalization is regulated remains elusive. Here, comparison of mouse ground-state embryonic stem cells (ESCs) characterized by open and active chromatin, and advanced serum ESCs with a mo...
The capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and non-genetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the non-genetic contrib...
In population genomics, genetic diversity measures play an important role in genome scans for divergent sites. In population epigenomics, comparable tools are rare although the epigenome can vary at several levels of organization. We propose a model-free, information-theoretic approach, the Jensen-Shannon divergence (JSD), as a flexible diversity i...
The ability of pancreatic β-cells to respond to increased demands for insulin during metabolic stress critically depends on proper ribosome homeostasis and function. Excessive and long-lasting stimulation of insulin secretion can elicit endoplasmic reticulum (ER) stress, unfolded protein response, and β-cell apoptosis. Here we show that the diabete...
Chromosomes have an intrinsic tendency to segregate into compartments, forming long-distance contacts between loci of similar chromatin states. However, how genome compartmentalization is regulated remains elusive. We analyzed two closely and developmentally related pluripotent cell types: ground-state ESCs that have an open and active chromatin an...
1. Plant diversity loss can alter plant–plant and plant–rhizosphere microbiome interactions. These altered interactions in turn may exert diversity‐driven selection pressure to which plants respond with phenotypic changes. Diverse plant communities may favour the survival and fitness of individuals with traits that avoid competition. Conversely mon...
The epigenome modulates the activity of genes and supports the stability of the genome. The epigenome can also contain phenotypically relevant, heritable marks that may vary at the organismic and population level. Such non-genetic standing variation may be relevant to ecological and evolutionary processes. To identify loci susceptible to selection,...
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 c...
Background:
The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is know...
In long‐term grassland experiments, positive biodiversity effects on plant productivity commonly increase with time. Subsequent glasshouse experiments showed that these strengthened positive biodiversity effects persist not only in the local environment but also when plants are transferred into a common environment. Thus, we hypothesized that commu...
Biodiversity often increases plant productivity. In long-term grassland experiments, positive biodiversity effects on plant productivity commonly increase with time. Also, it has been shown that such positive biodiversity effects persist not only in the local environment but also when plants are transferred into a common environment. Thus, we hypot...
The wheat Lr34res allele, coding for an ATP‐binding cassette transporter, confers durable resistance against multiple fungal pathogens. The Lr34sus allele, differing from Lr34res by two critical nucleotide polymorphisms, is found in susceptible wheat cultivars. Lr34res is functionally transferrable as a transgene into all major cereals, including r...
The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are rather well-studied in this respect, relatively little is known abou...
Soil microbes are known to be key drivers of a number of essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over...
In plants, transgenerational inheritance of some epialleles has been demonstrated but it remains controversial whether epigenetic variation is subject to selection and contributes to adaptation. Simulating selection in a rapidly changing environment, we compare phenotypic traits and epigenetic variation between Arabidopsis thaliana populations grow...
In grassland biodiversity experiments the positive biodiversity–ecosystem functioning relationship generally increases over time. However, we know little about the underlying short-term evolutionary processes. Using five plant species selected for twelve years in a biodiversity experiment in mixture or monoculture and plants without such a selectio...
Soil microbes are known to be involved in a number of essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition is largely unknown. We tested whether, over the course of 11 year...
Cryptosporidium parvum is a major cause of diarrhoea in humans and animals. There are no vaccines and few drugs available to control C. parvum. In this study, we used RNA-Seq to compare gene expression in sporozoites and intracellular stages of C. parvum to identify genes likely to be important for successful completion of the parasite's life cycle...
Co-evolution between plants and arbuscular mycorrhizal fungi (AMF) may occur over short time spans. However, whether plants and AMF co-adapt and how this may be influenced by plant diversity has never been addressed. We carried out a plant-AMF experiment using five plant species and AMF selected over 11 years in plant monocultures or mixtures. Sing...
Background:
In plants, the existence and possible role of epigenetic reprogramming has been questioned because of the occurrence of stably inherited epialleles. Evidence suggests that epigenetic reprogramming does occur during land plant reproduction, but there is little consensus on the generality and extent of epigenetic reprogramming in plants....
The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploi...
In grassland biodiversity experiments the positive biodiversity−ecosystem functioning relationship generally increases over time. However, we know little about the underlying short-term evolutionary processes. Using five plant species selected for twelve years in a biodiversity experiment in mixture or monoculture and plants without such a selectio...
Comparing gene expression profiles measured in a wide range of different tissue types, at different developmental stages, or under different environmental conditions can yield valuable insights into the mechanisms of cell/tissue specification and differentiation, or identify cell/tissue-type specific responses to environmental stimuli. Critical for...
This corrects the article DOI: 10.1038/ncb3554.
In the version of this Article originally published, the following affiliation was omitted for Sarah Wyck: Clinic of Reproductive Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland. This has been corrected in the online version of the Article.
Naive pluripotency is established in preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of naive pluripotency. 2i culture has optimized this state, leading to a gene signature and DNA hypomethylation closely comparable to preimplantation epiblast, the developmental ground state. Here we show that Pramel7 (PRAME-like...
The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been extensively characterized in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other tha...
Reproductive traits in plants tend to evolve rapidly due to various causes that include plant-pollinator coevolution and pollen competition, but the genomic basis of reproductive trait evolution is still largely unknown. To characterise evolutionary patterns of genome wide gene expression in reproductive tissues in the gametophyte and to compare th...
Reproductive traits in plants tend to evolve rapidly due to various causes that include plant-pollinator coevolution and pollen
competition, but the genomic basis of reproductive trait evolution is still largely unknown. To characterise evolutionary
patterns of genome wide gene expression in reproductive tissues in the gametophyte and to compare th...
Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (“omics”) now facilitates comprehensive measurements of many rel...
The study of nuclear architecture using Chromosome Conformation Capture (3C) technologies is a novel frontier in biology. With further reduction in sequencing costs, the potential of Hi-C in describing nuclear architecture as a phenotype is only about to unfold. To use Hi-C for phenotypic comparisons among different cell types, conditions, or genet...
The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores...
Analysis of differential gene expression by RNA sequencing (RNA-Seq) is frequently done using feature counts, i.e. the number of reads mapping to a gene. However, commonly used count algorithms (e.g. HTSeq) do not address the problem of reads aligning with multiple locations in the genome (multireads) or reads aligning with positions where two or m...
Chromosomes are folded, spatially organized, and regulated by epigenetic marks. How chromosomal architecture is connected to the epigenome is not well understood. We show that chromosomal architecture of Arabidopsis is tightly linked to the epigenetic state. Furthermore, we show how physical constraints, such as nuclear size, correlate with the fol...
Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC...
The packaging of long chromatin fibres in the nucleus poses a major challenge, as it must fulfil both physical and functional requirements. Until recently, insight into the chromosomal architecture of plants was mainly provided by cytogenetic studies. Complementary to these analyses, chromosome conformation capture technologies promise to refine an...
Sex-biased genes are genes with a preferential or specific expression in one sex and tend to show an accelerated rate of evolution in animals. Various hypotheses - which are not mutually exclusive - have been put forth to explain observed patterns of rapid evolution. One possible explanation is positive selection, but this has been shown only in fe...
Expression profiling of single cells can yield insights into cell specification, cellular differentiation processes, and cell type-specific responses to environmental stimuli. Recent work has established excellent tools to perform genome-wide expression studies of individual cell types, even if the cells of interest occur at low frequency within an...