Marc Pollefeys

Marc Pollefeys
ETH Zurich | ETH Zürich · Department of Computer Science

PhD

About

665
Publications
227,002
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
34,484
Citations
Additional affiliations
August 2007 - present
ETH Zurich
Position
  • Professor (Full)

Publications

Publications (665)
Article
Full-text available
Recently, learning-based multi-view stereo methods have achieved promising results. However, most of them overlook the visibility difference among different views, which leads to an indiscriminate multi-view similarity definition and greatly limits their performance on datasets with strong viewpoint variations. To deal with this problem, a pixelwis...
Preprint
Full-text available
We introduce a scalable framework for novel view synthesis from RGB-D images with largely incomplete scene coverage. While generative neural approaches have demonstrated spectacular results on 2D images, they have not yet achieved similar photorealistic results in combination with scene completion where a spatial 3D scene understanding is essential...
Preprint
Full-text available
Since RANSAC, a great deal of research has been devoted to improving both its accuracy and run-time. Still, only a few methods aim at recognizing invalid minimal samples early, before the often expensive model estimation and quality calculation are done. To this end, we propose NeFSAC, an efficient algorithm for neural filtering of motion-inconsist...
Preprint
Temporal alignment of fine-grained human actions in videos is important for numerous applications in computer vision, robotics, and mixed reality. State-of-the-art methods directly learn image-based embedding space by leveraging powerful deep convolutional neural networks. While being straightforward, their results are far from satisfactory, the al...
Article
Representing scenes at the granularity of objects is a prerequisite for scene understanding and decision making. We propose PriSMONet, a novel approach based on Prior Shape knowledge for learning Multi-Object 3D scene decomposition and representations from single images. Our approach learns to decompose images of synthetic scenes with multiple obje...
Article
Undesirable reflections contained in photos taken in front of glass windows or doors often degrade visual quality of the image. Separating two layers apart benefits both human and machine perception. Polarization status of the light changes after refraction or reflection, providing more observations of the scene, which can benefit reflection separa...
Article
3D hand pose estimation is a challenging problem in computer vision due to the high degrees-of-freedom of hand articulated motion space and large viewpoint variation. As a consequence, similar poses observed from multiple views can be dramatically different. In order to deal with this issue, view-independent features are required to achieve state-o...
Preprint
Spatial computing -- the ability of devices to be aware of their surroundings and to represent this digitally -- offers novel capabilities in human-robot interaction. In particular, the combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions...
Preprint
Full-text available
Neural implicit representations have recently shown encouraging results in various domains, including promising progress in simultaneous localization and mapping (SLAM). Nevertheless, existing methods produce over-smoothed scene reconstructions and have difficulty scaling up to large scenes. These limitations are mainly due to their simple fully-co...
Preprint
Full-text available
Building upon the recent progress in novel view synthesis, we propose its application to improve monocular depth estimation. In particular, we propose a novel training method split in three main steps. First, the prediction results of a monocular depth network are warped to an additional view point. Second, we apply an additional image synthesis ne...
Preprint
Understanding social interactions from first-person views is crucial for many applications, ranging from assistive robotics to AR/VR. A first step for reasoning about interactions is to understand human pose and shape. However, research in this area is currently hindered by the lack of data. Existing datasets are limited in terms of either size, an...
Preprint
We present IterMVS, a new data-driven method for high-resolution multi-view stereo. We propose a novel GRU-based estimator that encodes pixel-wise probability distributions of depth in its hidden state. Ingesting multi-scale matching information, our model refines these distributions over multiple iterations and infers depth and confidence. To extr...
Preprint
Full-text available
We propose a method for jointly estimating the 3D motion, 3D shape, and appearance of highly motion-blurred objects from a video. To this end, we model the blurred appearance of a fast moving object in a generative fashion by parametrizing its 3D position, rotation, velocity, acceleration, bounces, shape, and texture over the duration of a predefin...
Preprint
Full-text available
3D representation and reconstruction of human bodies have been studied for a long time in computer vision. Traditional methods rely mostly on parametric statistical linear models, limiting the space of possible bodies to linear combinations. It is only recently that some approaches try to leverage neural implicit representations for human body mode...
Preprint
Full-text available
State-of-the-art methods for self-supervised sequential action alignment rely on deep networks that find correspondences across videos in time. They either learn frame-to-frame mapping across sequences, which does not leverage temporal information, or assume monotonic alignment between each video pair, which ignores variations in the order of actio...
Preprint
Full-text available
At the heart of the success of deep learning is the quality of the data. Through data augmentation, one can train models with better generalization capabilities and thus achieve greater results in their field of interest. In this work, we explore how to augment a varied set of image datasets through relighting so as to improve the ability of existi...
Preprint
In deep multi-view stereo networks, cost regularization is crucial to achieve accurate depth estimation. Since 3D cost volume filtering is usually memory-consuming, recurrent 2D cost map regularization has recently become popular and has shown great potential in reconstructing 3D models of different scales. However, existing recurrent methods only...
Preprint
Full-text available
For robotic interaction in an environment shared with multiple agents, accessing a volumetric and semantic map of the scene is crucial. However, such environments are inevitably subject to long-term changes, which the map representation needs to account for.To this end, we propose panoptic multi-TSDFs, a novel representation for multi-resolution vo...
Chapter
Computer-assisted orthopedic interventions require surgery planning based on patient-specific three-dimensional anatomical models. The state of the art has addressed the automation of this planning process either through mathematical optimization or supervised learning, the former requiring a handcrafted objective function and the latter sufficient...
Preprint
Narrated instructional videos often show and describe manipulations of similar objects, e.g., repairing a particular model of a car or laptop. In this work we aim to reconstruct such objects and to localize associated narrations in 3D. Contrary to the standard scenario of instance-level 3D reconstruction, where identical objects or scenes are prese...
Preprint
Recovering high-quality 3D human motion in complex scenes from monocular videos is important for many applications, ranging from AR/VR to robotics. However, capturing realistic human-scene interactions, while dealing with occlusions and partial views, is challenging; current approaches are still far from achieving compelling results. We address thi...
Preprint
Finding local features that are repeatable across multiple views is a cornerstone of sparse 3D reconstruction. The classical image matching paradigm detects keypoints per-image once and for all, which can yield poorly-localized features and propagate large errors to the final geometry. In this paper, we refine two key steps of structure-from-motion...
Preprint
Full-text available
We address the novel task of jointly reconstructing the 3D shape, texture, and motion of an object from a single motion-blurred image. While previous approaches address the deblurring problem only in the 2D image domain, our proposed rigorous modeling of all object properties in the 3D domain enables the correct description of arbitrary object moti...
Preprint
Full-text available
In recent years, neural implicit representations gained popularity in 3D reconstruction due to their expressiveness and flexibility. However, the implicit nature of neural implicit representations results in slow inference time and requires careful initialization. In this paper, we revisit the classic yet ubiquitous point cloud representation and i...
Preprint
We present, for the first time, a comprehensive framework for egocentric interaction recognition using markerless 3D annotations of two hands manipulating objects. To this end, we propose a method to create a unified dataset for egocentric 3D interaction recognition. Our method produces annotations of the 3D pose of two hands and the 6D pose of the...
Article
Full-text available
Purpose: Tracking of tools and surgical activity is becoming more and more important in the context of computer assisted surgery. In this work, we present a data generation framework, dataset and baseline methods to facilitate further research in the direction of markerless hand and instrument pose estimation in realistic surgical scenarios. Meth...
Article
2019 IEEE. Visual-Inertial Odometry (VIO) algorithms typically rely on a point cloud representation of the scene that does not model the topology of the environment. A 3D mesh instead offers a richer, yet lightweight, model. Nevertheless, building a 3D mesh out of the sparse and noisy 3D landmarks triangulated by a VIO algorithm often results in a...
Preprint
Full-text available
In this paper, we aim at improving the computational efficiency of graph convolutional networks (GCNs) for learning on point clouds. The basic graph convolution that is typically composed of a $K$-nearest neighbor (KNN) search and a multilayer perceptron (MLP) is examined. By mathematically analyzing the operations there, two findings to improve th...
Preprint
Full-text available
Compared to feature point detection and description, detecting and matching line segments offer additional challenges. Yet, line features represent a promising complement to points for multi-view tasks. Lines are indeed well-defined by the image gradient, frequently appear even in poorly textured areas and offer robust structural cues. We thus here...
Preprint
Full-text available
Motion blur is one of the major challenges remaining for visual odometry methods. In low-light conditions where longer exposure times are necessary, motion blur can appear even for relatively slow camera motions. In this paper we present a novel hybrid visual odometry pipeline with direct approach that explicitly models and estimates the camera's l...
Preprint
Camera pose estimation in known scenes is a 3D geometry task recently tackled by multiple learning algorithms. Many regress precise geometric quantities, like poses or 3D points, from an input image. This either fails to generalize to new viewpoints or ties the model parameters to a specific scene. In this paper, we go Back to the Feature: we argue...
Preprint
Full-text available
We present a new pipeline for holistic 3D scene understanding from a single image, which could predict object shape, object pose, and scene layout. As it is a highly ill-posed problem, existing methods usually suffer from inaccurate estimation of both shapes and layout especially for the cluttered scene due to the heavy occlusion between objects. W...
Preprint
We propose a method for sensor array self-localization using a set of sources at unknown locations. The sources produce signals whose times of arrival are registered at the sensors. We look at the general case where neither the emission times of the sources nor the reference time frames of the receivers are known. Unlike previous work, our method d...
Article
Localization of a robotic system within a previously mapped environment is important for reducing estimation drift and for reusing previously built maps. Existing techniques for geometry-based localization have focused on the description of local surface geometry, usually using pointclouds as the underlying representation. We propose a system for g...
Preprint
We present DeepSurfels, a novel hybrid scene representation for geometry and appearance information. DeepSurfels combines explicit and neural building blocks to jointly encode geometry and appearance information. In contrast to established representations, DeepSurfels better represents high-frequency textures, is well-suited for online updates of a...
Preprint
Full-text available
In this work, we present a lightweight, tightly-coupled deep depth network and visual-inertial odometry (VIO) system, which can provide accurate state estimates and dense depth maps of the immediate surroundings. Leveraging the proposed lightweight Conditional Variational Autoencoder (CVAE) for depth inference and encoding, we provide the network w...
Preprint
Full-text available
We propose the first learning-based approach for detection and trajectory estimation of fast moving objects. Such objects are highly blurred and move over large distances within one video frame. Fast moving objects are associated with a deblurring and matting problem, also called deblatting. Instead of solving the complex deblatting problem jointly...
Preprint
Full-text available
We propose an online multi-view depth prediction approach on posed video streams, where the scene geometry information computed in the previous time steps is propagated to the current time step in an efficient and geometrically plausible way. The backbone of our approach is a real-time capable, lightweight encoder-decoder that relies on cost volume...
Chapter
Full-text available
Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple ful...
Preprint
Visual localization and mapping is the key technology underlying the majority of Mixed Reality and robotics systems. Most state-of-the-art approaches rely on local features to establish correspondences between images. In this paper, we present three novel scenarios for localization and mapping which require the continuous update of feature represen...
Preprint
We present PatchmatchNet, a novel and learnable cascade formulation of Patchmatch for high-resolution multi-view stereo. With high computation speed and low memory requirement, PatchmatchNet can process higher resolution imagery and is more suited to run on resource limited devices than competitors that employ 3D cost volume regularization. For the...
Preprint
Full-text available
Objects moving at high speed appear significantly blurred when captured with cameras. The blurry appearance is especially ambiguous when the object has complex shape or texture. In such cases, classical methods, or even humans, are unable to recover the object's appearance and motion. We propose a method that, given a single image with its estimate...
Preprint
Full-text available
We present a novel online depth map fusion approach that learns depth map aggregation in a latent feature space. While previous fusion methods use an explicit scene representation like signed distance functions (SDFs), we propose a learned feature representation for the fusion. The key idea is a separation between the scene representation used for...
Chapter
Local feature matching is a critical part of many computer vision pipelines, including among others Structure-from-Motion, SLAM, and Visual Localization. However, due to limitations in the descriptors, raw matches are often contaminated by a majority of outliers. As a result, outlier detection is a fundamental problem in computer vision and a wide...
Chapter
Full-text available
To be invariant, or not to be invariant: that is the question formulated in this work about local descriptors. A limitation of current feature descriptors is the trade-off between generalization and discriminative power: more invariance means less informative descriptors. We propose to overcome this limitation with a disentanglement of invariance i...
Chapter
Over the last years, visual localization and mapping solutions have been adopted by an increasing number of mixed reality and robotics systems. The recent trend towards cloud-based localization and mapping systems has raised significant privacy concerns. These are mainly grounded by the fact that these services require users to upload visual data t...
Chapter
In this work, we address the problem of refining the geometry of local image features from multiple views without known scene or camera geometry. Current approaches to local feature detection are inherently limited in their keypoint localization accuracy because they only operate on a single view. This limitation has a negative impact on downstream...