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Abstract: In the present study two Land Use Regression Models for the 

estimation of urban fine dust distribution were established and compared. 

The first model used 2D parameters derived from an Open Street Map pro-

ject data (OSM) and the second model used 3D parameters derived from a 

CityGML-based 3D city model. Both models predict fine-dust concentra-

tions by using urban morphological (2D resp. 3D) and additional semantic 

parameters. The models were applied to a 2 km² study area in Berlin, 

Germany. The 2D-LUR model explained 84 % of the variance of TNC for 

the full data set with root mean square error (RMSE) of 3284 cm-3 while 

the 3D-LUR explained 79 % of the variance with an RMSE of 3534 cm-3. 

Both models are capable to depict the spatial variation of TNC across the 

study area and showed relatively similar deviation from the measured 

TNC. The 3D-LUR needed less parameters than the 2D-LUR model. Fur-

thermore, the semantic parameters (e.g. streets type) played a significant 

role in both models. 
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1. Introduction and problem statement 

 

Many epidemiological and toxicological studies have discussed the health 

effects of ultrafine particles (UFP) (WHO, 2013). These studies have 

proved that the particulate air pollution in urban area is associated with 

significant impacts on human health (Heal et al., 2012; HEI, 2013, Zhang, 

2015) especially, among children who are the most susceptible group in 

regard to particulate exposure compared to adults (Burtscher, 2012). Ul-

trafine particles with diameter less than 0.1 microns often are the direct 

product of the combustion of fossil fuels by road transport (Geiser et al., 

2005).  

The UFP concentration can be estimated from measurements of the parti-

cle number size distribution. At street canyon or near traffic sites, the 

number of UFP generally accounts for the majority of total particle number 

concentrations, i.e., greater than 80 % to 90 % (Morawska et al., 2008; 

Weber et al., 2013). The combustion source air pollution, especially from 

traffic has been considered as the most significant factor of premature 

death where numerous toxic materials produced by combustion processes 

are in the ultrafine size range (Jerrett, 2011; Burtscher, 2012). Therefore, 

detailed assessment of exposure by measurement and modelling of fine 

dust distribution is necessary in the field of urban planning, traffic man-

agement and city system modelling.  

UFP concentrations are affected by different sources of combustion, sec-

ondary production pathways that change their number, shape, size and 

chemical composition (Sabaliaukas, 2015). The spatial distribution pattern 

of urban UFP concentrations are mostly affected by the local wind field 

and, therefore, by different factors of the urban complexity, i.e., the urban 

morphology that influences it.   

Urban morphology can be analyzed concerning geometrical properties of 

street canyons (Vardoulakis et al., 2002), building density, alignment of 

streets towards the prevailing wind direction, and characteristics of cross-

ing sections (Brand & Löwner, 2014). Especially, the buildings structure is 

considered in addition of the meteorological factors the main parameters 

for modelling air ventilation (Wong et al., 2011). However, urban mor-

phology has to be viewed as a 3D phenomenon.   

Land use regression (LUR) models have been presented as a promising 

approach for the prediction of long-term, local-scale variation in traffic 

pollution and to obtain accurate, small scale air pollutant concentrations 

without a detailed pollutant emission inventory (Briggs et al., 2000; Brauer 

et al., 2003, Zhang, 2015, Ghassoun et al. 2015A). LUR models are multi-

ple linear regression approaches that assume independent residuals and use 

GIS-based explanatory variables to predict pollutant concentrations at cer-
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tain locations (Hoek et al., 2008; Mercer et al., 2011). They have been  

widely applied in cities of North America, Europe, and Asia (e.g. Arain et 

al., 2007; Kashima, 2009; Chen et al, 2010; Saraswat et al, 2013; Tang et 

al., 2013; Rivera et al., 2012; Abernethy et al., 2013). Different studies 

tried to enhance the LUR models by incorporating meteorological parame-

ters (Arain, 2007; Chen, 2010; Kim, 2011; Zhang, 2015; Li, 2015). 

Few studies used 3D spatial data to enhance the representation of land use 

(or the urban morphology) and the dispersion field in LUR, such as using 

the 3D data of building, street canyons and porosity, i.e. the chance for the 

air to pass through a building block, in LUR modelling (Tang, 2013, 

Ghassoun et al., 2015B) or examining the influence of different heights 

from ground level on the predicted values of PM2.5 (Ho et al., 2015). 3D 

parameters not only exhibited an enhancement of the LUR models but also 

simplify the models by using less parameter than 2D model (Ghassoun et 

al., 2015B).  

Today, 3D city models for semantically enriched virtual 3D city models 

are increasingly available due to the standardization processes like 

CityGML (Gröger et al., 2012). However, until today no comparative 

study has been performed to evaluate the benefit of 3D parameters in the 

development of LUR for fine dust distribution modelling in urban areas. 

Here, two LUR models were established and compared, the first model 

used 2D parameters derived from an Open Street Map project data (OSM) 

and the second model used only 3D parameters derived from a CityGML-

based 3D city model. Both models predict fine-dust concentrations by us-

ing urban morphological and semantic parameters.  

 

 

2. Methods and materials 

2.1. Study area and data source 
The present study developed LUR models for 25 sites in an area of 1*2 km 

in the City of Berlin City Fig. 1. The study area is characterized by street 

canyons with different traffic intensities and different microenvironment.  

Site positions were chosen to cover the whole study area at which mobile 

measurements of particulate air pollutants were conducted. At each site, 

the average concentration of total number concentration were calculated 

over 1 min. the measurements were carried out during 6 campaigns in win-

ter (January 2015) during stable weather conditions without rain and low 

wind speeds < 4 ms-1. Total number concentrations (TNC) were measured 

with a hand-held particle counter device (TSI 3007). The TSI 3007 is a 

fully battery operated handheld sensor for the measurement of particle 

number concentrations. The instrument detects particles ranging in size 
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from 10 to about 1000 nm. The concentration range is between 0 and 

100,000 particles cm-3.  

 
Fig. 1. Research area in “Berlin Mitte” and the 25 measurement locations. 

 

To perform the parametrization of the urban morphology different data 

resources have been used in our study, Open Street Map and CityGML. 

OpenStreetMap (OSM) has been used to extract 2D and semantically data. 

The latter went into both, the 2D-based and the 3D based model. OSM is 

one of the most well-known data of a collaborative mapping project and it 

receives a huge amount of contributions from across the world (Jokar et 

al., 2015). It provides an abundant data source for geospatial data update. 

Many studies have tested the quality assessment of OSM data according to 

its completeness, temporal accuracy, thematic accuracy and positional ac-

curacy (Ming et al., 2013). However, OSM is a function of contributor ac-

tivity. Therefore, many studies represented that the degree and nature of 

such activity shows significant spatial heterogeneity. A main problem of 

using OSM data is that we have not enough information about the people 

who collect these data or the patterns of data collection and the data are not 

complete and comprehensive (Haklay, 2009). Haklay (2009) presented the 

satisfactory of using OSM for many application concerning the positional 

accuracy and completeness in major urban area and concluded that the 

OSM quality is beyond good enough. OSM data became not only a source 

for 2D data but also have been used to generate 3D city model by integrat-

ed the OSM data into the height information (Over et al., 2010). Here, 
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OSM data was only used to get the information regarding the streets and 

land use information. 

 

CityGML (Gröger et al. 2012) as an international standard of the Open 

Geospatial Consortium (OGC) has been used to extract 3D for the second 

LUR model. It is a common information model and encoding standard for 

the representation, storage, and exchange of virtual 3D city and landscape 

models. It provides 3D geometric representations next to concepts for the 

representation of their semantics and their relations. CityGML is common-

ly accepted in the field of 3D city models; the number of available city 

models and their applications has increased significantly in the last ten 

years (r.f. Löwner et al. 2013). Applications that rely on CityGML are e.g. 

the Energy Atlas of Berlin (Kaden and Kolbe 2013), noise simulation and 

mapping (Czerwinski et al. 2013) and, nowadays, fine dust distribution 

modelling (Ghassoun et al. 2015B). Here, CityGML data was used to ex-

tract the 3D information for the establishment of a 3D based model. 

Volume of buildings have been calculated using an SQL script based on 

the migration script from 3DCityDB 2.x to 3DCityDB 3.x and explicitly 

adapted for the Berlin data (where thematically surface are used). The 

SQL-script cannot be applied without modification to other database with 

mostly only one roof surface for a whole building or no Ground- Wall- or 

RoofSurfaces is available. However, data inconsistencies have been ig-

nored in this study. The volume calculation achieved 98.23 % of the whole 

buildings and only 25 buildings out of 1412 were left out due to error in 

their geometry probably. Changing the tolerance value from 0.0005 given 

in the original 3DCityDB to 0.01 did not bring any improvement. There-

fore, the remaining building’s volumes were calculated out of their height 

and area information. In addition, the output table contains the information 

about the measured height, maximum and minimum height. The volume of 

the trees has also been extracted out of the 3D CityDB data. Therefore, 

Oracle SQL Developer (free software) was used to export the results for 

using them in developing the 3D-LUR model. 

 

3. Model developing  

3.1. Geographical parameters 

In order to compare 2D and 3D parameter-based models in the field of ur-

ban fine dust distribution modelling, distinction has been made between 

three types of parameters. First, semantical parameters have been used to 

describe none geometrically properties of the urban system. In our re-

search, semantical parameters represent the attributes of different type of 

streets (primary, secondary, etc.) in the study area within different radii 

buffer. Street types serve as a proxy for traffic intensity. Therefore, they do 
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not stand for a geometrically property but for additionally information and 

are classified as semantically. Here, these parameters will be extracted out 

of OSM data and used in developing both, 2D-LUR and 3D-LUR (rf. Tab. 

1). Hence, the two models developed just differ in terms of dimensions of 

the geometric parameters. 

 

2D parameters are exclusively used for the development of the 2D based 

model that has been used to compare with the 3D based model. The poten-

tial 2D parameters were extracted from OSM data using different radii 

buffer around each measurement site to reflect their spatial influence on 

the air pollution concentrations around these sites. They are described in 

Tab. 1, also. 

3D parameters are used to describe the morphology of the urban area in 3D 

and its impact on the fine dust distributions and urban ventilation Tab. 1. 

They are used for development of the 3D based model, only. 3D parame-

ters have been extracted to build a model that really incorporates f.i. local 

wind field as a function of the built environment. Parameters are extracted 

from a CityGML-based database. To use City-GML-based database within 

GIS environment, Feature Manipulation Engine (FME) have been used to 

transfer the data into shapefiles and Oracle SQL Developer software to 

export their attributes and then the traditional LUR circular buffer have 

been used to extract the 3D parameters and they can be described as fol-

lowing (rf. Tab 1): 

- Height of the buildings adjacent to the street (H), 

- Ratio of height and width of the street canyon (H/W), 

- Volumetric density which describes the ratio of built volume and 

air (Vb), 

- Volumetric tree density which describes the ratio of tree volume 

and the air (Vtree),  

- Porosity, which is based on the input parameters of building vol-

ume, total areas and the height of the highest building within the buffer 

radii. It has calculated by the following equations of Burghardt (2015): 

 

Ph-var = (AT*hUCL – V)/ AT*hUCL 

 

- Volumetrically averaged building height and it is calculated as fol-

lowing: 

H = ∑n
i=1 Vi * hi / ∑

n
i=1 Vi 
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Tab. 1. List of used spatial parameters and their source next to their extrac-

tion method in Esri’s ArcGIS 10.0. 

 

 

 

 

3.2.  LUR model using 2D parameters 
A total of 22 2D parameters and 5 semantical parameters were included 

into the process of land use regression model and these parameters were 

grouped depending on the process impact on pollutant concentrations into 

three categories of emission, dilution and deposition.  

Category Sub-categories Buffer Radii 

[m] 

Source Methods 

Semantical Pa-

rameters 

Length of different types of 

streets (Primary, Secondary, 

Tertiary, Residential, living) 

50, 100 & 200 OSM Data Using Esri’s Model Builder: gen-

erate buffer, intersect with the 

street, and summarize according 

the type of the street. 

2D Parameters Total area of building 

Total area of different land use 

100, 200  OSM Data Using Esri’s Model Builder: gen-

erate buffer, intersect with the 

buildings, and summarize accord-

ing the type of the building. 

 

 

Distance parameters  The distance to nearest primary 

roads 

Plan area ratio  λp = Af/AT 

3D Parameters The height of the buildings (H) 

The ratio of height and width 

(H/W) 

Volumetric density (Vb). 

Volumetric trees density (Vtree). 

Porosity (Ph-var) 

Volumetrically averaged build-

ing height (H) 

50, 100 & 200 CityGML  
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In our study, a model building algorithm described by Henderson et al. 

(2007) was used to build the LUR model for the fine dust concentrations 

according to the following procedures:  

1. All variables were ranked by the absolute strength of their correla-

tion with the measured pollutant.  

2. The highest-ranking variable in each sub-category was identified. 

3.  Afterwards the variables in each sub-category that are correlated 

(i.e. Pearson’s r >= 0.6) with the most highly ranked variables 

were eliminated to avoid autocorrelation and collinearity.  

4. All remaining variables were implemented into robust linear re-

gression models.  

5. Hence, variables that were not significant at a 90 % confidence 

level or that had a coefficient with a counter intuitive sign were re-

jected.  

6. Finally, the last two steps were repeated to convergence.  

Before applying the aforementioned procedures, buffers of different radii 

were generated for each measured site using ESRI’s ArcGIS 10.2. All the 

available data (streets, buildings and recreational area) were extracted and 

stored in order to use them in the process of LUR model. Buffer radii of 50 

m, 100 m, and 200 m were used to derive the length of streets, whereas 

buffers radii of 100 m, 200 m, and 300 m were used to derive the building 

area. Buffer radii of 500 m were used to derive the area of recreational ar-

ea. Specify the buffer radii reflects the scale of environmental processes 

appropriate for each variable. For example, effects of emission from road 

traffic are typically localized, so the buffer radii should be small. The ef-

fect of land use are often more extensive and more complex, therefore, 

larger buffer radii might be used. 

The most significant parameters were selected and used in the multi re-

gression model in order to build the models for fine dust concentrations. 

The LUR model was evaluated using leave-one-out cross validation (in 

which one observation is left out in each iteration and the model was rerun 

and then used to predict the excluded observation) to confirm the model 

fit. 
 

3.3. LUR model using 3D parameters 
For the development of the 3D based model, the 3D parameters derived 

form CityGML-based database were extracted and transferred into 

ArcGIS. The 3D parameters, i.e. the height of the buildings (H), the ratio 

of height and width (H/W), volumetric density (Vb), volumetric trees den-

sity (Vtree), porosity (Ph-var), and volumetrically averaged building height 

(H)) were extracted within buffers of radii 50 m, 100 m and 200 m for 

each measured site. Volumetric density was calculated as a ratio of built 
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volume and air. Air volume was calculated as a cylinder. The top surface 

of this cylinder is generated as a TIN surface represents the height of the 

buildings lying within a buffer around the site (Vb). Porosity is one of the 

roughness parameters and it is a measure of how penetrable the area is for 

the airflow (Gàl et al., 2009). It represents the correlation between the pen-

etrable and impenetrable parts of an air layer over a certain area. It could 

be calculated as the ratio of the volume of the open air and the volume of 

urban canopy layer regardless the orientation. The volumetrically averaged 

building height can be calculated after determining the volumes and the 

heights of each building in each buffer. Trees are considered as passive 

controls in reduction of pedestrian exposure (Abhijith et al., 2015). There-

fore, volumetric trees density was calculated as ratio of trees volume and 

the air volume was calculated same in volumetric density.  

In addition semantical information as a proxy for traffic intensities have 

been extracted from OSM data. This is the sum of length of different type 

of streets within LUR buffers was used. Then, all the 3D parameters were 

entered into multiple linear regression and same aforementioned LUR pro-

cedures were used to select the most significant variables and implemented 

them in building 3D model for fine dust concentrations. 

 

4. Results 

4.1. Measurements 

The descriptive statistics of the measured and modeled TNC for the study 

area are presented in (Tab. 2). Mobile measurements at 25 spots were con-

ducted to analyze the spatial variation of TNC across the study area. 

Mean of measured TNC concentration was 23569 cm-3 in ranging from 

14332 cm-3 at sampling spot 13 to 40972 cm-3 at sampling spot 9.  

Generally, it is evident that the minimum concentrations were at the meas-

urement spots close to park place while the area close to the major roads 

with high traffic intensity were characterized by highest concentrations.  

 

Tab. 2. Descriptive statistics of measured TNC concentrations and TNC 

output from 2D-LUR and 3D-LUR models. Values in brackets represent 

corresponding sampling points. 
 Meas. 2D-LUR 3D-LUR 

Mean (cm-3) 23569 23569 23292 

SD (cm-3) 7148 6558 6262 

Max (cm-3) 40972(9) 38016(9) 34579(9) 

Min(cm-3) 14332(13) 14586(13) 14731(16) 
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4.2.  Comparison of 2D & 3D models 
27 parameters were extracted from the data available and the final 2D-

LUR model included parameters that incorporated site position, length of 

primary and residential streets, width of the streets and commercial and 

residential land use. Each parameter took the expected sign and matches 

the predefined direction of effect. Width of the streets and the length of 

primary streets (semantic parameters that represents high traffic intensity)  

within 100 m buffer resulted with higher TNC concentration, whereas 

commercial land use within 500 m buffer resulted in lower TNC concen-

trations. Fig. 2 depicts the standardized regression coefficients and the in-

fluence explanatory parameters on the dependent parameter. The standard-

ized coefficients of each parameter used in the final 2D-LUR and their er-

rors are presented in Tab. 3. 

 

 
Fig. 2. Corresponding standardized regression coefficients for 2D-LUR 

model. 
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Tab. 3. Model coefficients for 2D-LUR model. 

Standardized coefficients:   

Source Value Standard 
error 

t Pr > |t| 

Y 1.142 0.414 2.761 0.013 

Primary100 1.480 0.578 2.560 0.020 

Resid50 1.057 0.219 4.827 0.000 

Comercial500 0.442 0.309 1.433 0.169 

Width -2.045 0.596 -3.429 0.003 

Residential500 -0.718 0.191 -3.752 0.001 

R2 0.84    

  

 

The 2D-LUR model expressed 84 % of the variance of the measured fine 

dust concentrations with root mean square errors (RMSE) of 3284 cm-3. 

Fig. 3a shows the plot of measured TNC concentrations against predicted 

one and the model gives the evidence for a linear trend with no outliers. 

 

  
Fig. 3. Plot of residuals between measured and predicted TNC a) 2D-LUR 

model, b) 3D-LUR model 

 

In contrast, 35 parameters were extracted from the 3D data and 5 semanti-

cal parameters available and the final 3D-LUR model included only the 

most significant parameters that incorporated length of secondary and ter-

tiary streets, the ratio of height and width of the street canyon and volu-
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metric trees density. Also, the parameters reflect the direction of their in-

fluence of the TNC. The secondary streets within 100 m buffer and the 

ratio of width and height of the streets resulted with higher TNC concen-

tration, whereas tertiary streets and volumetric trees density within 50 m 

buffer resulted in lower TNC concentrations. 

Fig. 4 shows the standardized regression coefficients and the influence 

explanatory parameters on the dependent parameter. The standardized co-

efficients of each parameter used in the final 3D-LUR and their errors are 

presented in Tab. 4. 

 

 
Fig. 4. Corresponding standardized regression coefficients for 3D-LUR 

model. 

 

Tab. 4. Model coefficients for 3D-LUR model. 

Standardized coefficients:   

Source Value Standard 
error 

t Pr > |t| 

       W_H200 0.410 0.117 3.495 0.002 

Tertiary50 0.313 0.105 2.973 0.008 

V.tree ratio50 0.299 0.115 2.600 0.018 

Secondary100 0.675 0.117 5.789 < 0.0001 

R2 0.79    
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The 3D explanatory parameters show a high auto-correlation therefore, 

many parameters could not show there influence in predicting TNC con-

centrations and they have been deleted during the LUR processing.  

The 3D-LUR model explained 79 % of the variance of the measured fine 

dust concentrations with root square error (RMSE) of 3534 cm-3. Fig. 3b 

shows the plot of measured TNC concentrations against predicted one and 

the 3D-LUR model gives the evidence for a linear trend with no outliers 

too. The 2D-LUR model showed slightly better performance in predicting 

the fine dust concentration in comparison of the 3D-LUR model. In both 

model, the semantical explanatory parameters show significant impact on 

the final 2D and 3D models. 

Standardized deviation for 2D-LUR accounts to 14 % and it was calculated 

by the ratio of the RMSE to the average measured TNC concentration 

across the study area. The visual errors were illustrated in Fig. 5a  and it 

shows that 2D-LUR model predicts the TNC concentration very well in 

most of the sites and the large errors between measured and predicted TNC 

account on the site spots 11and 3, where the blue area represent the pixels 

that have the maximum error between the measured and predicted TNC 

values. 

The standardized deviation for 3D-LUR accounts to 15 %. 3D-LUR shows 

a very slight deviation in most of the measured sites comparing to 2D-

LUR and Fig. 5b shows a large error of predicting TNC on the spots 1 and 

14.  
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Fig. 5. The visual RMSE in each site station between the measured 

and predicted TNC concentration for a) 2D-LUR model and b) 

3D-LUR model. 
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Fig. 6. IDW interpolation illustrates map of TNC concentration resulted 

from a) 3D-LUR and b) 2D-LUR models in comparison with c) the meas-

ured TNC. 
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Mean absolute deviations between measured and modelled TNC concen-

trations were calculated for the 2D-LUR and 3D-LUR. Generally, 2D-

LUR shows smaller deviation than 3D-LUR and is characterized by a de-

viation of 22 % while the mean absolute deviation for 3D-LUR turns out 

with 23 %. Leave-one-out cross validation was applied to validate both 

2D-LUR and 3D-LUR models estimation. The deviation for 2D-LUR 

model accounts 17 % and it is relatively close to original model, while the 

deviation for the 3D-LUR model accounts to 18 %.  

Inverse distance weighted interpolation was carried out for the TNC data 

and the results indicate that both models generally show a similar spatial 

distribution of modeled TNC Fig. 6. The Highest TNC concentrations are 

distributed on the main road intersections where traffic lights and high traf-

fic intensities. 

 

 

5. Conclusion  

To predict the TNC concentrations and their variation across the study area 

in Berlin, Germany three kinds of parameters were used in order to build 

an LUR models (the semantical parameters, 2D parameters and 3D param-

eters). Both models show approximately similar results and are able to de-

pict the variance of TNC concentrations and the residuals for both models 

appear to behave randomly, it suggests that the model fits the data well. 

However, the 3D-LUR needs less parameters than the 2D-LUR and the 

parameters show similar significant values where the 2D-LUR parameters 

show big variance of influence on getting the best model. The high auto-

correlation among the 3D parameters has a negative role on presenting the 

strength of some parameters in predicting TNC.  

In this study the 3D parameters have been used as static parameters with-

out taking into account the interaction between these parameters and the 

meteorological parameters such as the wind direction and its correlation 

with the porosity and that lead us to consider it as a dynamic parameters. 

We believe that the use of this approach can result an enhancement of the 

traditional LUR model or the LUR model that use 3D parameters. The 

LUR is temporally static and trained by urban morphology parameters. 

As further work, we believe that LUR can be used with meteorological 

data or with spatial parameters that interacts with the meteorological data 

in order to make it dynamic. Also, the combination of traditional LUR and 

the urban ventilation are our promising approach for enhancing the model. 
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