
Maral Aminpour- PhD
- Assisstant Professor at University of Alberta
Maral Aminpour
- PhD
- Assisstant Professor at University of Alberta
About
37
Publications
13,966
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
515
Citations
Introduction
My research interest is mainly on computational biomaterials and biophysics and drug discovery. My current focus is on multi-scale atomic and molecular modelling of biological systems, including developing fundamental and detailed understanding of biomolecular systems and their mechanisms of function. In addition, I am interested in modelling of the interfaces of biological systems with materials (hybrid systems).
Current institution
Publications
Publications (37)
Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards bot...
We have developed two functionalized β-sheet peptides (FBPs) and demonstrated that they can stabilize a variety of integral membrane proteins (IMPs), and most importantly allow covalent crosslinking of the IMPs...
Catalytic hydrogenation is an important process used for the production of everything from foods to fuels. Current heterogeneous implementations of this process utilize metals as the active species. Until recently, catalytic heterogeneous hydrogenation over a metal-free solid was unknown; implementation of such a system would eliminate the health,...
Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami, with applications in biomaterial science, nanomedicine, nanorobotics and molecular computation. Ribonucleic acid (RNA) origami has been recently realized as a new ap...
An Mo(2) S(3) monolayer grown on copper coexists with well-known MoS(2) patches and triangular islands. Imaging by scanning tunneling microscopy after exposure to anthraquinone shows the new structure to be far more active in adsorption, permitting even the formation of a compressed adsorbate layer before other surface areas, including the supposed...
Combretastatins isolated from the Combretum caffrum tree belong to a group of closely related stilbenes. They are colchicine binding site inhibitors which disrupt the polymerization process of microtubules in tubulins, causing mitotic arrest. In vitro and in vivo studies have proven that some combretastatins exhibit antitumor properties, and among...
Hypercoagulability and formation of extensive and difficult-to-lyse microclots are a hallmark of both acute COVID-19 and long COVID. Fibrinogen, when converted to fibrin, is responsible for clot formation, but abnormal structural and mechanical clot properties can lead to pathologic thrombosis. Recent experimental evidence suggests that the spike p...
Simple Summary
The glaziovianin A derivative gatastatin, presented as a γ-tubulin-specific inhibitor, could represent a viable chemotherapeutic strategy to solve the specificity issues associated with targeting α and β tubulin. Since gatastatin’s specificity for γ tubulin has not been confirmed by an in silico analysis or verified experimentally by...
Omicron is the dominant strain of COVID-19 in the United States and worldwide. Although this variant is highly transmissible and may evade natural immunity, vaccines, and therapeutic antibodies, preclinical results in animal models and clinical data in humans suggest omicron causes a less severe form of infection. The molecular basis for the attenu...
The SARS-CoV-2 virus invades and replicates within host cells by “hijacking” biomolecular machinery, gaining control of the microtubule cytoskeleton. After attaching to membrane receptors and entering cells, the SARS-CoV-2 virus co-opts the dynamic intra-cellular cytoskeletal network of microtubules, actin, and the microtubule-organizing center, en...
Some clinical studies have indicated activity of ivermectin, a macrocyclic lactone, against COVID-19, but a biological mechanism initially proposed for this anti-viral effect is not applicable at physiological concentrations. This in silico investigation explores potential modes of action of ivermectin and 14 related compounds, by which the infecti...
Background:
The hyperphosphorylation of tau protein (PPtau) in the brain is the main pathophysiological marker of tauopathies. Recently was found that when induced by a "synthetic torpor" (ST)1 condition (induced on rats), PPtau accumulations is reversible, as observed in hibernators2 . Thus, ST uncover a latent physiological mechanism able to cop...
Background
The emergence and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in thelate 2019 has caused a devastating global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19). Although vaccines have been and are being developed, they are not accessible to everyone and not everyone can rec...
Galectin-3 is a carbohydrate-binding protein and the most studied member of the galectin family. It regulates several functions throughout the body, among which are inflammation and post-injury remodelling. Recent studies have highlighted the similarity between Galectin-3′s carbohydrate recognition domain and the so-called “galectin fold” present o...
Purpose:
The ultimate goal of this study is to develop a novel delivery system for a new potent cytotoxic compound, CCI-001, with anti-b tubulin activity, so that the drug can be effectively administered and at the same time its harmful side effects can be reduced.
Methods:
In the current study, CCI-001 was loaded into serum albumin (SA), using...
Positron emission tomography (PET) using 2‐deoxy‐2‐[18F]fluoro‐D‐glucose ([18F]FDG), a marker of energy metabolism and cell proliferation, is routinely used in the clinic to assess patient response to chemotherapy and to monitor tumor growth. Treatment with some tyrosine kinase inhibitors (TKIs) causes changes in blood glucose levels in both non‐di...
Background
The emergence and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) at late 2019 has caused a devastating global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19). Although vaccines have been and are being developed, they are not accessible to everyone and not everyone can receiv...
Colchicine shows very high antimitotic activity, therefore, it is used as a lead compound for generation of new anticancer agents. In the hope of developing novel, useful drugs with more favourable pharmacological profiles, a series of doubly modified colchicine derivatives has been designed, synthesized and characterized. These novel carbamate or...
Colchicine is a well-known anticancer compound showing antimitotic effect on cells. Its high cytotoxic activity against different cancer cell lines has been demonstrated many times. In this paper we report the syntheses and spectroscopic analyses of novel colchicine derivatives obtained by structural modifications at C7 (carbon-nitrogen single bond...
This paper reports on the results of research aimed to translate biometric 3D face recognition concepts and algorithms into the field of protein biophysics in order to precisely and rapidly classify morphological features of protein surfaces. Both human faces and protein surfaces are free‐forms and some descriptors used in differential geometry can...
Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positio...
We report accurate optical measurements of tubulin polarizability in aqueous suspensions. We determined the dependence of polarizability on tubulin concentration and on the suspension’s pH, providing benchmark numbers for quantifying the optical response of this protein in various artificial and cellular environments. We compare our measurement dat...
In this paper we review the current status of high-performance computing applications in the general area of drug discovery. We provide an introduction to the methodologies applied at atomic and molecular scales, followed by three specific examples of implementation of these tools. The first example describes in silico modeling of the adsorption of...
We perform first-principles calculations of the properties of the Mg(0001) surface of thin films to examine the giant oscillations of surface energy and interlayer relaxation of Mg(0001) films as a function of thickness reported previously. We find that, although overcoming the thin-film limit requires up to 25 layers, properties exclusive to the s...
We perform a first-principles study of Mg adatom and adislands on the
Mg(0001) surface, and Be adatom on Be(0001), to obtain further insights into
the previously reported energetic preference of the fcc faulty stacking of Mg
monomers on Mg(0001). We first provide a viewpoint on how Friedel oscillations
influence ionic relaxation on these surfaces....
Based on density functional theory (DFT) predictions and scanning tunneling microscopy (STM) measurements we report the possibility of using the Cu(111) surface for growth of molybdenum sulfide nanowires (Mo6S6). Strong substrate interactions coupled with small lattice mismatch lead to epitaxial growth of the nanowires parallel to a set of substrat...
Recent experiments have successfully synthetized MoSX
nanostructures in a controlled manner by evaporating Mo adatoms on the
copper sulfide monolayer that forms on Cu(111) upon sulfur preloading
[1,2]. STM observations and total-energy calculations based on density
functional theory, including van-der-Waals interactions, have proposed
several struc...
We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, howe...
Recently, the electronic properties and alignment of
tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and
tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied
experimentally. Discrepancies were found for both the binding energy and
the molecule tilt angle with respect to the surface, when results were
compared with density f...
We apply molecular dynamics and molecular static methods to calculate
the effect of tensile misfit dislocation on Ni adatom diffusion for
Ni/Cu(111) system and compare the results with those calculated
previously for Cu adatom on the Cu/Ni(111) system [1] which has
compressive dislocation. Our Ni/Cu(111) substrate model system consists
of 5 layers...
We apply molecular dynamics and molecular static methods to study the effect of misfit dislocations on adatom diffusion in close proximity to the dislocation core in heteroepitaxial systems, using many-body interaction potentials. Our system consists of several layers (three–seven) of Cu on top of a Ni(111) substrate. The misfit dislocations are cr...
The high density of states (DOS) at the Fermi level and high density of quasi-free electrons result in a singular behavior for Mg surfaces and thin films. We find, however, that the DOS around the Fermi level, surface energy and cohesive energy converge beyond 15 layers. We also show that the Friedel charge density oscillations of Mg(0001) are more...