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Abstract
Quantitative models of magnetization transfer (MT) allow the estimation of physical properties of
tissue which are thought to reflect myelination, and are therefore likely to be useful for clinical
application. Although a model describing a two-pool system under continuous wave-saturation has
been available for two decades, generalizing such a model to pulsed MT, and therefore to in vivo
applications, is not straightforward, and only recently have a range of equations predicting the
outcome of pulsed MT experiments been proposed. These solutions of the 2-pool model are based
on differing assumptions and involve differing degrees of complexity, so their individual advantages
and limitations are not always obvious. This paper is concerned with the comparison of three differing
signal equations. After reviewing the theory behind each of them, their accuracy and precision is
investigated using numerical simulations under variable experimental conditions such as degree of
T1-weighting of the acquisition sequence and SNR, and the consistency of numerical results is tested
using in vivo data. We show that while in conditions of minimal T1-weighting, high SNR, and large
duty cycle the solutions of the three equations are consistent, they have a different tolerance to
deviations from the basic assumptions behind their development, which should be taken into account
when designing a quantitative MT protocol.
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1 Introduction
The Magnetization Transfer (MT) effect is based on the exchange of magnetization occurring
between groups of spins characterized by different molecular environments. In biological
tissues, two or more “pools” of protons can be identified: those in free water (the free, or liquid,
pool) and those bound to large molecules (referred to as restricted, semisolid, or
macromolecular, pool). The latter protons are characterized by a very short transverse
relaxation time (T2) and therefore do not directly contribute to signal intensity in conventional
magnetic resonance (MR) images. Nevertheless, it is possible to sensitise an MR experiment
to the magnetic resonance characteristics of macromolecular protons by exposing the sample
to radio-frequency (RF) energy several kilohertz away from the Larmor frequency. Protons in
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free water are relatively insensitive to such irradiation, but it can cause saturation of protons
in the semisolid pool which, due to their short T2 and correspondingly large line width, are
responsive to irradiation at these frequencies. In these conditions, any exchange of
magnetization between pools results in a decreased intensity of the observed MR signal.

From a quantitative MT model based on the exchange between two pools Henkelman et al.
[1] derived a signal equation for the continuous wave (CW) case, in which RF irradiation of
particular (constant) amplitude and several seconds duration is used to saturate the
macromolecular pool. The parameters characterizing the two pools in the model are potentially
interesting to measure, and they can be estimated by fitting Henkelman’s equation to a set of
MR measurements obtained in the presence of MT pulses with a suitable set of amplitudes
ω1 and offset frequencies Δf.

As CW irradiation is impractical and generally not available for in vivo imaging experiments,
in vivo MT-weighted MRI is generally obtained using the so-called pulsed MT acquisition, in
which the long period of saturation is replaced by a much shorter irradiation pulse (typically
applied just before each excitation pulse) along with intervals without irradiation (during which
data is collected). For data from this type of acquisition, Henkelman’s equation must be
modified to allow for the short duration of the saturation pulses relative to T1 [2]. A number
of such modified signal equations for pulsed MT, all based on the same original two-pool
model, have been developed [3–5]. While the numerical results published so far suggest
reasonable consistency across the solutions predicted by these equations, no direct comparison
is available, and the differing conventions and symbols used mean that evaluating discrepancies
and similarities between them is not straightforward.

This paper is concerned with the comparison of three of these signal equations—two derived
by Sled and Pike [3,6], plus that of Ramani et al. [5]. Ramani et al. used a CW power equivalent
approximation (CWPE) [5] where the pulse is simply replaced by a CW irradiation with the
mean square amplitude that would give the same power over the interval between MT pulses.
By means of the CWPE approximation, Henkelman’s steady state model can be
straightforwardly applied to the in vivo MRI case, neglecting the imaging elements of the pulse
sequence. Due its steady state nature, the implicit assumption within the equation is that the
relative signal intensity in data obtained with different MT-weightings only depends on the
characteristics of the MT pulse, and that T1 and T2 relaxations equally affect all measurements.

As Ramani’s equation does not explicitly model the effects of the excitation pulses and TR,
its description of the MT-weighted signal is valid only when the degree of T1-weighting in the
acquisition sequence is minimal. As it effectively assumes that the MT pulse is applied
continuously, another parameter likely to affect the accuracy of Ramani’s equation is the duty
cycle, i.e. the duration of the MT pulse relative to the repetition period, whose effect has never
formally been investigated. Sled and Pike [6] propose an alternative equation which can be
fitted directly to the measured signal. Their solution is derived by approximating the pulse
sequence as a series of periods of free precession, CW irradiation and instantaneous saturation
of the free pool. It has the advantage of incorporating the effect of the excitation RF pulses,
and also makes it possible to account for saturation effects of the excitation. Together with this
solution, the authors propose also a simpler variant which neglects free precession, thus
assuming a succession of instantaneous saturation of the free pool and CW irradiation of the
macromolecular pool for the total duration of the interval between pulses. Both equations
presented by Sled and Pike for in vivo applications require the numerical evaluation of ordinary
differential equations (when modeling the rate of saturation of the macromolecular pool with
a super-Lorentzian, see next section), at least for the estimation of the effect of the MT pulse
on the free pool, and they are therefore computationally intensive. Ramani’s solution has the
advantage of being simpler, at the price of its inability to account for the effects of the excitation
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pulses. A recent paper presented an evaluation of these signal equation, validated using animal
data [7]. Here we first review the theory behind them and then use numerical simulations to
extend the range of experimental conditions under which each can be tested (investigating how
duty cycle, saturation effects of the excitation and noise affect the MT parameters fitted by
each of them). We also perform a statistical comparison between MT parameters estimated
using each signal equation in healthy brain tissue from in vivo data.

2 Theory
2.1 Coupled Bloch equations

Assuming that the MT effect can be modeled using a liquid pool (A) and a macromolecular
pool (B), the magnetization of either pool can be described by its longitudinal component
(MzA,MzB) and its transverse components (MxA,MyA,MxB,MyB). The exchange between
pools associated with the transverse components of magnetization can be considered negligible
due to the extremely short T2 associated with the macromolecular pool [2,6]. The coupled
Bloch equations for the system can thus be written as follows:

(1)

(2)

(3)

(4)

In Eqs. (1)–(4), T2A represents the transverse relaxation time of the liquid pool, M0A and
M0B are the fully relaxed values of magnetization associated with the two pools (assumed
dimensionless), RA and RB are their longitudinal relaxation rates, and R is the exchange rate
constant. Δf represents the frequency offset of the pulse, while ω1(t) is the time dependent
amplitude of the pulse expressed in rad s−1 (i.e. the angular frequency of precession induced
by the pulse). RRFB(Δf, ω1(t)) is the rate of saturation of longitudinal magnetization in pool
B due to the irradiation by the amplitude defined by Δf and ω1(t), and depends on the transverse
relaxation time of the macromolecular pool, T2B. Li et al. [8] show that, in brain tissue, the
specra associated with macromolecular pool are better modeled by a super-Lorentzian, (with
ω12¯ being the average power of the MT pulse), yielding:

(5)

and we adopt this model here.

We remark here that this notation is not universal. Some authors label the A and B pools as
‘F’ and ‘R’, respectively [6], or ‘f’ and ‘m’ [9,10] and use the symbol W instead of RRFB [6].
The pseudo first-order exchange rates, RM0B(A→B) and RM0A(B→A), are often referred to
as kf (or simply k) and kr.
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2.2 Sled and Pike’s RP signal equation
Assuming that the pulse sequence consists of an MT pulse followed by an excitation pulse and
by a period of recovery, Sled and Pike [6] decompose it into a series of periods where Eqs.
(1)–(4) have exact or approximate solutions. These solutions can then be concatenated by
imposing the appropriate initial conditions, leading to an expression for the measured signal
which is less expensive to compute than numerically integrating the full set of differential
equations. The effect of an MT pulse on the macromolecular pool is modeled as a rectangular
pulse whose width is equal to the full width at half maximum (τRP) of the curve obtained by
squaring the instantaneous amplitude of the MT pulse throughout its duration, and whose
amplitude is such that the pulses have equivalent average power (rectangular pulse, or RP,
approximation). The effect of the pulse on the liquid pool is modeled as an instantaneous
fractional saturation of the longitudinal magnetization. Such fractional saturation (S1A) is
estimated by solving (numerically) the system of Eqs. (1), (3) and (4) when R and RA are set
to 0.

In matrix form [6], considering the longitudinal components of magnetization only

(6)

Instantaneous saturation of the free pool, caused by both MT and excitation pulses, is simply
described by multiplying Mz by the matrix S (where θ is the excitation flip angle)

(7)

The state of the magnetization after a period t1 (assuming starting time = t0) is given by the
solution to the system of Eqs. (1) and (2) for either free precession [FP] or CW:

(8)

(9)

with

According to Sled and Pike’s RP approximation, over the time interval T between application
of MT pulses (typically the time required to excite and collect data for a single k-space line of
a single image slice), Mz undergoes instantaneous saturation, CW irradiation for a period
τRP/2, FP for a period (T − τRP), and CW for another τRP/2. After including all thee steps, we
can impose the equality

(10)

and solve for Mz yielding an equation for the longitudinal components of magnetization.
Recalling that the signal observed at readout is

(11)
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(where the repetition time TR may be ⩾T depending of the details of the image acquisition) it
is thus possible to model the MT-weighed signal. The solution to Eq. (10) can be easily
computed in matrix form, and we adopt this procedure for all the following experiments.

2.3 Sled and Pike’s CW signal equation
A simpler expression is presented in the same paper [6], where the effect of the MT pulse on
the macromolecular pool is described by a CW irradiation of duration T. In this case, over the
same period T, Mz undergoes instantaneous saturation, and CW irradiation (of the restricted
pool only) for a period T. Following the same procedure as described above, a more manageable
analytic expression can be derived in this case:

(12)

Here Mz,CWA is the steady state solution obtained by Henkelman et al. [1] for CW irradiation
of the restricted pool of duration T:

(13)

which is equivalent to the first element of the vector Mz,CW=ACW-1BM0. In Eq. (12),

(14)

We note here that for the specific case of the 3D spoilt gradient echo acquisition described in
this paper (see Section 3) T = TR.

Sled and Pike also introduce, as a useful index which is believed to correlate with myelin
content, the relative size of the macromolecular pool [6] F, defined as

(15)

F can be fitted directly, by substituting RM0A=RM0BF in Eq. (13) and previous. More details
on these signal equations can be found in [3,6,11].

2.4 Ramani’s signal equation
Henkelman’s solution [1] for the CW case is obtained by solving Eqs. (1)–(4) in the steady
state, i.e. setting the derivatives on the left hand side to zero. Ramani et al. [5] adopt the same
approach in the pulsed MT case, simply replacing the MT pulse with a CW irradiation with
the same mean square amplitude

(16)

where PSAT is the mean square saturating field.

In order to ease the comparison between the three signal equations, we break with the
terminology of the original paper [5], where the macromolecular fraction f (with f = F/(F + 1))
was used, and instead rewrite the Henkelman–Ramani expression using F and RM0B to obtain
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(17)

where M0 is the signal with no MT-weighting (again assuming a constant of proportionality
of c = 1). Note that while in the equations presented in the previous section, M0 is the
equilibrium magnetization, in Eq. (17) it simply represents the partially recovered
magnetization available prior to the application of an MT pulse.

2.5 Fitting
All the equations are written in terms of seven parameters: M0,RA,RB,RM0B,F,T2A and T2B,
but these cannot be uniquely determined [1,12]. Constraints are imposed by measuring the
observed longitudinal relaxation rate of the sample, RAobs(=1/T1obs) independently, linked to
RA by Henkelman et al. [1]

(18)

A further issue is that dependence of S(ω1, Δf) on RB is weak, making fitting of this parameter
unstable. Since the estimates of the other parameters are largely insensitive to its value, RB is
usually kept fixed at 1 s−1 [1,5,6]. This reduces the number of free parameters to 5, which can
be estimated by fitting the equation to five or more measurements with different combinations
of ω1(t) and Δf.

3 Materials and methods
3.1 Numerical simulations

In order to compare the three signal equations, and to highlight their shortcomings, we need
to test their performance against data corresponding to a known set of parameters. The easiest
way to obtain such data is to synthetically produce them, using numerical simulations.

We consider here the case of an MT-weighted spoiled gradient echo acquisition, where off-
resonance saturation is achieved using Gaussian pulses (of duration τSAT) applied once every
TR (just prior to RF excitation), while on-resonance excitation is obtained using short 5-lobe
sinc pulses (in the presence of a ‘slab selection’ gradient).

Eqs. (1)–(4) can be solved numerically to predict the longitudinal magnetization at the end of
the MT pulse (i.e. just before the excitation pulse), MzA(τSAT). Since the measured signal
intensity is proportional to the transverse magnetization at readout (if we neglect T2∗ decay):

(19)

The MT pulse is characterized by its maximum amplitude, B1SAT, MAX, by its duration, τSAT,
and by the standard deviation of the Gaussian envelope, σ. The excitation pulse is characterized
by its maximum amplitude, B1EXC, MAX, by its duration, τEXC, and by its bandwidth, BW. Both
pulses can be described by their equivalent on-resonance flip angle, given by the integral over
pulse duration of ω1(t). Additionally, we assume the excitation pulse to have no effect on pool
B. The measured signal intensity can be estimated by calculating the solution of Eq. (19) as
Mz tends towards a steady state, i.e. after solving Eqs. (1)–(4) for several TRs, until the
difference between Mz(TRn + τSAT) and Mz(TRn+1 + τSAT) is less than 0.01% of
Mz(TRn + τSAT).

Cercignani and Barker Page 6

Published as: J Magn Reson. 2008 April 04; 191(2): 171–183.

Sponsored D
ocum

ent 
 Sponsored D

ocum
ent 

 Sponsored D
ocum

ent



We simulate four experiments to probe the effects of different parameters on the fits. Firstly
we aim to identify any systematic biases in the three signal equations with respect to variable
experimental conditions, by fitting them to noise-free simulated data (Experiments 1–3); next
we investigate their robustness in the presence of noise, by using a Monte Carlo approach
(Experiment 4). The simulated signal is computed by using a Runge–Kutta ordinary differential
equation (ODE) integrator with adaptive step-size control [13]. Spoiling of the transverse
magnetization is simulated by setting the transverse components of magnetization equal to zero
before the occurrence of every MT pulse. All experiments use the same set of MT parameters
(RA,RB,T2A,T2B,F,RM0B), chosen to be similar to values measured previously in white
matter [14,15] and shown in Table 1 as ‘test set’. All also use the same excitation pulse
parameters (τEXC = 3.2 ms, and BW = 2.5 kHz), but other values differ:

Experiment 1: In the first simulation, we investigate the accuracy of Ramani’s, Sled and Pike’s
CW and Sled and Pike’s RP signal equations as a function of duty cycle, by simulating 5 MT
experiments using an excitation flip angle of 5°, TR = 30 ms, and varying τSAT between 5 and
25 ms, in steps of 5 ms. The full width at half maximum (FWHM) of the pulses varies
accordingly between 2.29 (σ = 0.97) and 11.45 ms (σ = 4.86 ms), in steps of 2.29 ms. Each
simulated set consists of 60 points, generated using only two fixed values of ω1CWPE (250.2
and 850.7 rad s−1) (and thus different MT flip angles for each value of τSAT), following Sled
and Pike [6,15], and 30 values of Δf per flip angle. The offset frequency ranges from 400 to
30,000 Hz, sampled at regular interval on a logarithmic scale. The three equations are fitted to
the synthetic datasets using the Levenberg–Marquardt method, as implemented in Numerical
Recipes [13], to yield the estimated parameters. Numerical derivatives are computed where an
analytical expression is unavailable. The test set of parameters (see Table 1) are used to provide
the initial parameter estimates, and RAobs is obtained by solving Eq. (18) with respect to this
quantity. The same ODE integrator used to compute the simulations is used to estimate S1A at
every step for Eqs. (7), (11) and (12).

Experiment 2: Secondly, we explore the effects of saturation of the excitation on the estimated
parameters, simulating the outcome of six MT experiments using regularly spaced excitation
flip angles ranging from 5° to 20° and TR = 30 ms. We fix τSAT = 15 ms and keep the other
parameters as in the first experiment. With the exception of the excitation flip angle, the input
parameters are identical for all six cases.

In order to check that our results are not specific to the choice of the sampling scheme, we
repeat Experiments 1 and 2 with an alternative sampling scheme generated using four fixed
values of ω1CWPE (250.2, 450.4, 650.5 and 850.7 rad s−1) and 15 values of Δf per flip angle.

Experiment 3: As Sled and Pike used two sequences with two different MT pulse durations
and two TRs to constrain the estimate of RM0B, we create a synthetic dataset formed by two
“sequences” (40 MT points with TR = 30 ms, τSAT = 15 ms, θ = 5°, 2 MT flip angles equal to
250° and 850°, respectively; and 20 with TR = 45 ms, τSAT = 20 ms, θ = 6°, 2 MT flip angles
equal to 353° and 1202°, respectively). We then compare the accuracy of the MT parameters
estimated fitting the three signal equations to such a dataset and to the “single sequence” dataset
obtained in Experiments 2 when fixing τSAT = 15 ms and θ = 5°.

Experiment 4: Finally, in order to investigate the sensitivity to noise, we add complex noise
with zero mean Gaussian real and imaginary parts to the dataset obtained in Experiment 2 for
τSAT = 15 ms and θ = 5°. We then take the modulus to obtain a noisy data sample. The standard
deviation of the Gaussian noise is set to be M0/Σ, where Σ is the desired SNR in the unweighted
image, which we vary over the interval [20, 300]. (The SNR values typically observed in 3D
spoiled gradient echo scans from our system, with acquisition parameters similar to those
detailed below (see Section 3.2), typically range between 40 and 100 depending on the coil
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used, resolution, use of parallel imaging, etc.) For each level of noise, we generate 10,000 sets
of noisy independent samples and fit the three equations to each set. Look-up tables are used
for the super-Lorentzian lineshape, the fractional saturation S1A, and their derivatives, in order
to speed up the computation.

3.2 In vivo data
A single subject (female, 34 years old) was scanned twice on a 1.5 T system (SIGNA Horizon
Echospeed, General Electrics, Milwaukee, WI, USA) using a 3D MT-weighted fast spoiled
gradient recalled-echo (SPGR) sequence [15] (TR/TE = 28/5.1 ms, Gaussian MT pulses,
duration = 14.6 ms, standard deviation = 2.84 ms, bandwidth = 125 Hz, matrix = 256 × 96 × 32,
FOV = 240 × 180 × 160 mm3, to reconstruct twenty-eight 256 by 256 voxel slices). The
excitation flip angle was 5° on the first session and 15° on the second one, the interval between
scans was 7 days. On each occasion a dataset of 20 MT points was obtained, using 2 MT pulse
flip angles (220° and 820°, corresponding to a CWPE amplitude of 251.1 and 861.2 rad s−1),
and 10 values of Δf per flip angle. Δf ranged between 400 and 20,000 Hz, and was stepped
using a constant logarithmic interval. In addition to the MT data, three 3D SPGRs
(TR = 13.1 ms, TE = 4.2 ms, same FOV and resolution as the MT sequence) were also obtained
on each occasion, with three different excitation flip angles (θ = 25°, 15°, 5°) in order to
independently estimate the longitudinal relaxation rate of the system, RAobs. The body coil was
used for signal transmission and the manufacturer’s eight-channel head coil was used for
reception. The total scan time was about 45 min.

The study was approved by the Joint Research Ethics Committee of The National Hospital for
Neurology and Neurosurgery and the Institute of Neurology, UCL, and the subject gave written
informed consent before taking part.

3.3 Image analysis
The two datasets (one from each MRI session) were processed on a Unix workstation (Sun
Microsystems, Mountain View, CA, USA), as described elsewhere [15]. Briefly: the 20 MT-
weighted volumes obtained with the MT-weighted SPGR sequence and the three volumes
obtained with the non-MT-weighted SPGR sequence were co-registered to the first MT-
weighted volume using a modified [16] version of Automated Image Registration (AIR,
available at http://air.bmap.ucla.edu:16080/AIR) [17]. RAobs was estimated on a pixel-by-pixel
basis by fitting the theoretical SPGR signal equation to the signal in the non-MT-weighted
SPGR images, as a function of the flip angle [18]. The 3 MT signal equations were fitted to
the remainder of the images (as described for the synthetic data) yielding estimates of the MT
parameters. Six bilateral regions of interest (ROIs), three located in white matter (frontal,
temporal and internal capsule) and three in gray matter (thalamus, putamen, caudate nucleus)
were outlined on the T1-weighted images obtained from the non-MT-weighted SPGR scan (flip
angle = 25°). The 12 ROI outlines were then superimposed on the MT parameter maps, yielding
6 (3 signal equations times 2 flip angles) estimates for each of the following: RM0B,F,T2B,
and T2A. Paired sample T-tests were used to compare the mean estimated parameters between
equation solutions, and two-sample T-tests were used to test inequalities between flip angles,
considering statistically significant two-tailed p values lower than 0.01.

4 Results
To provide a qualitative description of the accuracy of the three signal equations, we show in
Fig. 1 the MT spectra simulated using Eq. (18) and the test set in Table 1, together with those
simulated using each of the three equations and the same test set, for two of the cases explored
in Experiment 1 (A: duty cycle = 50%, flip angle = 5°; B: duty cycle = 17%, flip angle = 5°).
All curves are normalized to the maximum intensity. As expected, the largest deviations
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between signal equations are observed at high power, for small offset frequencies, with
Ramani’s equation providing the least accurate description. The deviation between Ramani’s
predictions and the others are more pronounced for lower duty cycles (Fig. 1B).

4.1 Duty cycle effect
The estimates of RA,RM0B,F, and T2A against duty cycle are shown in Fig. 2. Results for
T2B are omitted as the estimates from all signal equations converged to the test set irrespective
of duty cycle. Both of Sled and Pike’s equations are less sensitive to changes in the duty cycle
than Ramani’s equation (with the exception of T2A), providing very consistent estimates,
except for RM0B, for which the CW variant yields a value closer to that used to create the
simulation. The dependence of Ramani’s on the duty cycle is non-linear, with estimated values
tending towards a plateau for duty cycles ⩾50%. For Ramani’s equation, T2A and RM0B are
the parameters most sensitive to duty cycle changes. Although more stable, the estimates
obtained at larger duty cycles are not necessarily more accurate than those obtained at the
lowest duty cycle simulated (17%).

The same experiment repeated with a different sampling scheme yielded almost identical
results for duty cycles >17%. For duty cycle = 17%, Sled and Pike’s CW equation converged
to T2A=76.2ms and RM0B=3.31s-1, and the RP variant converged to T2A=75.0ms and
RM0B=3.93s-1, while Ramani’s equation produced results very similar to those obtained with
the two-power scheme.

4.2 Saturation effect of the excitation
The MT parameter estimates obtained from noise-free simulated data at various flip angles are
reported in Fig. 3, again with the exception of T2B which is accurately determined by fitting
all signal equations irrespective of the excitation flip angle, and therefore is not shown. As the
flip angle (and thus the amount of saturation) increases, the estimates of the MT parameters
based on Ramani’s signal equation increasingly deviate from the true values. Additionally,
unlike the other parameters, the dependency of the estimated T2A on the amount of saturation
does not appear to be monotonic. Sled and Pike’s RP approximation provides the most
consistent estimates across flip angles. The CW variant behaves similarly, at least for flip angles
lower or equal to 15°, with increasingly biased results at higher flip angles.

We report in Table 1 the estimated MT parameters obtained by fitting the three equations to
the simulated noise-free 60 point dataset with excitation flip angle of 5° (minimum saturation
effect from the excitation pulse) and duty cycle ≈50% (at which point duty cycle effects have
reached a plateau, and the three signal equations seem to provide consistent estimates). All
equations give similar results (very close to the ‘test set’ of parameters used in creating the
simulation (see Table 1)). The two variants of Sled and Pike’s solution provide more accurate
estimates than Ramani’s equation for all parameters, with the CW approximation yielding a
more accurate value for RM0B, and RP approximation yielding a slightly more accurate value
for F (which Ramani’s equation tends to underestimate). For all the signal equations, the largest
error is in the estimation of T2A (7.6% of true value for Sled and Pike’s RP equation, 10.2%
of true value for Sled and Pike’s CW equation, 21.2% of true value for Ramani’s equation).
The results of Experiment 3 (fitting the signal equations to a combined dataset obtained with
differing “sequences”, i.e. different TR, τSAT, and flip angle) are also shown in Table 1. The
estimates of T2A appear highly sensitive to the combination of acquisition parameters, while
all other parameters are not. Interestingly, T2A is underestimated using both of Sled and Pike’s
equations when using 2 sequences (and the error becomes larger), while it is generally
overestimated when using a single one.
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When using the four-power scheme the main difference compared to the two-power scheme
was in the estimates of RM0B, which were slightly lower for the two variants of Sled and
Pike’s solution (between 2.98 and 3.1 for the CW and between 3.3 and 3.4 for the RP
approximation).

4.3 Sensitivity to noise
Fig. 4 compares the estimates of the MT parameters using the three signal equations in the
presence of noise. Overall, the estimates obtained from the 60 point noisy dataset using any of
the three signal equations are characterized by similar precision, although Ramani’s solution
seems to provide slightly more robust results than Sled and Pike’s at SNR lower than 120 for
RM0B and T2A. The two equations proposed by Sled and Pike’s provide very similar estimates
(with similar precision at all SNR levels) for T2A and T2B. The CW variant provides more
accurate values for RM0B. The parameter whose estimate deviates most from its true value is
(for all signal equations) T2A, with Ramani’s estimates deviating more than the others. The
standard deviation associated with this parameter, however, is smaller when using Ramani’s
equation, at low SNR. The opposite is true (with the two variants of Sled and Pike’s formulation
giving very similar performances) at high SNR.

4.4 In vivo results
The MT parametric maps obtained by fitting all three equations to the 5° dataset obtained in
vivo are characterized by similar quality (examples of F maps are shown in Fig. 5). Fitting the
two equations proposed by Sled and Pike to the 15° dataset was more problematic; in some
voxels (most commonly in gray matter, and at the boundary between tissues) the equations
gave physically meaningless parameter estimates, particularly for RM0B and T2A. It is
possible that this is the result of T1-contrast between tissues and CSF increasing the sensitivity
of partial volume effect to motion. Fitting of Eq. (17) appeared to be more robust.

Table 2 shows the values (mean and standard deviation) obtained for each white and gray
matter ROI using each signal equation and both flip angles.

4.4.1 5° data (between equations)—Although the estimates of F,RM0B and T2A
obtained with Ramani’s equation were statistically different (p < 0.001, providing higher
estimates T2A and lower estimates of F and RM0B) than those obtained with either variant of
Sled and Pike’s equations, for all parameters the absolute difference between Ramani’s and
Sled and Pike’s estimates was always lower or comparable to the between-voxels standard
deviation (within each ROI) (see Table 2). When comparing the two solutions proposed by
Sled and Pike, none of the variables differed (p values of 0.02 for RM0B, 0.6 for F, 0.32 for
T2B and 0.47 for T2A).

4.4.2 15° data (between equations)—Conversely, when comparing the parameters
obtained by fitting different equations to the 15° dataset, the mean values were all significantly
different (p < 0.001), with the exception of T2A obtained using the two variants of Sled and
Pike’s solution (p = 0.09). The largest differences were in the estimates of F and T2A obtained
using Ramani’s equation with respect to both Sled and Pike’s equations. The absolute
difference between estimates, in this case, were approximately one order of magnitude larger
than the between-voxel standard deviation (within each ROI) of the same parameters.

4.4.3 15° data vs. 5° data—The estimates of T2B obtained fitting any of the three
equations to the 5° dataset were significantly different from those obtained by fitting the same
equation to the 15° dataset (p < 0.001). For Ramani’s equation, the estimates of F and T2A
obtained from the 5° dataset were also significantly different from those obtained from the 15°
dataset (p < 0.001).
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5 Discussion
We have shown that the estimates of RM0B,F, and T2B obtained by fitting different equations
describing the behavior of the two-pool model under conditions of pulsed MT to proton density-
weighted noise-free simulated data with an MT duty cycle of approximately 50% (typical of
most in vivo applications) are in good agreement and deviate only slightly from the values used
to create the simulations. There are some systematic differences, however, with Sled and Pike’s
equations typically providing more accurate results. Overall, these findings are in line with
those reported by Portnoy and Stanisz [7]. T2A is substantially overestimated when using all
signal equations, albeit less so when using the Sled and Pike’s RP approximation. The
discrepancy between the estimate of this parameter and the observed T2 of the system has been
observed before [11]. As white matter is known to have multiple free water T2 components,
one of the explanations provided by researchers is that the T2 measured by spin echo
experiments and T2A measured by MT experiments represent different weighted averages of
multiple water components. This explanation, however, does not apply to analogous results
obtained in gels [1,11]. Similarly, the results of our simulations suggest that such a difference
could merely result from the inadequacy of the model to estimate this parameter. It is
unsurprising that, for both simulated and in vivo data, the largest quantitative difference
between the results obtained when fitting different equations to the same (low flip angle) data
is in the estimation of this parameter. When the effects of saturation from the excitation pulse
are minimized, in fact, the main difference between Ramani’s and Sled and Pike’s equations
is in the way the MT pulse effect on the liquid pool is modeled. It is interesting to notice that
others have often reported this parameter to be underestimated [11], and our own in vivo results
are consistent with such observations (Table 2). However, when fitting the MT signal equations
to simulated data, we observed the opposite trend. A possible explanation for this inconsistency
is the sensitivity of Levenberg–Marquardt fitting to the values used as starting points: while
for synthetic data we can use the real (test set) numbers, when fitting in vivo data we can only
provide a ‘best guess’. In order to compensate for this effect we repeated Experiments 1 and
2 running the fitting procedure 10 times, each time perturbing the initial guesses (independently
for each parameter) by a random factor from a Gaussian distribution with zero mean and
standard deviation equal to 10% of the test parameter [19]. We retained and compared the set
of parameters which gave the best fit out of the 10 trials in each case. This did not affect the
estimates obtained using Sled and Pike’s equations. T2A obtained using Ramani’s equation
was even larger in this case, with all other parameters almost unaffected (data not shown).

An alternative explanation is that we used a larger number of points for simulations than for
the human brain data. The range and spacing of the sampling points is likely to affect the results
of the fitting [20], and it is interesting to observe that even in the simulated data, T2A is
underestimated when using two “sequences” (as recommended by Sled and Pike [6,11]).
Contrary to their observations, however, the estimates of RM0B were virtually unaffected by
this experimental parameter, and therefore our simulation experiments do not support the need
for this type of acquisition. It is not clear why our result in this case should differ from that of
Sled and Pike, but it is possible that this is due to our use of a different fitting routine. Because
of our simulation results, we chose not to adopt the two-sequence approach for our in vivo
comparison, as this would have required all the MT-weighted acquisitions to be normalized to
the same maximum value, and also might introduce variable degrees of T1-weightings, which
would further violate the assumptions underlying Ramani’s equation.

Although the reason why T2A is so strongly affected by the use of a dual TR protocol is unclear,
it has been reported by others that even when using more accurate formulations, the estimates
of R and T2A are highly sensitive to the choice of data points [7], and this has been explained
as a result of the poor sensitivity of the equations to these parameters, or to systematic errors
between the model and the data, which can vary with the sampling points.
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The poor sensitivity of the two-pool model to changes in T2A partially explains the robustness
of the other parameters against its misestimation. As T2 can be determined by the use of
alternative techniques, the remaining parameters are generally of greater interest. We would
like to stress, however, that we are not suggesting the two-pool model is an exact representation
of the distribution of macromolecular pools or of their exchange. We simply report that all of
these relatively simple signal equations appear to be able to provide consistent and practical
information which might be useful in a clinical/clinical research context. Although we did not
directly compare the sensitivity of different signal equations to changes similar to those caused
by pathology, we have attempted to provide useful guidelines to the choice of the most
appropriate one for a particular experimental setting.

Although suggesting optimal sampling schemes is beyond the scope of this paper, it is clear
from Fig. 1 that low offset frequencies (<1 kHz) should be avoided when using Ramani’s
equation. This is consistent with the set of points used by Ramani et al. in their original paper
[5], and with the findings of Portnoy and Stanisz [7], and confirms that in pulsed MT
experiments it is difficult to model the behavior of magnetization at low off-resonance
frequencies. Our results also confirm the observation of Portnoy and Stanisz [7] that Ramani’s
model tends to underestimate the signal especially close to the Larmor frequency. This
deviation at low frequency offsets is likely to be a consequence of the poor ability of the CWPE
approximation to characterize the liquid pool. As noted by Portnoy and Stanisz [7], the cut-off
of 1 kHz they empirically determined might vary with field strength and MT pulse amplitude
and bandwidth.

We should also note that it is apparent from Figs. 2–4 that F and RA are strongly inversely
correlated. This is a trivial consequence of the typical values of F in the human brain (of the
order of 10−1), for which the denominator on the right hand side of Eq. (18) is approximately
equal to RM0BF, effectively coupling RA and F. This corresponds to conditions of rapid
exchange [9].

The use of numerical simulations allows the investigation of conditions for which it is
impractical to acquire in vivo data, for example very narrow or very long MT pulses. As
expected, and shown by others [7], even in noise-free condition, the estimates of the MT
parameters provided by Ramani’s signal equation depend on the duty cycle (in a non-linear
fashion), suggesting the need for pulse sequences with a duty cycle of at least 50%. The
estimates obtained using Sled and Pike’s equations, on the other hand are, with the exception
of T2A, less sensitive to this parameter.

We also showed that the degree of T1-weighting (i.e. of saturation of the excitation) has a large
effect on the MT parameters estimated by fitting Ramani’s equation. This is a direct
consequence of the assumptions underlying it. We therefore strongly recommend avoiding the
use of Eq. (17) to fit data which deviate substantially from those assumptions. The two
equations proposed by Sled and Pike, on the other hand, by removing the “steady state”
assumption, appear to be less sensitive to this problem. The RP approximation gives estimates
that are substantially insensitive to changes in T1-weighting, while the CW approximation
becomes slightly affected by it for excitation flip angles larger than 14° (assuming a
TR = 30 ms).

In this respect, the results obtained from synthetic data are in keeping with in vivo
measurements. Ramani’s equation’s estimates of F obtained from the more heavily T1-
weighted data (Table 2, flip angle = 15°) are substantially lower than those obtained with less
heavily weighted data, while estimates of T2A are larger. Conversely, when fitting Sled and
Pike’s equations to the 15° dataset, the estimates of F are slightly larger compared to those
from the 5° dataset, although the difference is not statistically significant. A surprising finding
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from in vivo data was that estimates of T2B obtained from all the equations increased slightly
with the excitation flip angle, while this was not observed with simulated data. This discrepancy
between simulated and real data may be explained by the presence of noise, and by the use of
a smaller number of points for the real data. Noise in the raw data critically affects the estimation
of MT parameters, as shown by our fourth simulation (Fig. 3). Monte Carlo simulations also
suggest that at high SNR (⩾150) Sled and Pike’s estimates (at least of some parameters) are
at least as precise as (and generally more precise than) Ramani’s estimates, but that Ramani’s
equation provides more precise answers at lower SNR. We also note that at low SNR the
uncertainty associated with the estimated parameters is much larger than the systematic
difference between the mean parameters estimated by each signal equation. For comparison
of the in vivo results with simulations, an estimate of the in vivo SNR is needed. The typical
SNR for our system, measured in white matter on 5°-excitation minimally MT-weighted 3D
SPGR images acquired using a 8-channel head coil and the parameters described in the paper,
ranges (due to non-uniformity of the receive coil) between 60 and 100 [20]; other systems are
likely to be similar. It would be interesting to compare the standard deviations obtained by
Monte Carlo iterations to the variance lower bound predicted by Cramer–Rao theory [21], as
well as to the standard deviation obtained from real data using the bootstrap method [22].

A further limitation to this analysis of sensitivity to noise is in the use of suboptimal schemes
for both synthetic and real data. For all quantitative techniques based on model fitting, the
precision and accuracy of the parameter estimates depend on the choice of the sampling points,
and we have previously shown [20] that the error in parameter estimates can be reduced by
factors around 2 or 3 by using optimized sampling schemes. The precision of the estimates
obtained from all three equations could therefore dramatically improve by using a more suitable
set of MT points; we recommend such optimization for practical applications, but this was not
possible here as we needed identical schemes to allow direct comparison of the three equations.
Nevertheless, since the schemes here used were likely to be equally suboptimal for all signal
equations (and are similar to those used by the authors of the original papers), we believe that
our analysis should not have been unduly “unfair” to any of the solutions tested. It should also
be noted, though, that the acquisition protocol reported by Sled and Pike [6,11] is based on a
60-point scheme to sample a single 7-mm thick slice. Here, despite the consequences on both
scan time and SNR, we use only 20 points (for in vivo experiments) and smaller voxels as, for
most clinical applications, such whole brain coverage and thinner slices are likely to be
essential. Despite reducing the number of points by two thirds, a scan time of 35 min (required
by the protocol we used in vivo) is still too long to be feasible in a clinical setting. We also
estimated five parameters (RM0B,F,T2B,T2A and M0) directly from the fitting, while the
original paper by Sled and Pike [11] recommended the use of an independent estimate of the
relative proton density, which allows the MT curves to be normalized to one, reducing to four
the number of parameters to be extracted. While this clearly would improve the precision in
the estimated quantities, it also lengthens the scan time, making it again less attractive for
clinical applications, where the number of acquisitions is typically restricted by time
constraints. A better fit could be obtained also by iteratively repeating the fitting using the
estimate of M0 obtained from the current iteration as the starting point for the next. Preliminary
results suggest that two iterations should suffice. Furthermore, simulated data suggest that
when high SNR and a large number of MT points are available, fitting Sled and Pike’s signal
equations provides more accurate results, and therefore is preferable. Between the two variants,
the main differences seems to be in sensitivity to the degree of T1-weighting in the acquisition
sequence (as a consequence of saturation from the excitation pulse), suggesting that, in the
absence of this confounding factor, the CW variant can be used without major disadvantages,
given its reduced complexity. It should be noted, however, that we used a single set of MT
parameters to create the simulations, without any attempt to explore the consistency of these
results for a different type of tissue (e.g. gray matter). Our results, therefore, are limited to this
specific case until confirmed by further experiments.
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Regarding the in vivo results, it should be noted that we made no attempt to correct in vivo data
for B1 inhomogeneities (although the use of the body coil for transmission should provide a
fairly uniform B1 distribution at 1.5 T). Both the measurements of RAobs, and the MT fitting
are affected by deviations from the nominal flip angle [6,18]. However, we expect the error
introduced by B1 inhomogeneity to equally affect the three solutions, and therefore not to have
major consequences on the conclusions drawn from our experiments.

In the present work we have restricted our analysis to the comparison of three signal equations
derived from the two-pool model to predict signal intensity in pulsed MT experiments, without
any attempt to modify them, or compensate for their limitations. Several aspects of MT
modeling such as the quantification of the effects of the excitation pulses on the
macromolecular pool, which is typically considered negligible [2,6], need to be addressed. It
also would be interesting to investigate the dependency of these 3 equations on other sequence
parameters such as TR, as this quantity controls the efficiency of magnetization transfer [23].
This analysis would be complementary to the investigation of duty cycle effects we performed,
and may confirm whether the relative insensitivity of Sled and Pike’s CW approximation to
duty cycle is maintained for all pulse sequences.

Furthermore, it would be interesting to explore possible modifications of Ramani’s equation
to account for the imaging parameters of the pulse sequence (for example by incorporating an
additional contribution of [1-cos(alpha)]/TR to the CW saturation rate acting on the free pool).
Finally, providing reliable information about the optimal number of sampling points and their
distribution would yield an additional element towards the choice of the most appropriate
equation for a given application. All these areas deserve further investigation, which we hope
to pursue in the future.

6 Conclusion
We have shown that (1) Sled and Pike’s CW signal equation provides the most accurate
estimates of MT parameters in the absence of noise; (2) Ramani’s signal equation is sensitive
to changes in the MT duty cycle, although this effect becomes stable for duty cycles ⩾50%;
(3) Ramani’s equation is (as expected) not suitable for fitting T1-weighted data, and doing so
leads to underestimates F and RM0B when the amount of T1-weighting is high. An error, albeit
of smaller magnitude, is also introduced into Sled and Pike’s CW approximation estimates
when the amount of T1-weighting is high. The RP variant is, on the other hand, extremely
robust to this effect; (4) in data with SNR typical of in vivo protocols, although the estimates
of RM0B,F, and T2B obtained from the fit of all three equations show some differences, the
magnitude of the difference is smaller than the between-voxels within-ROI standard deviation,
provided that T1-weighting of the imaging sequence is minimal; (5) Sled and Pike’s equations
are slightly less robust than Ramani’s one in conditions of low SNR.
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Fig. 1.
MT spectra simulated using the Bloch equations and the test set in Table 1, together with those
simulated using each of the three signal equations (filled circles, Ramani; empty squares, Sled
and Pike CW; gray diamonds, Sled and Pike RP) and the same test set, for duty cycle = 50%,
flip angle = 5° (A); and duty cycle = 17%, flip angle = 5° (B). All curves are normalized to the
maximum intensity.
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Fig. 2.
Plot of estimated MT parameters from noise-free simulated data (60 points) against MT duty
cycle (in percentage) using Ramani’s (filled circles), Sled and Pike’s CW (empty squares) and
Sled and Pike’s RP (gray diamonds) equations. From top to bottom, left to right: RA [in s−1],
RM0B[in s-1], T2A[in s], F [unitless]. The dashed line shows the value of parameter used to
synthesize the data (test set).
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Fig. 3.
Plot of estimated MT parameters from noise-free simulated data (60 points) against excitation
flip angle using Ramani’s (filled circles), Sled and Pike’s CW (empty squares) and Sled and
Pike’s RP (gray diamonds) equations. From top to bottom, left to right: RA [in s−1], RM0B[in
s-1], T2A[in s], F [unitless]. The dashed line shows the value of parameter used to synthesize
the data (test set).
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Fig. 4.
Plot of mean estimated MT parameters from noisy simulated data (60 points) against SNR
using Ramani’s (filled circles), Sled and Pike’s CW (empty squares) and Sled and Pike’s RP
(gray diamonds) equations. The bars represent the standard deviation. From top to bottom, left
to right: F [unitless], RM0B[in s-1], T2A[in s], T2B[in μs]. The dashed line shows the value
of parameter used to synthesize the data.
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Fig. 5.
F maps obtained fitting Ramani’s (left), Sled and Pike’s CW (middle), and Sled and Pike’s RP
(right) equations to the data collected using a flip angle of 5°.
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Table 1
MT parameter values used to create synthetic data (TEST SET) and results of noise-free simulation with excitation
flip angle = 5°, τSAT = 15 ms (duty cycle = 50%) using all signal equations

No. sets
RM0

B s−1 F
T2

B μs T2
A ms

RA [s−1] RB [s−1]
(fixed)

Test set 3.10 0.107 10.0 66.0 1.450 1.0

Ramani 1 2.98 0.100 10.0 80.0 1.447 1.0
2 2.98 0.104 10.0 96.1 1.448 1.0

Sled and Pike
CW

1 3.17 0.108 10.0 72.7 1.451 1.0
2 3.20 0.108 10.0 46.7 1.451 1.0

Sled and Pike
RP

1 3.59 0.107 10.0 71.0 1.450 1.0
2 3.65 0.107 10.0 45.8 1.450 1.0

The results obtained when using a single set of 60 points (same TR and τSAT) are also compared obtained when using 2 sets (40 points with the same TR
and τSAT as the single set, and 20 points with longer TR and τSAT).
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