General form of some rational recursive sequences

Maoxin Liaoa,b,*, Xianhua Tanga, Changjin Xua

a School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, PR China
b School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, PR China

\section*{A R T I C L E I N F O}

Article history:
Received 23 April 2009
Received in revised form 25 June 2009
Accepted 15 July 2009

Keywords:
Rational recursive sequence
Attractivity
Positive solution
Equilibrium
Converge

\section*{A B S T R A C T}

In this note, we study the general form of some rational recursive sequences. By some modification of the methods and ideas, as well as the transformation from the paper [K. S. Berenhaut, J. D. Foley and S. Stević, The global attractivity of the rational difference equation \(y_n = \frac{y_{n-k} + y_{n-l}}{1 + y_{n-k}y_{n-l}} \), Appl. Math. Lett. 20 (2007), 54–58], we give a new proof for the conjectures posed therein.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In 2003, X. Li and D. Zhu [1] investigated the qualitative behavior of the equation

\[x_n = \frac{1 + x_{n-1}x_{n-2}}{x_{n-1} + x_{n-2}}, \quad n = 0, 1, \ldots \]

(1.1)

with \(x_{-2}, x_{-1} \in (0, \infty) \), and in 2005, X. Li [2,3] investigated the behaviors of some particular third-order difference equations related to Eq. (1.1) by using semi-cycle analysis similar to that in [4]. The problem concerning periodicity of semi-cycles of difference equations was solved in very general settings by L. Berg and S. Stević in [5], partially motivated also by [6].

K. Berenhaut, J. Foley and S. Stević [7] investigated a rational difference equation, and put forward two conjectures. And, motivated by paper [8], they started with the investigation of the following difference equation \(y_n = A + \left(\frac{y_{n-k} + y_{n-l}}{y_{n-m}} \right)^p \) for \(p > 0 \) (see, [9–11] and [12]). Among others, in [9] they used a transformation method, which has turned out to be very useful in studying equations

\[x_n = \frac{x_{n-k} + x_{n-l} + x_{n-m} + x_{n-k}x_{n-l}x_{n-m}}{1 + x_{n-k}x_{n-l} + x_{n-l}x_{n-m} + x_{n-m}x_{n-k}}, \quad n = 0, 1, 2, \ldots \]

(1.2)

where \(x_{-m}, x_{-m+1}, \ldots, x_{-1} \in (0, \infty) \) and \(1 \leq k < l < m \), as well as in confirming Conjecture 1 from [7] (see, [13]).

In the meantime, it turned out that the method used in [14] by C. Cinar, S. Stević and I. Yalcinkaya, can be used in confirming Conjecture 2 from [7] (see also [15]). More precisely, papers [14] and [15] use Corollary 3 from [16] in solving similar problems. For example, C. Cinar, S. Stević and I. Yalcinkaya shown, in an elegant way, that the main result in [1] is a consequence of Corollary 3 in [16]. With some calculations it can be also shown that Conjecture 2 from [7] can be confirmed in this way (see, [17]).

* Supported partly by NNSF of China (Grant: 10771215, 10771094) and Project of Hunan Provincial Youth Key Teacher.
* Corresponding author at: School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, PR China.
E-mail address: maoxinliao@163.com (M. Liao).

0898-1221/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
It is clear that (1.1) and (1.2) can be rewritten as

\[x_n = \frac{(x_{n-1} + 1)(x_{n-2} + 1) + (x_{n-1} - 1)(x_{n-2} - 1)}{(x_{n-1} + 1)(x_{n-2} + 1) - (x_{n-1} - 1)(x_{n-2} - 1)}, \quad n = 0, 1, \ldots, \]

(1.3)

and

\[x_n = \frac{(x_{n-1} + 1)(x_{n-2} + 1) + (x_{n-1} - 1)(x_{n-2} - 1)}{(x_{n-1} + 1)(x_{n-2} + 1) - (x_{n-1} - 1)(x_{n-2} - 1)}, \quad n = 0, 1, \ldots, \]

(1.4)

respectively.

Generalizing (1.3) and (1.4), in this note, we consider the global attractivity for the following general rational recursive sequences

\[x_n = \frac{\prod_{i=1}^{v} (x_{n-k_i} + 1) + \prod_{i=1}^{v} (x_{n-k_i} - 1)}{\prod_{i=1}^{v} (x_{n-k_i} + 1) - \prod_{i=1}^{v} (x_{n-k_i} - 1)}, \quad n = 0, 1, \ldots, \]

(1.5)

where \(v > 1, x_{-k_i}, x_{-k_i+1}, \ldots, x_1 \in (0, \infty) \) and \(1 \leq k_1 < k_2 < \cdots < k_v \).

With respect to the equilibrium point \(\overline{x} \) of Eq. (1.5), it should satisfy

\[\overline{x} = \frac{(\overline{x} + 1)^v + (\overline{x} - 1)^v}{(\overline{x} + 1)^v - (\overline{x} - 1)^v}, \]

from which we may get a unique positive equilibrium point \(\overline{x} = 1 \).

It is worth noting that when \(v \) is only odd in (1.5), the main result in [18] confirms Conjecture 2 from [7].

Some other related results can be found in [19–28].

In this note, by employing the transformation method suggested by Berenhaut and Stević and following the lines in their paper [13] (see also [7]) we give a new proof for the conjectures therein.

2. Main result and its proof

The main purpose in this note is to prove the following result.

Theorem 2.1. Every solution of Eq. (1.5) converges to the unique equilibrium \(\overline{x} = 1 \) as \(n \) tends to infinity.

First, we consider the following transformed sequence \(\{x_n^v\} \) defined by

\[x_n^v = \begin{cases} x_n, & \text{if } x_n \geq 1, \\ 1, & \text{otherwise}. \end{cases} \]

(2.1)

The next lemma is a slight extension of Lemmas 2 and 3 in [13].

Lemma 2.1. Suppose that \(\{x_n\} \) satisfies (1.5), and that \(\{x_n^v\} \) is obtained from \(\{x_n\} \) via (2.1). Then we have

\[x_n^v = \frac{\prod_{i=1}^{v} (x_{n-k_i}^v + 1) + \prod_{i=1}^{v} (x_{n-k_i}^v - 1)}{\prod_{i=1}^{v} (x_{n-k_i}^v + 1) - \prod_{i=1}^{v} (x_{n-k_i}^v - 1)}, \quad n = 0, 1, \ldots, \]

(2.2)

Proof. Let \(\mathcal{N}_n = \{ i \in \{1, 2, \ldots, v\} : x_{n-k_i} < 1 \} \) for a given \(n \), and \(||\mathcal{N}_n|| \) denotes the cardinality of \(\mathcal{N}_n \). Then, by (1.5) and (2.1), we have the following five cases.

(1) If \(||\mathcal{N}_n|| = 0 \), then

\[x_n = \frac{\prod_{i=1}^{v} (x_{n-k_i}^v + 1) + \prod_{i=1}^{v} (x_{n-k_i}^v - 1)}{\prod_{i=1}^{v} (x_{n-k_i}^v + 1) - \prod_{i=1}^{v} (x_{n-k_i}^v - 1)} \geq 1. \]

(2.3)

(2) If \(0 < ||\mathcal{N}_n|| = j < v \), and \(j \) is odd. Let

\[x_n = G(x_{n-k_1}, x_{n-k_2}, \ldots, x_{n-k_j}). \]
Since $G(x_{n-k_1}, x_{n-k_2}, \ldots, x_{n-k_v})$ is symmetric in $x_{n-k_1}, x_{n-k_2}, \ldots, x_{n-k_v}$, we may assume, without loss of generality, that
\[x_{n-k_1}, x_{n-k_2}, \ldots, x_{n-k_j} < 1; x_{n-k_{j+1}}, x_{n-k_{j+2}}, \ldots, x_{n-k_v} \geq 1, \quad j = 1, \ldots, v - 1. \]

Then
\[
x_n = \prod_{i=1}^{j} \left(\frac{1}{x_{n-k_i}} + 1 \right) \cdot \prod_{i=j+1}^{v} \left(x_{n-k_i}^* + 1 \right) + \prod_{i=1}^{j} \left(\frac{1}{x_{n-k_i}} - 1 \right) \cdot \prod_{i=j+1}^{v} \left(x_{n-k_i}^* - 1 \right) \\
\leq 1. \quad (2.4)
\]

(3) If $0 < \| \mathcal{N}_n \| = j < v$, and j is even. Similarly, we may assume that
\[x_{n-k_1}, x_{n-k_2}, \ldots, x_{n-k}_j < 1; x_{n-k_{j+1}}, x_{n-k_{j+2}}, \ldots, x_{n-k_v} \geq 1, \quad j = 2, \ldots, v - 1. \]

Then
\[
x_n = \prod_{i=1}^{j} \left(\frac{1}{x_{n-k_i}} + 1 \right) \cdot \prod_{i=j+1}^{v} \left(x_{n-k_i}^* + 1 \right) + \prod_{i=1}^{j} \left(\frac{1}{x_{n-k_i}} - 1 \right) \cdot \prod_{i=j+1}^{v} \left(x_{n-k_i}^* - 1 \right) \\
\geq 1. \quad (2.5)
\]

(4) If $\| \mathcal{N}_n \| = v$ is odd, then
\[
x_n = \prod_{i=1}^{v} \left(\frac{1}{x_{n-k_i}} + 1 \right) + \prod_{i=1}^{v} \left(\frac{1}{x_{n-k_i}} - 1 \right) = \prod_{i=1}^{v} \left(x_{n-k_i}^* + 1 \right) - \prod_{i=1}^{v} \left(x_{n-k_i}^* - 1 \right) \leq 1. \quad (2.6)
\]

(5) If $\| \mathcal{N}_n \| = v$ is even, then
\[
x_n = \prod_{i=1}^{v} \left(\frac{1}{x_{n-k_i}} + 1 \right) + \prod_{i=1}^{v} \left(\frac{1}{x_{n-k_i}} - 1 \right) = \prod_{i=1}^{v} \left(x_{n-k_i}^* + 1 \right) + \prod_{i=1}^{v} \left(x_{n-k_i}^* - 1 \right) \geq 1. \quad (2.7)
\]

From (2.1), (2.3)–(2.7) and (2.2) follows. The proof is complete. \hfill \square

Lemma 2.2. Suppose f is defined by
\[
f(y_1, y_2, \ldots, y_v) = \prod_{i=1}^{v} (y_i + 1) + \prod_{i=1}^{v} (y_i - 1) \quad \text{if } n \equiv 0, 1, \ldots \quad (2.8)
\]

and $y_1, \ldots, y_v \in (1, +\infty)$. Then f is increasing in y_1, \ldots, y_v, respectively.
Proof. It follows from

$$\frac{\partial f}{\partial y_i} = 4 \prod_{j=1, j \neq i}^v (y_j^2 + 1) \prod_{j=1}^n (y_j + 1) - \prod_{j=1}^n (y_j - 1)$$

that Lemma 2.2 holds. □

Lemma 2.3. Let \(\{x_n\} \) be a positive solution, and let \(\{x_n^*\} \) be defined by (2.1). Then

$$\max_{1 \leq i \leq v} x_{n+k_i}^* \geq x_n^* \geq 1$$

(2.9)

for all \(n \geq k_v \).

Proof. Let

$$M = \max_{1 \leq i \leq v} x_{n-1}^*,$$

and applying Lemma 2.2 \(v \) times to (2.2), we obtain

$$x_n^* \leq \frac{(M + 1)^v + (M - 1)^v}{(M + 1)^v - (M - 1)^v}.$$

Clearly,

$$(M - 1)^{v-1} \leq (M + 1)^{v-1}.$$

So,

$$(M + 1)(M - 1)^v \leq (M - 1)(M + 1)^v,$$

that is,

$$(M + 1)^v + (M - 1)^v \leq M [(M + 1)^v - (M - 1)^v].$$

Hence,

$$x_n^* \leq \frac{(M + 1)^v + (M - 1)^v}{(M + 1)^v - (M - 1)^v} \leq M.$$

(2.10)

By (2.1), (2.10) and (2.9) follows. The proof is complete. □

Now, set

$$D_n = \max_{n-k_v \leq m \leq n-1} \{x_m^*\}$$

(2.11)

for all \(n \geq k_v \).

The following lemma is the direct corollary of Lemma 2.3 and (2.11).

Lemma 2.4. The sequence \(D_n \) is monotonically non-increasing in \(n \geq k_v \).

Since \(D_n \geq 1 \) for \(n \geq k_v \), Lemma 2.4 implies that, as \(n \) tends to infinity, the sequence \(D_n \) converges to a limit \(D \), where \(D \geq 1 \).

Proof of Theorem 2.1. It suffices to prove that every positive solution \(\{x_n\}_{n=k_v}^{\infty} \) of Eq. (1.5) converges to \(x_1 \) as \(n \to \infty \). Namely, we need to prove

$$\lim_{n \to \infty} x_n^* = 1.$$

(2.12)

By (2.11), the values of \(D_n \) are taken on by entries in the sequence \(\{x_n^*\} \), and as well, by Lemma 2.3, \(x_n^* \in [1, D_n] \) for \(n \geq k_v \).

For any \(\epsilon \in (0, D) \), we can always find an \(N \) such that \(x_N^* \in [D, D + \epsilon] \) and \(D_n \leq D + \epsilon \) for \(n \geq N - k_v \), and so

$$x_n^* \in [1, D + \epsilon], \quad n \geq N - k_v.$$

Since \(x_n^* \geq 1 \) for all \(n \), employing Lemmas 2.1 and 2.2, it follows from (2.2) that

$$D \leq x_n^* \leq \frac{(D + \epsilon + 1)^v + (D + \epsilon - 1)^v}{(D + \epsilon + 1)^v - (D + \epsilon - 1)^v}.$$
namely,
\[(D - 1)(D + \varepsilon + 1)^v \leq (D + 1)(D + \varepsilon - 1)^v.\]

It follows that
\[\varepsilon \sum_{i=1}^{n} \sum_{i=1}^{n} C_i e^{i-1} (D - 1)^{v-i} - (D - 1)e \sum_{i=1}^{n} C_i e^{i-1} (D + 1)^{v-i},\]

which can be rewritten as
\[(D^2 - 1) \left((D + 1)^{v-1} - (D - 1)^{v-1} \right) \leq \varepsilon \sum_{i=1}^{n} C_i e^{i-1} \left((D + 1)(D - 1)^{v-1} - (D - 1)(D + 1)^{v-1} \right).\]

Since \(v > 1\) and \(\varepsilon > 0\) is arbitrary, it follows that \(D = 1\), and so (2.12) holds. The proof of Theorem 2.1 is complete. \(\square\)

Acknowledgments

We are grateful to the referees for their careful reading of the manuscript and many valuable comments and suggestions that greatly improved the presentation of this work.

References