

QUT Digital Repository:
http://eprints.qut.edu.au/

This is the accepted version of this conference paper. To be published as:

Ai, Lifeng and Tang, Maolin and Fidge, Colin J. (2010) QoS-oriented
sesource allocation and scheduling of multiple composite web services in a
hybrid cloud using a random-key genetic algorithm. In: 17th International
Conference on Neural Information Processing (ICONIP 2010), 22-25
November 2010, Sydney. (In Press)

© Copyright 2010 Please consult the authors.

QoS-oriented Resource Allocation and Scheduling of
Multiple Composite Web Services in a Hybrid Cloud

Using a Random-Key Genetic Algorithm

Lifeng Ai, Maolin Tang and Colin Fidge

Queensland University of Technology
2 George Street, Brisbane, QLD 4001, Australia
{l.ai,m.tang,c.fidge}@qut.edu.au

Abstract. In cloud computing resource allocation and scheduling of multiple
composite web services is an important challenge. This is especially so in a hy-
brid cloud where there may be some free resources available from private clouds
but some fee-paying resources from public clouds. Meeting this challenge in-
volves two classical computational problems. One is assigning resources to each
of the tasks in the composite web service. The other is scheduling the allocated
resources when each resource may be used by more than one task and may be
needed at different points of time. In addition, we must consider Quality-of-
Service issues, such as execution time and running costs. Existing approaches
to resource allocation and scheduling in public clouds and grid computing are not
applicable to this new problem. This paper presents a random-key genetic algo-
rithm that solves new resource allocation and scheduling problem. Experimental
results demonstrate the effectiveness and scalability of the algorithm.

1 Introduction

“Cloud computing” [1] is an Internet-based computing paradigm driven by economies
of scale, whereby a pool of computation resources, usually deployed as web services,
are provided on demand over the Internet, in the same manner as public utilities. This
paradigm provides an economical way for an enterprise to build new composite web
services.

A composite web service is composed of two or more component web services,
which can be provided by the private cloud owned by the enterprise, a number of public
clouds, or both. Such a computing environment is called a hybrid cloud in this paper
and is illustrated in Figure 1.

Component web services provided by the private cloud and the public clouds have
the same functionality, but may have different Quality-of-Service (QoS) values, such as
response time. In addition, in the private cloud a component web service may have a
limited number of instances of the same component web services, each of which may
have different QoS values. In public clouds, a component web service has a large num-
ber of instances of the same component web service. The QoS values of the instances
of the same component web services in the same public cloud are identical. However,
the QoS values of instances in different public clouds may vary.

Service Service Service

Service Service Service

Private Cloud

Service

Enterprise

Service Service

Service Service Service

Public Cloud

Service Service Service

Service Service Service

Public Cloud

Composite web services

Fig. 1. Hybrid cloud

There may be many composite web services in an enterprise. Each of the component
web services in the composite web services needs to be allocated an instance of the
component web service. One instance of a component web service may be allocated to
more than one component web service in the composite web services as long as it is
used at different times. This is the so called component web service allocation problem.

In addition, in order to maximize the usability of the component web services in the
private cloud and minimize the cost of using component web services in public clouds,
allocated component web service instances can only be used for a fixed period of time.
Thus, this involves scheduling those allocated component web service instances. This
is the so called component web service scheduling problem.

There are two typical QoS-oriented component web service allocation and schedul-
ing problems in the hybrid cloud. One is finding a resource allocation and scheduling
plan which can minimize the total cost of the composite web services satisfying given
response time constraints on each of the composite web services, called the deadline
constraint problem in this paper; another is finding a resource allocation and schedul-
ing plan which minimizes the total response times of the composite web services satis-
fying a total cost constraint, called the cost constraint problem. These two component
web service allocation and scheduling problems can be categorized into resource allo-
cation and scheduling problems. Although resource allocation and scheduling problems
of various kinds have been studied in the context of public clouds and in grids [2–4],
the two component web service allocation and scheduling problems are not the same,
and existing solutions to those resource allocation and scheduling problems in public
clouds and grids cannot be used immediately. This paper presents a random-key genetic
algorithm which solves this new resource allocation and scheduling problem.

2 Problem Description

Inputs

1. A set of composite servicesW = {W1,W2, . . . ,Wn}modelled by directed acyclic
graphs (DAGs), where n is the number of composite services. Each composite ser-
vice consists of several abstract web services. We defineOi = {oi,1, oi,2, . . . , oi,ni}
as the abstract web services set for composite service Wi, where ni is the number
of abstract web services contained in composite service Wi.

2. A set of candidate cloud services Si,j for each abstract web service oi,j , such
that Si,j = Su

i,j ∪ Sv
i,j . Here, Sv

i,j denotes the set of candidate private cloud ser-
vices for abstract web service oi,j , such that Sv

i,j = (Sv
i,j,1, S

v
i,j,2, . . . , S

v
i,j,`),

where ` is the number of candidate private cloud services. Set Su
i,j denotes the

candidate public cloud services for abstract web service oi,j , such that Su
i,j =

(Su
i,j,1, S

u
i,j,2, . . . , S

u
i,j,m), where m is the number of candidate public cloud ser-

vices.
3. A response time and price for each public cloud service Su

i,j,k, denoted by tui,j,k
and cui,j,k respectively, and a response time and price for each private cloud service
Sv
i,j,k, denoted by tvi,j,k and cvi,j,k respectively.

The deadline constraint problem

Output An allocation and scheduling plan X = {Xi | i = 1, 2, . . . , n}, such that the
total cost Cost(X) is minimal. Let Xi denote an allocation and scheduling plan for
composite service Wi, such that Xi = ((Mi,1, Fi,1), (Mi,2, Fi,2), . . . , (Mi,ni , Fi,ni)),
where Mi,j represents the selected cloud service for abstract web service oi,j and Fi,j

represents the finishing time of an instance of abstract web service oi,j . Equation 1 gives
the definition of total cost for a composite service.

Cost(X) =

n∑
i=1

ni∑
j=1

Cost(Mi,j) (1)

Constraints Provision of web services is subject to both precedence and resourcing
constraints, and all composite services are subject to deadline constraints.

Fi,k ≤ Fi,j − di,j , where j = 1, . . . , ni and k ∈ Prei,j (2)

∑
j∈A(t)

rj,m ≤ 1, where m ∈ Sv
i,j (3)

Fi,ni
≤ di (4)

In Equation 2, set Prei,j denotes all abstract web services which must execute
before the abstract web service oi,j . Equation 2 imposes the precedence relationships
between abstract web services.

In Equation 3, setA(t) denotes the abstract web services being used at time t. We let
rj,m = 1 if abstract web service j requires private cloud service m to be processed and
rj,m = 0 otherwise. Equation 3 states that each private cloud service can only process
one abstract web service at a time.

In Equation 4, di denotes the deadline promised to the customer for composite ser-
vice Wi. Fi,ni

is the finishing time of the last abstract service of composite service Wi,
that is, the execution time of Wi. Equation 4 imposes the deadline constraint for each
composite service.

The cost constraint problem

Output An allocation and scheduling plan X = {Xi | i = 1, 2, . . . , n}, such that the
total response time Time(X) is minimal.

Time(X) =

n∑
i=1

(Fi,ni
) (5)

Here, Equation 5 gives the definition of total response times for all composite ser-
vices.

Constraints Provision of web services is subject to both precedence (defined by Equa-
tion 2) and resourcing constraints (defined by Equation 3), and the cost is subject to a
total cost constraint defined by Equation 6, in which Costconstraint denotes the total
cost constraint.

Cost(X) ≤ Costconstraint (6)

3 A Random-Key Genetic Algorithm for Hybrid Cloud Services

We use a random-key genetic algorithm (GA) to solve the hybrid cloud allocation and
scheduling problem. Its main features include: 1) a random-key representation to facil-
itate the maintaining of individuals’ feasibility, which is considered to be difficult in a
sequencing problem as studied here; 2) and a modified decoding procedure based on
the traditional decoding procedure [5] to handle unconstrained resources, i.e., the pub-
lic cloud services, so as to make more efficient use of them. In the following parts of
this section, we introduce our GA in detail.

3.1 Random-Key Genetic Encoding

We encode each individual (or chromosome) as a list of N real numbers, where N
is the number of abstract web services involved in all composite web services. Each
gene in the chromosome corresponds to an abstract web service. The value of a gene
consists of two parts: 1) an integral part, indicating which service is assigned to the
abstract web service, among a set of candidate web services that could be used by the
abstract web service, and 2) a fraction generated randomly in range [0, 1), used as a
sort key, determining the order of the web service in the schedule. The sort key of
a gene represents its corresponding abstract web service’s priority to occupy a cloud
service, when there are multiple abstract web services competing for the same cloud
service. The abstract web service with the lowest priority value has the highest priority
to occupy the cloud service among all competing services.

2.45 3.88 1.47 3.31 0.68

T1

T2

T3

T2

T5

A1,1

A1,2

A1,3

A1,4

A1,5

T1 T2 T3 T4

2.71 0.22 1.95 2.58

A2,1
A2,2 A2,3 A2,4

A1,1 A1,2 A1,3 A1,4 A1,5 A2,1 A2,2 A2,3 A2,4

Composite Service One Composite Service Two

Chromsome

Fig. 2. Example of our random-key encoding method

In on our method, a problem with two composite service (see Figure 2, in which one
composite service has five abstract services and the other has four abstract services) can
be encoded as a real number list with nine (the number of abstract web services). In the
sample chromosome, the value of geneA1,1 is 2.45, the integer part of which means that
abstract web service A1,1 uses the cloud service with index 2 in the set of abstract web
service A1,1’s candidate cloud services, and the fractional part means that the priority
of abstract web service A1,1 to use the cloud service is 0.45. Abstract web service A2,1

has the same functionality (namely task T1) as abstract web service A1,1 but has gene
value 2.71, which means it also uses cloud service 2 and its priority is 0.71. According
to this scenario, abstract web service A1,1 will use the cloud service first when both of
them want to use it at the same time.

3.2 Decoding

We modified the classical decoding algorithm proposed by Bierwirth and Mattfeld [5]
to sequence the abstract web services which use public cloud services. This variation is
imperative because existing algorithms cannot cope with public cloud services, which
have no well-defined bounds, unlike limited private cloud services. A common assump-
tion made by existing algorithms is that a service (resource) can only be used by one
abstract web service at any time. For a public cloud service, however, this is not the case,
because a ‘single’ service can be used by multiple abstract web services at the same time
thanks to the virualisation technology used by public cloud service providers.

The notations used in the procedure include: 1) oij , the jth abstract service of com-
posite service i; 2) σij , the earliest starting time of abstract service oij ; 3) pij , the pro-
cessing time of abstract service oij ; 4) and τij , the earliest completion time of abstract
service oij .

1. Construct the set of all abstract services that are ready to be scheduled, A := {oij |
1 ≤ i ≤ N}.

2. If there exist abstract services in A using public cloud services:
(a) Randomly select an abstract service o∗ij from A which uses a public cloud

service.
(b) Append abstract service o∗ij to the schedule and calculate its starting and com-

pletion time.

(c) If a successor o∗ij+1 of the abstract service o∗ij exists, insert it into A, i.e., A :=
A ∪ {o∗ij+1}.

3. Determine τ∗ = min{τij |oij ∈ A} and the cloud service m∗ on which τ∗ could
be realised.

4. Build a set B from all abstract services in A which are processed on m∗ and then
determine σ∗ = min{σij | oij ∈ B}.

5. Build a set C in accordance with parameter θ such that C := {oij ∈ B | σij ≤
θτ∗ + (1− θ)σ∗, 0 ≤ θ ≤ 1}.

6. Select the abstract service o∗ij from C which has the highest priority (determined
by the sort keys of current individual being decoded) among abstract services in C
and delete it from A, i.e., A := A− {o∗ij}.

7. Append abstract service o∗ij to the schedule and calculate its starting and completion
time.

8. If a successor o∗ij+1 of the abstract service o∗ij exists, insert it into A, i.e., A :=
A ∪ {o∗ij+1}

9. If A 6= φ, go to Step 2. Otherwise, terminate.

A major difference between our algorithm and existing ones is the introduction of
an extra step (Step 2), which processes abstract web services consuming public cloud
services. The basic idea behind our algorithm is that we can schedule abstract services
which use public clouds in the set of abstract services which are ready to be processed
(namely the abstract services in A), because scheduling public abstract services will
not delay other abstract services. After these abstract services have been scheduled, the
remaining abstract services in A can be scheduled in the usual way.

3.3 Fitness Function

For the deadline constraint problem, the fitness function is defined by Equation 7.

Fitness(X) =

{
FCost
Max /Cost(X), if V (X) ≤ 1;

1/V (X), otherwise. (7)

V (X) =

n∏
i=1

(Vi) (8)

Vi =

{
Fi,ni/di, if Fi,ni > di;
1, otherwise. (9)

In Equation 7, V (X) denotes the total constraint violation degree for composite
services. V (X) ≤ 1 denotes there is no constraint violation. V (X) > 1 denotes some
constraints are violated, and the larger the value of V (X), the higher the degree of
constraint violation. FTime

Max is the maximal total cost Fobj(X) among all feasible indi-
viduals in current generation. FCost

Max /Fobj(X) is used to scale the fitness value of all
feasible solutions in range [1,∞). Using Equation 7, we can guarantee that the fitness
of all feasible solutions in a generation are better than the fitness of all infeasible solu-
tions. In addition, the lower total cost for a solution, the better fitness the solution will
have.

For the cost constraint problem, the fitness function is defined by Equation 10, in
which FTime

Max denotes the maximal total response time Fobj(X) among all feasible
individuals in the current generation.

Fitness(X) =

{
FTime
Max /T ime(X), if V (X) ≤ 1;

1/V (X), otherwise. (10)

V (X) =

{
1, if Cost(X) ≤ Costconstraint;
Costconstraint/Cost(X), otherwise. (11)

3.4 Genetic Operators and Elitist Selection

Our algorithm adopts the uniform crossover. The mutation is used in a broader sense
than usual — we introduce a small number of randomly generated new individuals into
the next generation, rather than conducting gene-by-gene mutation as is done usually.
Elitist selection that preserves the best certain number of individuals is also adopted to
increase performance.

4 Experimental Results

Simulation experiments were conducted to evaluate the effectiveness and scalability of
our algorithm. The experimental settings for our GA are as follows: both the population
size and the maximal generations were 200; the percent of the elitist selection was
2%; 83% of new individuals in the next generation are generated by crossover operator;
15% of new individuals in the next generation are randomly generated (a broad sense of
mutation). These parameters were obtained through doing trials on randomly generated
test problems.

To evaluate the scalability of our GA, we applied it to a number of test problems
with different sizes. The problem size of a multiple composite service resource alloca-
tion and scheduling problem depends on three factors: the number of composite web
services, the total number of abstract services, and the number of candidate services for
each abstract service. Therefore we construct three sets of problem, each of which was
designed to evaluate how one of the three factors would affect the computation time of
the GA.

4.1 Test example one

We constructed five test problems with different numbers of composite web services,
ranging from 5 to 25. In each problem, all composite web services contain 10 abstract
web services, with 5 candidate cloud web services for each abstract web services. For
each test problem, we set a deadline constraint for each composite services involved in
the problem to construct a deadline constraint problem. A deadline constraint D using
the method proposed by Yu and Buyya [3] whereD = (Dmax+Dmin)/2. Here,Dmax

is the largest average execution time for a composite service, obtained using the cost

optimisation algorithm [3] to solve the cost optimisation problem without deadline con-
straint. Dmin is the smallest average execution time for a composite service, obtained
using the execution time optimisation algorithm [3] for the time optimisation problem
without cost constraint. Considering the stochastic nature of GAs, we ran our algorithm
10 times for each of the test problems. In each run, our algorithm always found a fea-
sible solution. How the number of composite services affected the computation time of
our GA is depicted by Plot 1 of Figure 3. It can be seen that the computation time of our
GA increased from 25.57 seconds to 205.31 seconds when the number of composite
web services increased from 5 to 25. The computation time increases almost linearly as
the number of composite web services increases.

We also use the test problems to test the cost constraint problem. The cost constraint
was set using the cost optimisation algorithm [3] and the execution time optimisation
algorithm [3] for the cost optimisation problem without deadline constraint and time
optimisation problem without cost constraint, respectively, equals the average value of
the total cost for all composite services found by the two algorithms. Our algorithm also
found feasible solutions for these problems, and the computation tread is the same with
the tread of the algorithm for deadline constraint problem.

4.2 Test example two

We used five test problems with different numbers of abstract services in each composite
service, ranging from 5 to 25 in different tests. Each test has 10 composite web services.
The number of candidate cloud web services for each abstract web services is also 5.
The deadline constraint and cost constraint were set in the same way just mentioned.
The experimental results for different numbers of abstract web services is shown in
Plot2. From the plot we can see that the computation time of our genetic algorithm
increased from 29.12 seconds to 148.15, as the number of abstract services in each
composite service increased from 5 to 25. The computation time increase trend is close
to linear. For all these deadline and cost constraint problems, our GA always found a
feasible solution.

4.3 Test example three

Five test problems were used with different numbers of candidate cloud services for
each abstract service, ranging from 5 to 25 in different tests. The number of composite
and abstract web services was fixed. Plot3 reveals that the computation time remained
steady as the number of candidate web services for every abstract service increased,
indicating that the number of candidate services for each abstract web service has lit-
tle impact on the computation time of our genetic algorithm. Our GA always found a
feasible solution for each test case with deadline or cost constraints.

From the above results,we can make the following conclusions: 1) our GA exhibits
very good scalability. Its computation time increases almost linearly as the number of
composite services, or the number of abstract services involved in a composite service
increases. The computation time is not affected by the number of candidate services
for each abstract one. 2) Our GA is effective. It can always find a feasible solution for
deadline constraint and cost constraint problems with a reasonable constraint.

5 10 15 20 25
20

40

60

80

100

120

140

160

of abstract services in each composite service

C
om

pu
ta

tio
n

tim
e

(S
ec

on
ds

)

Plot 2

5 10 15 20 25
0

50

100

150

200

250

of composite services

C
om

pu
ta

tio
n

tim
e

(S
ec

on
ds

)

Plot 1

5 10 15 20 25
0

20

40

60

80

100
Plot 3

of candidate cloud services for each task

C
om

pu
ta

tio
n

tim
e

(S
ec

on
ds

)

Fig. 3. Number of composite services, number of abstract web services in a composite web ser-
vice, and number of candidate web service for each abstract web service, versus the computation
time of our genetic algorithm

5 Conclusion

In this paper we have solved a new multiple composite web service resource allocation
and scheduling problem in a hybrid cloud scenario where there may be limited local
resources from private clouds and multiple available resources from public clouds. To
the best of our knowledge, this problem has not been considered previously. In particu-
lar, we have presented a random-key genetic algorithm for the resource allocation and
scheduling problem. This algorithm handles both problems simultaneously. It has been
tested empirically and the experimental results have demonstrated good scalability and
effectiveness.

References

1. Foster, I., Zhao, Y., Raicu, I., and Lu, S.. Cloud computing and grid computing 360-degree
compared. Proceedings of the 2008 IEEE Grid Computing Environments Workshop. Nove-
meber 2008. p.1-10.

2. Rizos, S., Z. Henan, Eleni T., and Marios D.. Scheduling Workflows with Budget Constraints.
Proceedings of the Integrated Research in GRID Computing CoreGRID Integration Work-
shop 2005. Pisa, Italy, Springer-Verlag. April 2007. p.347-357.

3. Yu, J. and R. Buyya. Scheduling scientific workflow applications with deadline and budget
constraints using genetic algorithms. Scientific Programming, January 2006. 14(3). p.217-
230.

4. Yu, J., M. Kirley, and R. Buyya.. Multi-objective planning for workflow execution on Grids.
Proceedings of the 8th IEEE/ACM International Conference on Grid Computing, Washing-
ton, DC, USA, IEEE Computer Society. September 2007. p.10-17.

5. Bierwirth, C. and D.C. Mattfeld, Production scheduling and rescheduling with genetic algo-
rithms. Evolutionary computation. 1999. 7(1). p.1-17.

6. Bean, J. C.. Genetic Algorithms and Random Keys for Sequencing and Optimization. IN-
FORMS Journal on Computing. 1994. 6(2). p.154-160.

