Note
Upper bounds for the k-subdomination number of graphs

Li-ying Kanga, Chuangyin Dangb, Mao-cheng Caic,*,1, Erfang Shana

aDepartment of Mathematics, Shanghai University, Shanghai 200436, China
bDepartment of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong
cInstitute of Systems Science, Academia Sinica, Beijing 100080, China

Received 26 January 1999; revised 29 July 1999; accepted 2 April 2001

Abstract

For a positive integer k, a k-subdominating function of $G=(V,E)$ is a function $f: V \rightarrow \{-1,1\}$ such that the sum of the function values, taken over closed neighborhoods of vertices, is at least one for at least k vertices of G. The sum of the function values taken over all vertices is called the aggregate of f and the minimum aggregate among all k-subdominating functions of G is the k-subdomination number $\gamma_k(G)$. In this paper, we solve a conjecture proposed in (Ars. Combin 43 (1996) 235), which determines a sharp upper bound on $\gamma_k(G)$ for trees if $k \geq |V|/2$ and give an upper bound on $\gamma_k(G)$ for connected graphs. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph; Tree; Open and closed neighborhoods; k-Subdomination number

1. Introduction

All graphs under consideration are simple. For a graph $G=(V,E)$ and vertex $v \in V$, let $N(v) = \{u \in V : uv \in E\}$ and $N[v] = \{v\} \cup N(v)$ be the open and closed neighborhoods of v in G, respectively. For a subset A of V, we set $N_A(v) = N(v) \cap A$ and $d_A(v) = |N_A(v)|$. For $k \in Z^+$, a k-subdominating function (kSF) of G is a function $f: V \rightarrow \{-1,1\}$ such that $f[v] = \sum_{u \in N[v]} f(u) \geq 1$ for at least k vertices v of G. The aggregate $ag(f)$ of such a function is defined by $ag(f) = \sum_{v \in V} f(v)$ and the k-subdomination number $\gamma_k(G)$ by $\gamma_k(G) = \min \{ag(f) : f \text{ is kSF of } G\}$. The concept of k-subdominatoin number was introduced and first studied by Cockayne and Mynhardt [2]. In the special cases where $k = |V|$ and $k = \lceil |V|/2 \rceil$, γ_k is respectively the signed domination number γ_s [3] and the majority domination number γ_{maj} [1].

* Corresponding author.
E-mail address: caimc@staff.iss.ac.cn (M.-c. Cai).
1 Research partially supported by the National Natural Science Foundation of China.

0012-365X/02/$-see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0012-365X(01)00311-9
In [2], Cockayne et al. established a sharp lower bound on γ_{ks} for trees. Moreover, they also gave a sharp upper bound on γ_{ks} for trees if $k \leq |V|/2$, and proposed the following two conjectures:

Conjecture 1. For any n-vertex tree T and any k with $n/2 < k \leq n$, $\gamma_{ks}(T) \leq 2k - n$.

Conjecture 2. For any connected graph G of order n and any k with $n/2 < k \leq n$, $\gamma_{ks}(G) \leq 2k - n$.

In this paper, we show that Conjecture 1 is true and Conjecture 2 is incorrect, and give an upper bound for the k-subdomination number of graphs.

2. An upper bound on the k-subdomination number for trees

Alon (mentioned in [2]) established the following upper bounds on γ_{ks} for a connected graph.

Theorem A (Cockayne and Mynhardt [2]).

For any connected graph G of order n,

$$\gamma_{maj}(G) \leq \begin{cases} 1 & \text{if } n \text{ is odd}, \\ 2 & \text{if } n \text{ is even}. \end{cases}$$

And Henning and Hind [4] proved the following:

Theorem B (Henning and Hind [4]).

If T is a tree of order n, $k = \lceil (n + 1)/2 \rceil$, then $\gamma_{ks}(T) \leq 2$.

In order to prove Conjecture 1, we need some definitions from [2]. A *leaf* of a tree is a vertex of degree one and a *remote vertex* of a tree is a vertex having exactly one non-leaf neighbor. We write L and R for the sets of leaves and remote vertices of T, respectively.

Theorem 1. For any n-vertex tree T and k with $n/2 < k \leq n$, $\gamma_{ks}(T) \leq 2k - n$.

Proof. To prove the theorem, by the definition of γ_{ks}, it suffices to show that there exists a k-subdominating function f with $ag(f) \leq 2k - n$.

First we may suppose $k > \lceil (n + 1)/2 \rceil$ by Theorem B and $k < n$ for $f(v) = 1$ for all $v \in V$ is an n-subdominating function with $ag(f) = n$.

Now we apply induction on the number of vertices of T. Note that the assertion is true for $n \leq 4$, so suppose that $n \geq 5$ and the theorem holds for smaller values of n. Suppose furthermore T is not a star since for star T with leaves $v_1, v_2, \ldots, v_{n-1}$ there
exists a k-subdominating function
\[
f(x) = \begin{cases}
-1 & \text{if } x = v_i, \ i = 1, \ldots, n - k, \\
1 & \text{otherwise}
\end{cases}
\]
with $\text{ag}(f) = 2k - n$. Thus $|R| \geq 2$.

Suppose that there exists a vertex $u \in R$ such that $d(u)$ is even, and that v' is a leaf adjacent to u. Then for the subtree $T_1 = T - v'$ and k with $(n - 1)/2 < k \leq n - 1$, by the induction hypothesis, there exists a k-subdominating function f_1 on T_1 with $\text{ag}(f_1) \leq 2k - (n - 1) = 2k - n + 1$. We define
\[
f(x) = \begin{cases}
-1 & \text{if } x = v', \\
f_1(x) & \text{otherwise.}
\end{cases}
\]

Then f is a k-subdominating function on T. Indeed, if $f_1[u] < 1$ in T_1, f is a k-subdominating function on T. And if $f_1[u] \geq 1$ in T_1, then $f_1[u] \geq 2$ as $d(u)$ is even, hence f is also a k-subdominating function on T. Clearly, $\text{ag}(f) = \text{ag}(f_1) - 1 \leq 2k - n$.

Hence we may suppose that $d(u)$ is odd for all $u \in R$, hence $d(u) \geq 3$ as u is not a leaf of T. Take a $u' \in R$, write $d(u') = 2s + 1$ and $N(u') = \{v_1, v_2, \ldots, v_{2s+1}\}$, where v_{2s+1} is the unique non-leaf neighbor of u'. We separate three cases according to the values of k.

Case 1: $n - s \leq k \leq n - 1$.

Define
\[
f(x) = \begin{cases}
-1 & \text{if } x = v_i, \ i = 1, 2, \ldots, n - k, \\
1 & \text{otherwise.}
\end{cases}
\]

Then it is easily seen that $f[x] \geq 1$ if $x \neq v_i, i = 1, 2, \ldots, n - k$, thus f is a k-subdominating function on T with $\text{ag}(f) = 2k - n$.

Case 2: $(n + 3)/2 < k \leq n - s - 1$ ($\Rightarrow n \geq 8$ as $s \geq 1$).

Put $k_1 = k - s - 2$ and $n_1 = n - 2s - 1$, then $\frac{1}{2}n_1 < k_1 < n_1$. Now consider the subtree $T_1 = T - (N[u'] \setminus \{v_{2s+1}\})$ of order $n_1 < n$. By the induction hypothesis, there exists a k_1-subdominating function f_1 on T_1 with $\text{ag}(f_1) \leq 2k_1 - n_1 = 2k - n - 3$. Define
\[
f(x) = \begin{cases}
 f(x) & \text{if } x \in V(T_1), \\
-1 & \text{if } x = v_i, \ i = 1, 2, \ldots, s - 1, \\
1 & \text{otherwise.}
\end{cases}
\]

Clearly, f is a k-subdominating function on T with $\text{ag}(f) = \text{ag}(f_1) + 3 \leq 2k - n$.

Case 3: $\lfloor (n + 1)/2 \rfloor < k \leq (n + 3)/2$.

Then $n = 2k - 3$. To complete the proof, it suffices to show that there exists a k-subdominating function f on T with $\text{ag}(f) \leq 2k - n = 3$. For this purpose, among all partitions $\{W_1, W_2\}$ of V with $|W_1| - |W_2| \leq 1$, called equipartitions, choose one such that the number of edges between W_1 and W_2 is minimum, assume $|W_2| = k - 1$ and $|W_1| = k - 2$. Define a function $\delta(v) = d_{W_i}(v) - d_{W_i \setminus \{v\}}$ for every $v \in W_i$, let G_i denote the subgraph induced by W_i, and let L_i and S_i denote the sets of vertices $v \in W_i$ satisfying $d_{W_i}(v) = 1$ and $|N(v) \cap L_i| \geq \lceil \delta(v)/2 \rceil$, respectively, $i = 1, 2$.

Claim 1. \(\delta(v) > 0 \) for all \(v \in V \) except at most one \(v^* \in W_2 \) with \(\delta(v^*) = 0 \).

First \(\delta(v) \geq 0 \) for all \(v \in W_2 \). Otherwise, moving a \(v \in W_2 \) with \(\delta(v) < 0 \) to \(W_1 \), we obtain a new equipartition with fewer edges between its parts. Also, \(\delta(v) > 0 \) for all \(v \in W_1 \). Otherwise, taking \(u \in W_1 \) with \(\delta(u) \leq 0 \), we obtain a \(k \)-subdominating function of \(ag(f) = 2k - n \) by making \(u \) and all of \(W_2 \) positive, all remaining vertices negative, as \(f[u] = 1 - \delta(u) \geq 1 \).

Furthermore, if there exist two distinct vertices \(v_1, v_2 \in W_2 \) with \(\delta(v_1) = \delta(v_2) = 0 \), then we have a \(k \)-subdominating function of \(ag(f) = 3 \) by letting the positive set of \(f \) consist of \(v_1, v_2 \) and all of \(W_1 \).

Claim 2. (a) \(d_{W_i}(v) \geq 1 \) for all \(v \in W_i \), \(i = 1, 2 \).

(b) \(v \in L \) for all \(v \in L_i \), \(i = 1, 2 \), except at most one \(v^* \in W_2 \) with \(\delta(v^*) = 0 \) \((d_{W_i}(v^*) = 1, d(v^*) = 2) \).

(c) \(|L_i| \geq 2, i = 1, 2 \).

Indeed, \(d_{W_i}(v) \geq [d(v)/2] \geq 1 \) and by Claim 1, for all \(v \in W_i \) with \(d_{W_i}(v) = 1 \) except \(v^* \), \(d(v) = 2d_{W_i}(v) - \delta(v) \leq 1 \), yielding (a) and (b). (c) follows from \(G_i \) being acyclic.

Claim 3. \(S_i \neq \emptyset, i = 1, 2 \).

To see this, let \(P = v_1v_2 \cdots v_{l+1} \) be a longest path in \(G_i \). Then obviously \(l \geq 1 \) by Claim 2(a). Moreover, \(v_l \in S_i \). Otherwise, there exists a path \(v_lv'v'' \) in \(G_i \) with \(v' \neq v_{l-1} \), and \(P' = v_1v_2 \cdots v_lv'' \) is a path longer than \(P \).

If \(\lceil \delta(u)/2 \rceil \leq \lceil \delta(v)/2 \rceil \) for some \(u \in S_1 \) and some \(v \in S_2 \), then \(\lceil \delta(u)/2 \rceil \leq |N(u) \cap L_1| \) and \(\lceil \delta(v)/2 \rceil \leq |N(v) \cap L_2| \) by the definition of \(S_i \). Let \(Q_1 \subseteq N(u) \cap L_1 \) and \(Q_2 \subseteq N(v) \cap L_2 \) be sets of \(\lceil \delta(u)/2 \rceil \) vertices, respectively. By Claim 2(b), \(w \in L \) for all vertices \(w \in Q_1 \cup (Q_2 - \{v^*\}). \)

Define
\[
 f(x) = \begin{cases}
-1 & \text{if } x \in Q_1 \cup W_1 \setminus (\{u\} \cup Q_1), \\
1 & \text{otherwise.}
\end{cases}
\]

Clearly, \(f \) is a \(k \)-subdominating function on \(T \) with \(ag(f) = 3 \) if \(f[u] \geq 1 \). And if \(f[u] \leq 0 \), then the exceptional vertex \(v^* \in N(u) \cap Q_2 \), implying \(f[v^*] = f(u) + f(v) - 1 = 1 \) by Claim 2(b), which guarantees that \(f \) is still a \(k \)-subdominating function with \(ag(f) = 3 \).

So, suppose \(\lceil \delta(u)/2 \rceil > \lceil \delta(v)/2 \rceil \) for all \(u \in S_1 \) and all \(v \in S_2 \). Thus, for all \(u \in S_1 \) and all \(v \in S_2 \), \(\lceil \delta(u)/2 \rceil \geq \lceil \delta(v)/2 \rceil + 1 \), so that \(\lceil \delta(u)/2 \rceil \geq \lceil \delta(v)/2 \rceil \). Let \(u \in S_1 \) and \(v \in S_2 \). Then \(|N(u) \cap L_1| \geq \lceil \delta(v)/2 \rceil > \lceil \delta(v)/2 \rceil - 1 \) and \(|N(v) \cap L_2| \geq \lceil \delta(v)/2 \rceil \). Let \(Q_1 \subseteq N(u) \cap L_1 \) and \(Q_2 \subseteq N(v) \cap L_2 \) be sets of \(\lceil \delta(v)/2 \rceil - 1 \) and \(\lceil \delta(v)/2 \rceil \) vertices, respectively, and define
\[
 f(x) = \begin{cases}
-1 & \text{if } x \in Q_1 \cup W_2 \setminus (\{v\} \cup Q_2), \\
1 & \text{otherwise.}
\end{cases}
\]
As before, it follows that f is a k-subdominating function with $\text{ag}(f) = 3$. Theorem 1 is proved.

Note that $\gamma_{ks}(K_{1,n-1}) = 2k - n$ if $k > \frac{1}{2}n$. The bound established in Theorem 1 is sharp indeed.

3. An upper bound on the k-subdomination number for graphs

Conjecture 2 is shown in [4] to be false in the special case when $k = \lceil (n + 1)/2 \rceil$. The conjecture has yet to be settled when $\lceil (n + 1)/2 \rceil < k \leq n$. In this section, we prove the conjecture in the special case when $n - k + 1$ divides k. For this purpose, we shall need the following result.

Theorem 2. For any connected graph G of order n and any k with $\frac{1}{2}n < k \leq n$,

$$\gamma_{ks}(G) \leq 2 \left\lfloor \frac{k}{n - k + 1} \right\rfloor (n - k + 1) - n.$$

Proof. Among all partitions $\{A'_{11}, A'_{12}\}$ of $V(G)$ with $|A'_{11}| = k$ and $|A'_{12}| = n - k$, let $\{A_{11}, A_{12}\}$ be one such that the number of edges between A_{11} and A_{12} is minimum. Note that for any $u \in A_{11}$ and $v \in A_{12}$, if $uv \notin E(G)$, then

$$d_{A_{11}}(u) + d_{A_{12}}(v) \geq d_{A_{12}}(u) + d_{A_{11}}(v).$$

(1)

And if $uv \in E(G)$, then

$$d_{A_{11}}(u) + d_{A_{12}}(v) \geq d_{A_{12}}(u) + d_{A_{11}}(v) - 2.$$

(2)

Otherwise the exchange of u and v yields a partition with fewer edges between its parts.

If $d_{A_{11}}(u) \geq d_{A_{12}}(u)$ for each $u \in A_{11}$, we define

$$f(x) = \begin{cases} 1 & \text{if } x \in A_{11}, \\ -1 & \text{if } x \in A_{12}. \end{cases}$$

Then clearly f is a k-subdominating function on G with $\text{ag}(f) \leq 2k - n$. Thus we may assume there exists a vertex $u_1 \in A_{11}$ with $d_{A_{11}}(u_1) < d_{A_{12}}(u_1)$. Then for any $v \in A_{12}$, using (1) and (2), we have

$$d_{A_{12}}(v) > d_{A_{11}}(v) \quad \text{if } v \notin N(u_1),$$

$$d_{A_{12}}(v) \geq d_{A_{11}}(v) - 1 \quad \text{if } v \in N(u_1).$$

Among all partitions $\{A'_{21}, A'_{22}\}$ of $A_{11} - \{u_1\}$ with $|A'_{21}| = 2k - n - 1$ and $|A'_{22}| = n - k$, let $\{A_{21}, A_{22}\}$ be one such that the number of edges joining vertices in A_{21} to vertices in A_{22} is minimum. If $d_{A_{21}}(u) \geq d_{A_{22}}(u)$ for each $u \in A_{21}$, define

$$f(x) = \begin{cases} 1 & \text{if } x \in A_{21} \cup A_{12} \cup \{u_1\}, \\ -1 & \text{if } x \in A_{22}. \end{cases}$$
It is easily seen that f is a k-subdominating function of $ag(f) \leq 2k - n$, hence $\gamma_{ks}(G) \leq 2k - n$. So we may assume there exists $u_2 \in A_{21}$ such that $d_{A_{21}}(u_2) < d_{A_{22}}(u_2)$. For any $v \in A_{22}$, by the choice of $\{A_{21}, A_{22}\}$, similarly we have

$$d_{A_{22}}(v) > d_{A_{21}}(v) \quad \text{if} \quad v \notin N(u_2),$$

$$d_{A_{22}}(v) \geq d_{A_{21}}(v) - 1 \quad \text{if} \quad v \in N(u_2).$$

For $A_{21} - \{u_2\}$, a similar argument shows that either $\gamma_{ks}(G) \leq 2k - n$ or there exists $u_i \in A_{1i}$, $i = 1, 2, \ldots, \lceil k/(n-k+1) \rceil$, such that $d_{A_{1i}}(u_i) < d_{A_{2i}}(u_i)$ and

$$d_{A_{22}}(v) > d_{A_{21}}(v) \quad \text{if} \quad v \notin N(u_i),$$

$$d_{A_{22}}(v) \geq d_{A_{21}}(v) - 1 \quad \text{if} \quad v \in N(u_i).$$

Define

$$f(u) = \begin{cases}
1 & \text{if} \quad u \in A_{12} \cup A_{22} \cup \ldots \cup A_{\lceil k/(n-k+1) \rceil 2} \cup \{u_1, u_2, \ldots, u_{\lceil k/(n-k+1) \rceil}\}, \\
-1 & \text{otherwise}. \end{cases}$$

f is a k-subdominating function on G with

$$ag(f) \leq 2\lceil k/(n-k+1) \rceil(n-k+1) - n.$$

The proof of Theorem 2 is complete. \qed

Corollary 1. Let G be a connected graph of order n and k an integer with $n/2 < k \leq n$. If $n - k + 1 | k$, then $\gamma_{ks}(G) \leq 2k - n$.

Thus Conjecture 2 is true if $n - k + 1 | k$.

Acknowledgements

The authors would like to thank Professor F. Tian for his help, Professor J. Hattingh and three anonymous referees for very helpful comments.

References

