
Måns I. AnderssonKTH Royal Institute of Technology | KTH · Computational Science and Technology
Måns I. Andersson
Investigating linear solvers, mixed precision, compression
About
13
Publications
411
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
23
Citations
Introduction
Publications
Publications (13)
The never-ending computational demand from simulations of turbulence makes computational fluid dynamics (CFD) a prime application use case for current and future exascale systems. High-order finite element methods, such as the spectral element method, have been gaining traction as they offer high performance on both multicore CPUs and modern GPU-ba...
This paper presents the design and development of an Anderson Accelerated Preconditioned Modified Hermitian and Skew-Hermitian Splitting (AA-PMHSS) method for solving complex-symmetric linear systems with application to electromagnetics problems, such as wave scattering and eddy currents. While it has been shown that the Anderson acceleration of re...
This paper presents the design and development of an Anderson Accelerated Preconditioned Modified Hermitian and Skew-Hermitian Splitting (AA-PMHSS) method for solving complex-symmetric linear systems with application to electromagnetics problems, such as wave scattering and eddy currents. While it has been shown that the Anderson Acceleration of re...
Discrete Fourier Transform (DFT) libraries are one of the most critical software components for scientific computing. Inspired by FFTW, a widely used library for DFT HPC calculations, we apply compiler technologies for the development of HPC Fourier transform libraries. In this work, we introduce FFTc, a domain-specific language, based on Multi-Lev...
GROMACS is one of the most widely used HPC software packages using the Molecular Dynamics (MD) simulation technique. In this work, we quantify GROMACS parallel performance using different configurations, HPC systems, and FFT libraries (FFTW, Intel MKL FFT, and FFT PACK). We break down the cost of each GROMACS computational phase and identify non-sc...
The modern workflow for radiation therapy treatment planning involves mathematical optimization to determine optimal treatment machine parameters for each patient case. The optimization problems can be computationally expensive, requiring iterative optimization algorithms to solve. In this work, we investigate a method for distributing the calculat...
GROMACS is one of the most widely used HPC software packages using the Molecular Dynamics (MD) simulation technique. In this work, we quantify GROMACS parallel performance using different configurations, HPC systems, and FFT libraries (FFTW, Intel MKL FFT, and FFT PACK). We break down the cost of each GROMACS computational phase and identify non-sc...
The modern workflow for radiation therapy treatment planning involves mathematical optimization to determine optimal treatment machine parameters for each patient case. The optimization problems can be computationally expensive, requiring iterative optimization algorithms to solve. In this work, we investigate a method for distributing the calculat...
Background
Rupture of unstable atherosclerotic plaques with a large lipid-rich necrotic core and a thin fibrous cap cause myocardial infarction and stroke. Yet it has not been possible to assess this for individual patients. Clinical guidelines still rely on use of luminal narrowing, a poor indicator but one that persists for lack of effective mean...
Discrete Fourier Transform (DFT) libraries are one of the most critical software components for scientific computing. Inspired by FFTW, a widely used library for DFT HPC calculations, we apply compiler technologies for the development of HPC Fourier transform libraries. In this work, we introduce FFTc, a domain-specific language, based on Multi-Lev...