Manoel Arcisio-Miranda

Manoel Arcisio-Miranda
Universidade Federal de São Paulo | UNIFESP · Departamento de Biofísica

About

45
Publications
3,139
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
829
Citations

Publications

Publications (45)
Article
Voltage‐gated proton channels (HV1) have been found in many mammalian cells and play a crucial role in the immune system, male fertility, and cancer progression. Glycosaminoglycans play a significant role in various aspects of cell physiology, including the modulation of membrane receptors and ion channel function. We present here evidence that mec...
Article
Full-text available
Increasing resistance in antibiotic and chemotherapeutic treatments has been pushing studies of design and evaluation of bioactive peptides. Designing relies on different approaches from minimalist sequences and endogenous peptides modifications to computational libraries. Evaluation relies on microbiological tests. Aiming a deeper understanding, w...
Article
Alzheimer's disease is classically characterized by two major markers: extracellular development of senile plaques and intracellular formation of neurofibrillary tangles. Nonetheless, neuronal glucose hypometabolism and Ca2+ deregulation have been separately implied in the genesis and progress of the neurodegenerative process. In this sense, the go...
Article
A strategy that has been gaining increased application for the study of the conformation, dynamics, orientation, and physicochemical properties of peptides is labeling with the paramagnetic amino acid TOAC. This approach was used to gain a deeper understanding on the mechanism of action of the antimicrobial peptide tritrpticin (TRP3). TRP3 was labe...
Article
Calcium (Ca2+) is an essential component in intracellular signaling of brain cells, and its control mechanisms are of great interest in biological systems. Ca2+ can signal differently in neurons and glial cells using the same intracellular pathways or cell membrane structural components. These types of machinery are responsible for entry, permanenc...
Article
Antimicrobial peptides appear among innovative biopolymers with potential therapeutic interest. Nevertheless, issues concerning efficiency, production costs and toxicity persist. Herein we show that conjugation of peptides with chitosans can represent an alternative in the search for these needs. To increase solubility deacetylated and degraded chi...
Article
Full-text available
Voltage-gated potassium (KV) channels regulate diverse physiological processes and are an important target for developing novel therapeutic approaches. Sea anemone (Cnidaria, Anthozoa) venoms comprise a highly complex mixture of peptide toxins with diverse and selective pharmacology on KV channels. From the nematocysts of the sea anemone Actinia be...
Article
Full-text available
Glioblastoma multiforme is the most common and lethal malignant brain tumor. Because of its complexity and heterogeneity, this tumor has become resistant to conventional therapies and the available treatment produces multiple side effects. Here, using multiple experimental approaches, we demonstrate that three mastoparan peptides—Polybia-MP1, Masto...
Article
The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in rel...
Article
Full-text available
Endocannabinoids are amphiphilic molecules that play crucial neurophysiological functions acting as lipid messengers. Antagonists and knockdown of the classical CB1 and CB2 cannabinoid receptors do not completely abolish many endocannabinoid activities, supporting the idea of a mechanism independent of receptors whose mode of action remains unclear...
Article
Inward rectifying potassium - Kir - channels drive the resting potential to potassium reversal potential and, when disrupted, might be related to muscular diseases. Recently, Thyrotoxic Periodic Paralysis (TPP) has emerged as a channelopathy related to mutations in KCNJ18 gene, which encodes Kir2.6 channel. TPP is a neuromuscular disorder character...
Article
The complexes cis-[Ru(phen)2(Apy)2]²⁺, Apy = 4-aminopyridine and 3,4-aminopyridine, are stable in aqueous solution with strong visible absorption. They present emission in the visible region with long lifetime that accumulates in the cytoplasm of Neuro2A cell line without appreciable cytotoxicity. The complexes also serve as mixed-type reversible i...
Article
Full-text available
Next-generation sequencing (NGS) has enriched the understanding of the human genome. However, homologous or repetitive sequences shared among genes frequently produce dubious alignments and can puzzle NGS mutation analysis, especially for paralogous potassium channels. Potassium inward rectifier (Kir) channels are important to establish the resting...
Article
Solid tumors tend to have a more glycolytic metabolism leading to an accumulation of acidic metabolites in their cytosol, consequently their intracellular pH (pHi) turns critically lower if the cells do not handle the acid excess. Recently, it was proposed that the voltage gated proton channels (HV1) can regulate the pHi in several cancers. Here we...
Article
Jelleines are four naturally occurring peptides that comprise approximately the 8 or 9 C-terminus residues in the sequence of the major royal jelly protein 1 precursor (Apis mellifera). The difference between these peptides is limited to one residue in the sequence but this residue has a significant impact in their efficacy as antimicrobials. In pe...
Article
Full-text available
Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period...
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
Article
This study shows that MP-1, a peptide from the venom of the Polybia paulista wasp, is more toxic to human leukemic T-lymphocytes than to human primary lymphocytes. By using model membranes and electrophysiology measurements to investigate the molecular mechanisms underlying this selective action, the porelike activity of MP-1 was identified with se...
Article
Full-text available
Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter...
Article
Voltage-gated ion channels are crucial for the generation of action potentials in excitable tissues throughout the human body. In response to membrane depolarization, the movement of the voltage-sensors opens a pore gate on the intracellular side of the protein. Following channel opening, a distinct conformational change in the pore causes a slow l...
Article
Full-text available
The hallmark of many intracellular pore blockers such as tetra-alkylammonium compounds and local anesthetics is their ability to allosterically modify the movement of the voltage sensors in voltage-dependent ion channels. For instance, the voltage sensor of domain III is specifically stabilized in the activated state when sodium currents are blocke...
Article
Full-text available
In a voltage-dependent sodium channel, the activation of voltage sensors upon depolarization leads to the opening of the pore gates. To elucidate the principles underlying this conformational coupling, we investigated a putative gating interface in domain III of the sodium channel using voltage-clamp fluorimetry and tryptophan-scanning mutagenesis....
Article
The activation of voltage-sensors, upon depolarization, leads to the opening of pore gates in a voltage-dependent sodium channel. To elucidate the molecular principles underlying this conformational coupling, we have investigated a putative gating interface in domain III of the sodium channel using voltage-clamp fluorimetry and tryptophan-scanning...
Article
Sodium channels are a major target for many toxins and drugs including local anesthetics (LA). Gating current (Sheets and Hanck, J. Gen. Physiol.; 121(2), 2003) and fluorescence measurements (Muroi and Chanda, J. Gen. Physiol.; 133(1), 2009) show that LA binding to the pore mainly stabilizes the voltage-sensor of domains III of sodium channel in an...
Article
In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmune diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with mem...
Article
Fish oil supplementation has been reported to be generally beneficial in autoimmune, inflammatory and cardiovascular disorders. Most researchers have attributed these beneficial effects to the high content of omega-3 fatty acids in fish oil (FO). The effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are not differentiated in mos...
Article
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane co...
Article
Sodium channels are a major target for many toxins and drugs including local anesthetics (LA). Gating current (Sheets and Hanck, J. Gen. Physiol.; 121(2), 2003) and fluorescence measurements (Muroi and Chanda, Biophysical Society Meeting, 2008) show that LA binding to the pore mainly stabilizes the voltage-sensor of domains III of sodium channel in...
Article
In response to membrane depolarization, voltage-gated ion channels undergo a structural rearrangement that moves the voltage sensing segments in the electric field and initiates a series of conformational transitions that ultimately opens the channel pore. The mechanism of coupling between the voltage-sensing domain and pore domain remains poorly u...
Article
Upon membrane depolarization, conformational changes in the S4 voltage sensors results in the opening of the voltage-gated sodium channel. The movement of the positively charged residues on the four distinct voltage-sensors in the membrane electric field generates a measurable transient current referred to as the gating current. The ON gating curre...
Article
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carbo...
Article
Full-text available
Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activ...
Article
One of the methods available for the measurement of surface potentials of planar lipid bilayers uses the conductance ratio between a charged and a neutral bilayer doped with ionophores to calculate the surface potential of the charged bilayer. We have devised a simplification of that method which does not require the use of an electrically neutral...
Article
Full-text available
An important challenge for both students and teachers of physiology is to integrate the different areas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it c...
Article
Full-text available
The effect of palmitic acid (PA) and oleic acid (OA) on electrical parameters of planar membranes was studied. We found a substantial difference between the effects of PA and OA on proton transfer. PA induced a small increase in conductance, requiring a new technique for estimating proton-mediated currents across low-conductance planar bilayers in...
Article
We studied the effect of palmitic acid (PA) and cholesterol (approximately 17 wt.%) on proton translocation across asolectin (charged) and diphytanoylphosphatidylcholine (DPhPC, neutral) black lipid membranes (BLMs). Potential difference (PD), short circuit current (SCC), and conductance (G(total)) were measured with a digital electrometer. Membran...

Questions

Question (1)
Question
We recently purchased an used SD9D grass stimulator. Unfortunately we are not fully aware of its operation and, because of this, we would like to obtain the manual. We already searched the internet and we did not find it.
Thank you if anyone can share.

Network

Cited By

Projects

Project (1)
Archived project
Mastoparans are peptides from the animal origin that have proven antimicrobial action. There are reports that these peptides may also take action in cancer cell membranes, because of its physicochemical characteristics. We are studying the mechanisms and modes of action of this peptide class on glioblastoma multiforme cells, which is a highly aggressive cancer.