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Background: Training surgeons to use surgical robots is be-
coming part of surgical training curricula. We propose a
novel method of training fine-motor skills such as Micro-
scopic Selection Task (MST) for robot-assisted surgery us-
ing Virtual Reality with objective quantification of perfor-
mance. We also introduce Vibrotactile Feedback (VTFB) to
study its impact on training performance.

Methods: We use a VR-based environment to perform
MST with varying degrees of difficulties. Using a well-
known Human-Computer Interaction paradigm and incor-
porating VTFB, we quantify the performance: speed, preci-
sion, and accuracy.

Results: MST with VTFB showed statistically significant im-
provement in performance metrics leading to faster com-
pletion of MST with higher precision and accuracy com-
pared to that without VTFB.

Discussion: The addition of VTFB to VR-based training
for robot-assisted surgeries may improve performance out-
comes in real robotic surgery. VTFB, along with proposed
performance metrics, can be used in training curricula for
robot-assisted surgeries.
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1 | INTRODUCTION

Surgical robots are increasingly being used in almost
every multi-specialty hospital. Currently, they have
multiple applications in pelvic, abdominal, select-chest,
and neurosurgical procedures [1, 2, 3, 4, 5, 6]. The
technology of surgical robots today has advanced suf-
ficiently to provide a high degree of freedom in the

robots’ arm movements, control, and stereoscopic vi-

sion. The improved user-interface of these technolo-

gies has led to better on-the-job performance and faster
learning curves in the use of surgical robots such as da

Vinci® [7], ROSA® [8, 9] and Senhance™ [10].
Psychomotor skills play a vital role in surgical task

performance with increased speed, Accuracy, Sensitiv-

ity, and precision. Surgical robotic systems typically seek
to help surgeons perform surgeries with higher accu-
racy, faster responses to intraoperative complications,
and increased dexterity. Quantification of psychomo-
tor skills became essential with robotic surgical training
systems that emphasize rare complex surgical scenarios,
challenges, and evaluations of these skills. Training and
evaluation of these skills are crucial for effective anal-
ysis of the surgeons in the tasks as mentioned earlier.

The evaluation of the performance is currently through

cognitive, technical, and non-technical skills. Technical

skills (TS) include psychomotor skills, user perception, vi-

suospatial orientation, and adaptation [11]. The reason

technical skills are essential from a surgeon’s perspec-
tive is that they reduce operating time, reduce patient
exposure to operative risks, improve the handling of in-
traoperative complications, and reduce post-operative
morbidities [12]. Using a training system permits a quan-
tifiable evaluation of the technical skills of the surgeon
before performing actual surgeries.

Robotic surgical training systems are available in two
variants:

1. Classical training paradigms which include methods
such as On-the-job and Off-the-job training systems
(e.g., Directly on the robots or cadavers, etc.)

2. Emerging training paradigms include Virtual Reality
simulations for Robotic surgical training as the skills
learning method [11, 13, 14, 15, 16] can be per-

formed without the use of expensive robots, while
at the same time being self-driven, mentor free, and
it can use modifiable levels of difficulties and chal-
lenges.

One of the unique requirements for robot-specific
surgical training is the incorporation of variation in the
levels of difficulty, which are defined by various param-
eters. One of them is the Movement Scale, which refers
to the ratio of the movement of the input device (sur-
geon's console) to the movement of the robotic arm.
Other parameters include distance to target and size of
the target. These parameters are used to enhance the
capability of the user to control and manipulate small
objects. When the objects are small, the task becomes
more challenging. Such Selection Tasks are termed Mi-
croscopic Selection Tasks (MST). Training for MST is es-
sential, because Movement Scales and visual magnifica-
tions [17] are incorporated into current surgical robots
[18]. We thus provide challenging scenarios to the user
in performing and training for MST.

In the current literature, two major issues are missing:
1) Although the literature has few VR based training sys-
tems for robotic surgery [19, 20], there is limited study
on training fine-motor skills that is critical for robotic sur-
gical training. 2) The improvement in the performance
of fine motor skills training through haptics which is the
science of the sense of touch. Haptic feedback is criti-
cal when the surgeon is feeling the tissue characteristics
through a robot.

Incorporation of haptics in robotic surgery is an im-
portant advancement as it allows the surgeons to feel
tissues being handled by the robot. Psychomotor skills
training with haptic feedback has shown improvements
in the learning curve for surgical simulations in virtual
reality [21, 22, 23]. One of the unique challenges in
robotic surgery is the lack of haptic feedback, which in-
cludes tactile and proprioceptive sensations [24]. Tac-
tile sensation involves a sense of pressure and vibra-
tion, whereas the proprioceptive sensation involves the
sense of position, movement, and forces. Most surgi-
cal robots today cannot sense and transmit such infor-

mation to the surgeon. In a surgical robot console, a
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surgeon relies entirely on visual cues from 3D cameras.
This lack of haptic feedback makes the surgical task dif-
ficult [25], especially for novice surgeons. Therefore,
tactile feedback could assist surgeons using robotic con-
soles [25, 26, 27]. Moreover, to deal with intraoperative
complications, handling of tissue, and suturing, haptic
feedback plays a vital role. Intraoperative bleeding dur-
ing surgeries is a critical complication that is dealt with
by accurately and precisely identifying the source of the
bleed and gently stopping the bleed [28]. Studies by
Ebrahimi [29] and Kontarinis [30] reported that Vibro-
Tactile Feedback (VTFB) enhances the performance of
manipulation tasks in virtual environments by reducing
reaction times. Koehn and Kuchenbecker [31] reported
that both surgeons and non-surgeons prefer the VTFB
in simulated robotic surgery. However, these studies did
not quantify the psychomotor skills required for robotic
surgery. More recent studies have shown that VTFB
is a vital sensory adjunct to surgeons operating a sur-
gical robot [32, 33, 34, 35, 36]. Thus, the addition of
VTFB during training can improve the learning curve, es-

pecially for psychomotor skills.

1.1 | Proposed Solution

Our paper aims at creating a VR based training system

that allows for the objective evaluation and learning of

psychomotor skills for robotic surgery, specifically fine
motor skills. We include vibrotactile feedback (VTFB)
in our training system to improve the performance of
fine motor skills and augment the experience of human-
computer interaction. This study proposes a perfor-
mance index and compares the performance with and
without VTFB. Our main goals are: (1) To objectively
quantify the psychomotor performance of fine motor
skills such as Microscopic Selection Task (MST) in a fully-
immersive 3D virtual environment (2) To verify if the per-
formance of the MST improves with the use of VTFB.

To summarize our contributions in this work:

1. We introduce a VR based training of tasks involving
fine motor skills such as MST essential for robotic
surgery.

2. We introduce a method for quantifying psychomo-

tor skills in MST by adapting existing HCI laws. Our
work can be used as a tool to quantify and improve
psychomotor performance during the training of sur-
geons in a robotic surgical curriculum [11].

3. Weintroduce VTFB as a tool for improvement of per-
formance in MST and show that VTFB significantly
improves the performance of fine motor skills.

2 | HUMAN-COMPUTER INTERAC-
TION (HCI) LAW FOR MST

A surgical robot’s console is a Human-Machine-
Interface (HMI). Interaction with such interfaces is
referred to as Human-Computer-Interaction (HCI).
With the advent of HMI and HCI tools [37, 38], there
are many ways to objectively quantify psychomotor
performance using any input device such as the afore-
mentioned surgical robot’s console. One such method
is Fitts's law, which is a widely accepted powerful
tool for modeling human movement. Although Fitts's
law was introduced in 1954 originally [39], the first
[40] in

1978 for comparison of different input devices. Fitts's

application of it to HCI was by Card et al.

law is a linear relation between task completion time
and difficulty of the task. The difficulty of the task is
described by two parameters, as shown in Figure 1.
The first parameter D is the distance the cursor (which
is driven by the user’s hand) has to travel to the target
(red ball). The second parameter is W, which is the
width of each ball. The different values of D and W
define each level of difficulty that the user encounters.
Mathematically, the performance of an individual for a
given task is described by a linear equation shown in
Equation 1

t=a+blD (1)

where ‘t’ is the Movement Time (MT) to reach the
target in seconds, ‘ID’ (Index of Difficulty) is a measure
of the difficulty of a given task, ‘a’ refers to a minimum

time required to complete the easiest task (ID = 0), and
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FIGURE 1 A typical Fitts's multi-tapping task [41]
which depicts nine spheres, each with diameter W,
arranged in a circle of diameter D. D and W are varied
to change the difficulty level of the task.

‘b’ describes how MT changes as ID changes. Both a
and b depend on the choice of the input device, which
in our study is the surgical robotic console. The mea-
sure of the index of difficulty is computed by the ratio
D/W. Thus, as the distance D decreases or the width
W increases, the task becomes progressively easier as
the surgeon’s hand has to traverse shorter distances to
reach a larger target. Similarly, as D increases or W de-
creases, the task becomes progressively harder. Mathe-
matically, the values of D/W can, therefore, range from
0 to infinity. In order to scale this down, the next step
in constructing the measure of the Index of Difficulty is
to use the logarithm of D/W. Although this makes the
scale more manageable, we still have to deal with the
possibility of log(0). Hence we measure the Index of Dif-
ficulty by calculating the log of (D/W + 1). For this pur-
pose, we use a logarithmic scale so that when D = W,
the Index of Difficulty becomes 1. Hence, we define the
index of difficulty according to equation (2) below given
by Soukoreff and MacKenzie [42].

ID =/ogy (%+1) (2)

A measure of performance of a user in carrying out
the selection of targets is termed as Throughput [41].

It refers to the number of targets selected per unit

time. In the context of robotic surgery, Throughput indi-
cates how quickly the surgeon selects the target during
robotic surgery training.

High Throughput is demanded in robot-assisted surg-
eries, especially Urological and Neurological surgeries,
which involve a precise selection of microscopic tissues
quickly. The Movement Scale settings are already exist-
ing in the da Vinci® surgical robot and are given as Nor-
mal (1:1/2), Fine (1:1/3), and Ultra-fine (1:1/5) scales.
However, quantification of performance in these scales
has not been reported yet.

2.1 | 3D Fitts’s Law and MST

The concept of scaling in visual and motor domains are
widely studied [43, 44, 45]. In our earlier work [46], we
studied various Movement Scales for 2D tapping tasks
using Fitts’s law. The results have shown that the perfor-
mance was an inverted U-shaped function of the Move-
ment Scale. The same tapping tasks can be extended to
3D Virtual Reality (VR), where the user perceives depth
information. Current literature has extended Fitts's law
application from 2D to 3D virtual environments where
depth influences performance [47, 48, 49]. Each of
these papers mention methods by which Fitts's law in
the 2D virtual world can now be applied to a 3D vir-
tual environment. However, Balakrishnan [47] suggests
that Fitts's law may not always hold in all VR conditions.
Other studies suggest that Fitts’s law fails in selection
tasks where the target size is of few pixels [45, 17]. The
problems in the acquisition of small targets are well es-
tablished in the HCl research literature [17]. Teather and
Stuerzlinger [48] have shown that Fitts’s law holds when
the 3D pointing task is performed with the stereoscopic
monitor. They also observed that depth perception in-
fluences the performance of the participants. This result
was confirmed later by Chun et al. [50] and Pfeiffer [49].

Fitts’s law holds well in 3D coordinated hand move-
ments [51, 52] in which hand tracking is done by IR track-
ing devices such as Kinect™ and Leap Motion™. The
law is also used for the gaze-based tasks [53, 54], which
have shown that the Throughput is lesser compared to

that of using a mouse or hand-held controllers.
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Our previous work [46] found an optimum Move-
ment Scale in a 2D environment by considering four dif-
ferent Movement Scales in the macro range (1:2, 1:2 4,
1:3.3, 1:4.9). The following are the differences in the
present work compared to our previous work: First, the
environment used in the present study is 3D, which in-
volves depth effect, and it is an entirely immersive VR
space, whereas the previous study is a desktop screen
which is not fully-immersive. Second, the Movement
Scales considered in the present work are less than
one (micro-scale), whereas the previous work involved
macro scales. When the Movement Scale is less than 1,
there is a diminution of output movement for any spe-
cific input movement. Third, the present study’s com-
parison of Throughput with and without tactile feed-
back was not part of the earlier study. Fourth, unlike
the earlier work, which used conventional Fitts's law,
the current work uses modified Fitts's law, which is de-
fined in the next section. Finally, the previous work
uses Throughput as the only performance measure of
the task, whereas the current work emphasizes quantifi-
cation of performance in an MST through speed, dexter-

ity, and precision along with Throughput.

3 | MATERIALS AND METHODS

Our objective is to propose a training system and
demonstrate its effectiveness in improving the perfor-
mance of virtual psychomotor tasks. In this section, we
show the construction and working of the training sys-
tem. We also explain the parameters used to objectively
quantify and analyze the performance of the user. The
experiment is performed in a 3D virtual environment
designed in such a way that the subject can perform
MST similar to operating a generic surgical robot con-
sole. The study is approved by the Institute Ethics Com-
mittee (Reference number IHEC/2020-02/MM/02/03).

3.1 | Apparatus Setup and Specifications

The experiment was conducted in a room with the tem-

perature set at 24°C (this is considered a comfortable

temperature given the geographical and cultural con-
text of the venue where the experiment was conducted),
where the subject is made to sit in a chair comfortably
and their arms resting on the table in front, as shown in
Figure 2a.

The experiment was conducted using the HTC
Vive™ which consists of a head-mounted display
(HMD) with two base stations for tracking, positioned
at opposite ends of the room. The Organic Light Emit-
ting Diode (OLED) display embedded in the HMD pro-
vides a refresh rate of 90 Hz and an FoV of 110 degrees,
making sure that the user is completely immersed in the
VR environment. The user holds a Vive controller, as
shown in Figure 2a, for interacting with the virtual en-
vironment. They are used to track the position of the
user’s hands in real-time with sub-millimeter level accu-
racy and map them into the virtual environment space.
The Vive™ controller also provides vibrotactile feed-
back (VTFB) by means of an embedded linear resonant
actuator (LRA). It is an electromagnetic device that can
produce vibrations at 235 Hz. The latency between the
movement of the Vive™ controller and the movement
of the cursor in the VR environment was measured and
is in the range of 10-20 ms. The effect of latency on the
subject can be neglected since the latency of the sys-
tem is well below the allowable limits as per Ravali et al.
[55] for visual-haptic feedback. The virtual environment
shown in Figure 2b is created using the Unity 3D game
engine [56] along with the SteamVR SDK [57].

3.2 | Subject Selection Criteria

All participants signed informed consent and no com-
pensation given to any participant to attend the exper-
iment. We conducted the experiment with fifteen sub-
jects with a mean age of 25.3 years + 4.7 years.

Inclusion criteria: Healthy subjects in the age range
from 21 - 30 years. None of the subjects should have
any prior knowledge of our hypothesis, experimental en-
vironment, or experience in VR.

Exclusion criteria: Subjects with any neurological mo-
tor or sensory disorders. Presence of any visual deficits

despite corrected vision.
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FIGURE 2 The setup used to perform the experiment. The subject is made to sit in a chair comfortably, and their
arms are resting on the table in front, as shown in Figure 2a. Figure 2b is the view of the experiment in the virtual
environment, while Figure 1b shows the real-world perspective of the experiment. The subject is made to sit
comfortably on a chair with their arms resting on the table to prevent fatigue during the experiment. The virtual
dummy is shown to represent the position of the subject during the experiment and not present during the actual
experiment. A magnifier is shown on the left and is positioned in front of the subject that offers an FoV of 50°. The
ring of circles is illuminated by a small light that causes a shadow that is used for depth cues.

The experimental protocol stated in Section 3.3.4 be-
low, was explained to all the subjects clearly. Any ques-
tions they had were answered to their satisfaction, and
they were given a trial to familiarize themselves with
the equipment before the start of the actual experiment.
Subjects received no remuneration, and there were no

fees to participate in this study.

3.3 | Experimental Procedure

The experimental task performed by the subjects is a
modified version of the ISO 9241-9 standard (2002)
multi-tapping experiment [58].

3.3.1 | Virtual Environment Setup

The VR environment consists of a virtual room in which
the subject is made to sit in front of a table, as shown
in Figure 2a. Every subject carries out the entire study

with a fixed level of zoom in order to be able to see mi-

croscopic objects. In a totally immersed 3D VR environ-
ment, any zooming-in to see small objects can create a
vertiginous effect on the user. In the real world, such an
effect can be nullified by the user by taking his view off
the field and looking at a standard 1:1 magnified world.
However, in our experimental protocol, since the sub-
ject is using an HMD, the only way to look away from
the zoomed VR world is by dismounting the HMD. This
creates a noticeable and laborious interruption to the
experiment. We, therefore, devised a visual magnifier in
the VR environment that allows the subject to zoom in
to the target. During any vertiginous episode, the sub-
ject can look away from the magnifier even in the vir-
tual environment to get back to a 1:1 VR world without
zoom. This avoids the necessity for the HMD to be dis-
mounted. The experiment can then continue smoothly
when the subject returns to look through the magnifier.
Thus, we have placed in the VR environment a virtual
visual magnifier. This offers a 50° field of view.

Through the virtual visual magnifier, the subject can
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TABLE 1 Set of (D,W) pairs used for the
experiment. These pairs are selected such that they
cover a good range of ID values for the experiment.
The table is sorted by descending order of ID.

Set D (mm) W (mm) ID (bits)
Pair 1 5 8 0.70
Pair 2 8 6 1.22
Pair 3 10 4 1.81
Pair 4 15 6 1.81
Pair 5 20 4 2.58
Pair 6 15 2 3.08
Pair 7 10 1 3.46
Pair 8 20 1 4.39

see nine virtual spheres of diameter W arranged in a
large ring of diameter D on a plane inclined 50° to the
table, as shown in Figure 2b. The spheres are all col-
ored white, and one of the spheres is highlighted in
red, which is the target sphere. The subject holds the
Vive™ controller using their dominant hand to control
a virtual cursor, which mimics a typical surgical tool. The
ring of spheres is illuminated by the magnifier such that
a shadow is formed behind it. The shadow serves as
a depth cue for the subject during the task. Another
depth cue is provided by the stereoscopic rendering of
the magnifier (the view is rendered for each eye sepa-
rately, thereby mimicking a real magnifier). The origin
of the nine spheres is the lowermost sphere in the ring.
This origin is chosen such that the subject can rest their
hands on the table during the experiment and avoid fa-
tigue during the task.

3.3.2 | The task to Perform -
Microscopic Selection Task

The task of the subject is to move the cursor to the tar-
get sphere and select it as fast as possible by clicking
the Vive controller. The subject is encouraged to click
as close to the center of the target sphere as possible.

Once the target sphere is selected by the cursor, an-

other sphere diagonally opposite to the current sphere
becomes the target, and the process repeats. This repe-
tition occurs once for each sphere (totaling nine repeti-
tions), and then the D and W change to a new set. The
set of D and W values is predefined initially, as shown
in Table 1. Each pair of (D, W) is given to each subject
exactly once from Table 1 in random order until all the
pairs are exhausted. This reduces the learning bias that
may occur during the experiment.

There are two different variations of our experiment;
one is with VTFB every-time when the cursor collides
the target to be selected, another is without VTFB in
which the subject purely relies on the visual cues only.

The subjects perform the experiment in both variations.

3.3.3 | Movement Scale

The Movement Scale in this paper refers to the ratio be-
tween the distance traveled by the subject’s Vive con-
troller (x) to the distance traveled by the virtual cursor
(x/r), as shown in Figure 3. When the Vive controller
moves a distance x in the real world, the cursor moves
by a distance X. When r = x, the movement of the cur-
sor is the same as the movement of the Vive controller.
When r < x, the movement of the cursor is lesser than
the movement of the Vive controller. The experiment

involves five different scales (1:1, 1:1, 1:1, 1:1, 1:1).

3.34 | Protocol of the experiment

The 15 subjects were divided into two groups, as fol-
lows: Group A with seven subjects and Group B with

eight subjects.

Step 1: Instruct the subject to read the informed con-
sent and fill out an initial questionnaire before and a
feedback questionnaire after the experiment.

Step 2: Request the subject to sit comfortably on a
chair and to hold the Vive controller while resting
their arms on the desk. After sitting, help them wear
the HMD.

Step 3: Explain to the subject that their task is to look

through the virtual magnifier, to select the target



8 Madhan Kumar V. et al.
ticular (D, W) pair trial, then that trial is repeated, and
. data from the previous incomplete (D, W) pair trial is dis-
O Actual O carded.
Position of
L+~ Controller
O .\ Position of Q
\ -~ Cursor
. Spheres 3.4 | Quantification of the Microscopic
O Q Selection Task
Virtual __Table Top .
World — 3.4.1 | Task Parameters
VSEZL Several parameters are collected from the experiment
X
\ performed on all the subjects. These parameters are
X\‘\' then used to find the performance of the subject using
‘\\ Fitts's Law.
Table Top
| Movement Time (MT)
FIGURE 3 |lllustration explaining the concept of

scale. When the Vive controller moves a distance x in
the real world, the cursor moves by a distance %. The
value of r ranges from 1 to 5 as in scale 1:}

sphere in the virtual space as close to the center of
the sphere as possible by clicking on the Vive con-
troller and then to traverse as fast as possible to the
next red target sphere.

Step 4: Inform the subject to look away from the mag-
nifier within the VR environment in the event of any
vertiginous episode resulting from the zooming ef-
fect of the magnifier.

Step 5: Provide a preliminary trial task to the subject
to get acquainted with the VR environment and the
experiment.

Step 6: Begin the actual experiment. At the end of each
set, provide a break of 2 minutes.

Step 7: Provide the tasks with VTFB first and then with-
out VTFB for group A, whereas for group B, provide
the tasks in the reverse order.

Step 8: Instruct the subject clearly that they can stop
the experiment at any point in time if they feel any

discomfort in performing the tasks.

If the experiment is stopped for any reason during a par-

Movement Time is defined as the average time taken
for the subject to select the nine spheres for a particu-
lar (D, W) pair. For each (D, W) pair, the timer gets ini-
tiated from the instant the subject selects the first tar-
get sphere until the next target sphere. Consequently,
eight values get recorded for each trial. The average of
these values indicates Movement Time (MT) in seconds

for that particular (D, W) pair.

| Effective Index of Difficulty (ID,)

In certain surgical tasks, surgeons must select small tis-
sues more accurately, sometimes at the cost of speed
during events such as debridement, cauterization, resec-
tion, and suturing. Clicking at the center of the target
sphere emphasizes the need to select target tissues ac-
curately in a VR environment. Based on these require-
ments, the D and W given in Equation 2 are modified
into effective diameter (D,) and effective width (W,)
[59, 46]. W, represents the average distance between
the point where the cursor is clicked and the center of
the sphere, D, represents the average distance from
one sphere to another traversed by the subject with the
cursor. Hence Equation 2 is modified to give the effec-

tive index of difficulty ID, as in Equation 3
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Object present
in specific location

Object not present
in specific location

User clicks True Positive | False Positive
the select button (TP) (FP)

User does not click | False Negative | True Negative
the select button (FN) (TN)

FIGURE 4 2 x 2 Confusion Matrix for MST

IDe = logy (% + 1) (3)
e

ID¢ is unique for each subject and depends on their
performance during the experiment. Performing tasks
with low W, and high D, results in a better Throughput.
Hence the subject is encouraged to click as close to the
center of the target as possible to reduce (W;) and in

the shortest time possible.

| Throughput

Each subject performs a trial with eight different 1D
values, as shown in Table 1. After completion of all
the trials for a given subject, these ID values translate
into eight different ID, values with their respective MTs.
These are then used to plot the relation between ID,
and MT by linear regression of data obtained for MT vs.
ID.. The effective Throughput (l,,) is calculated as the
inverse of the slope of the linear relation between ID,
and MT. This parameter is the main factor to quantify
the performance of the subject in the experiment.

| Sensitivity and Positive Predictive Value

We define True Positive Rate (TPR) as Sensitivity, which
is defined below, and we define Precision as Positive Pre-
dictive Value (PPV), which is also defined below. Since
our objective is to compare the performance with VTFB
and without VTFB, we calculate the relative change in
TPR and Precision [60, 61, 62, 63]. In order to calculate
the Sensitivity and PPV, the number of True Positives
(TP), the number of False Positives (FP), and the number

of False Negatives (FN) are recorded, as shown in Fig-
ure 4. A TP is when the subject correctly clicks inside
the target sphere during a trial. An FP is when the sub-
ject clicks outside the target sphere. An FN is when the
subject enters the target but fails to click.

From these values, the Sensitivity and PPV are calcu-
lated for each Movement Scale as given in equations 4
and 5.

TP
Sensitivity = ———— (4)
TP+FN
TP
PPV = TP+FP ©)

Using the Sensitivity of the tasks with VTFB and the
tasks without VTFB, the relative change in Sensitivity

and PPV are calculated as follows

Relative change in Sensitivity =

Sensitivityyith vTEs — Sensitivitywithout VTFB )
Sensitivityyithout vTFB

Relative change in PPV =

PPVyith viFe — PPVwithout VTFB 7)
PPVyithout VTFB

3.4.2 | Data Analysis

According to Jude et al. [59], using a means-per-user
and mean-of-means method instead of Soukereff and
MacKenzie's method [42] improves the goodness-of-fit
(R?) and Pearson’s r coefficient. This is since the vari-
ance of the MT increases when the difficulty of the task
increases, hence fitting a line to these points could have
errors. Therefore, in our paper, we implement the mean-
of-users and then the mean-of-means approach, which

reduces these errors.
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FIGURE 5 Consolidated Results showing MT versus ID obtained from the experiment which shows one plot for
each scale setting (1:1, 1:3, 1:], 1:7, 1:1) used in the experiment. In each plot, the black asterisks correspond to the
experiment conducted with tactile feedback, and the red circles correspond to the experiment conducted without
tactile feedback. Similarly, the black line and the red line correspond to the linear fit using the black points and the
red points, respectively. The inverse of the slope of these fits is the Throughput (subplot f) of the participants in the
specified scale setting. We can observe that the slope is positive in all the cases (MT increases with ID), leading to
the validity of the Fitts's law. The corresponding error-bars represent the standard deviation of each scale.
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4 | RESULTS AND DISCUSSION

Our main objective is to quantify the psychomotor per-
formance of a surgeon, training to carry out micro-
scopic selection tasks (MST). This is conducted in a fully-
immersive 3D virtual environment where the trainee un-
dergoes tasks with varying levels of difficulties. We have
designed our experiments to find a user-specific opti-
mum Movement Scale by measuring Throughputin MST
for each scale (1:1, 1:5, 1:1, 1:1, 1:1). Moreover, the
Throughput, Sensitivity, and PPV improvements for the
tasks with and without VTFB are also studied.

4.1 | Fitts's Task

The Movement Time (MT) data collected from our exper-
iments (with and without VTFB) are consolidated and
shown in Figure 5, where each plot corresponds to a
scale (1:1, 1:5, 1:1, 1:1, 1:1), which shows that the MT
increases as ID, increases. In each scale setting, 15 sub-
jects experimented twice (with and without VTFB). This
results in two sets of points (ID, , MT) one with VTFB
and another one without VTFB. In order to calculate the
Throughput, a linear regression model is used. The ID, is
rounded to one decimal point, resulting in multiple MTs
for each ID.. The mean of these MTs is calculated per
unique 1D, and plotted in Figure 5. Any point with an
MT higher than the 20s (chosen as it is 2-sigma away
from the mean MT) was considered as an outlier and
was removed from the plot. The remaining points were
then used for the linear fit. The linear fit is evident in
Figure 5 for both the tasks with and without VTFB. For
both linear fits, Pearson’s r coefficient is above 0.8, and

the goodness-of-fit is above 0.6.

The IDg, in our experiment, ranges from 1 bit to 5.5
bits, where the latter can be considered as a most dif-
ficult task. In all the cases, we have a visual magnifier
with fixed magnification through which the entire ring

of spheres can be visualized.

TABLE 2 Pairwise Z-score test for Throughput with
VTFB. a = 0.05 and Z, = 1.645.

Scale 1:1/1 1:1/2 1:1/3 1:1/4 1:1/5

111 [ 6776 5324 2342 6983
112 6776 [ 053¢ 10607 -11582
113 5324 os3 [ 8232 10594
11/4 2342 10607 8232 [ o7
115 6983 11582 10594 5697 |

TABLE 3 Pairwise Z-score test for Throughput
without VTFB. a = 0.05 and Z, = 1.645.

Scale 1:1/1 1:1/2 1:1/3 1:1/4 1:1/5

111 [ 025 o015 1683 163
112 025 [ o157 1472 2048
113 015 0157 [ 2208 -2558
1174 1683 1472 -2.203 [ 4613

1:1/5 = 1.643 2.048 2.558

4613 [N

4.2 | Significance Tests

Group A with seven subjects performed tasks without
VTEB first and then with VTFB, and group B with eight
subjects performed the same tasks in the reverse order.
The Movement Time (MT) data from these two groups
were analyzed to check whether there is a component
of learning that can bias the Throughput results when
VTFB is introduced after the user has already performed
the MST without VTFB. The Paired t-test analysis has
shown that the comparison of Throughput between
these two groups is not significant (¢(4) = —2.193,p =
0.151, for a = 0.05) which leads to the inference that
the order of introducing VTFB does not influence the
performance. Therefore, all the data are combined for

the quantification of psychomotor performance.

Pairwise Z-score tests were performed between
the Throughput of Movement Scales combining both
groups (A and B) with and without VTFB. The results
of the tests are shown in Table 2 and Table 3. In what
follows, we refer to a cell in the table by its correspond-
ing row and column. The green cell indicates that the
Throughput of the Movement Scale in that cell’s row is

significantly (p < 0.05) greater than the corresponding
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Throughput of the Movement Scale in its column. Con-
versely, the blue cell indicates that the Throughput of
the Movement Scale in the cell’s row is significantly (p
< 0.05) lesser than the Throughput of the Movement
Scale in its corresponding column.

According to Table 2, at our significance level
(a=0.05), there is an increase in Throughput when the
scale is set to 1:] and 1:1 with VTFB. This shows that
finer movements in the virtual world increase the over-
all Throughput of the subject when performing the MST.
However, there is also a performance drop at scales 1:%
and 1:15. This could be due to the trade-off between
IDe and MT. When performing tasks at a smaller scale,
Movement Time increases, which reduces the Through-
put. When reducing the scale even further, the sub-
ject clicks the target more towards the center, which
increases ID,. This increase is more than the increase
in MT, which results in a lower slope, improving the
Throughput. Hence the scales 1:3 and 1:1 yield higher
Throughput in terms of precise movements. Natural 1:1
movements have higher Throughput in terms of short
MTs.

The interpretation of each cell in Table 3 is similar
to that of Table 2. In Table 3, the Throughput is high
when the scale is 1:% without VTFB compared to other
Movement Scales. However, the overall magnitude of
the Throughput across all scales is significantly lower
than that with VTFB. This is also seen in an ANOVA
test, where there is a significant difference in Through-
put with VTFB (u = 0.52, ¢ = 0.12) and without VTFB
(u =0.35, 0 = 0.01); t(8) = 3.14, p = 0.013. The result is
the same as a paired t-test since the test was performed
on two groups. This proves that using VTFB is prefer-
able when performing MST. On the whole, the results
suggest that the Throughput is higher for the tasks with
VTFB leading to the need for VTFB in surgical robots

and training simulations for robotic surgery.

4.3 | Optimum Movement Scale

Itis evident from Figure 5f that Throughput is improving
as the Movement Scale decreases for tasks with VTFB.

In our study, with the range of five Movement Scales

-
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Cursor

FIGURE 6 lllustration for the overshooting
phenomenon where the cursor passes through the
target and then travels back to the target.

used, it can be seen that Movement Scales less than %
results in significant (p < 0.05) improvement in Through-
put. However, for the tasks without VTFB, there is no
improvement in Throughput as the Movement Scale de-
creases. In the current literature, the relation between
the Throughput and the Movement Scale is an inverted
U shaped curve for macro scales. However, our results
do not exhibit this relationship with or without VTFB.
The reason could be that the experiment involves micro

scales.

It is also evident from Figure 5f that Throughput is
monotonically increasing after Movement Scale % until
13. As the Movement Scale settings available in the cur-
rent surgical robots do not exceed 1:1, experiments be-

yond this scale is not considered in this study.

44 | Role of Tactile Feedback

The Sensitivity and PPV are calculated from the TP, FP,
and FN data collected during the experiment. Relative
change (percentage) of the Sensitivity and PPV with
VTFB with respect to that of without VTFB are calcu-
lated and shown in Figure 7a and Figure 7b, respectively.
When we consider Figure 6a, there is a significant (p
< 0.05) improvement in the relative Sensitivity for the
cases with and without VTFB. It is observed that the

Sensitivity is improving for the case with VTFB, espe-



Madhan Kumar V. et al.

|13

T 12h

10

BV I I

| I

af

] i
0 a

2 "

T2 3 14 1S T2 1 4 1S

Percentage change (%)
Percentage change (%)

Movement Scale

Movement Scale

(a) Relative change in (b) Relative change in PPV

Sensitivity

FIGURE 7 The percentage change of Sensitivity
and PPV for each scale. Each bar in the plots is the
relative change of the Sensitivity and PPV of the tasks
with and without VTFB. The corresponding error-bars
represent standard deviation of each scale.

cially in scales 1:1/3 and 1:1/5. Moreover, the relative
PPV in Figure 6b shows a significant (p < 0.05) improve-
ment for cases with and without VTFB, especially for
scale 1:1/3.

The overall effect is that the use of VTFB improves
the performance of the task as the Movement Scale de-
creases. This could be due to the fact that the sense of
touch is faster than the other senses of the human body.
According to [64], the average response time for tactile
stimuli is 0.385 ms, with a standard deviation of 0.071
ms. This is faster than the average response time for
visual stimuli, which is 0.517 ms, with a standard devi-
ation of 0.181 ms. The average response time for audi-
tory stimuli is also slower, which is reported to be 0.493
ms with a standard deviation of 0.178 ms.

Also, the reaction time greatly affects the perfor-
mance of an individual when overshooting and under-
shooting during selection tasks. Overshooting is a phe-
nomenon (shown in Fig. 6) during the selection task
where the user moves the cursor through the target
without selecting the target and then moves back to
the target after a small distance. This event creates a
false negative. Undershooting is a similar phenomenon
where the user moves the cursor less than the required

distance to the target and then moves again to reach the

Average number of FN and FP with and without VTFB

%)
&

N
[
I FN without VTFB
I FP without VTFB

@
S

Average number of FN and FP
o - N o
= &l S &

o

1:1/2 1:1/3 1:1/4 1:1/5
Scale

FIGURE 8 The average number of FN (False
Negatives, the subject does not click when the cursor
is inside the target) and FP (False Positives, the subject
clicks outside the target) for each scale with and
without VTFB.

target. Undershooting can be neglected in our scenario
since the distances between the targets are minimal, and
overshooting is greatly predominant. During the over-
shoot, when the cursor passes the target, the user can
either visually notice the error and perform the correc-
tive movement or feel the tactile feedback and perform
the correction. As stated earlier, the tactile feedback is
faster than the visual feedback, which then results in the
quicker movement back to the cursor and reducing or
even avoiding the overshoot. This difference is seen in
Fig. 8 where the number of FN (False Negatives, the sub-
ject does not click when the cursor is inside the target)
reduces when incorporating VTFB. The FN also reduces
as the scale decreases less than one. A similar trend is
seen in the number of FP (False Positives, the subject
clicks outside the target). When compared to that with-
out VTFB, the number of FN and FP also shows a con-
sistent decrease with decreasing scale.

Another reason why VTFB is preferred over any vi-
sual feedback is that the visual system is already over-
loaded during surgery; therefore, tactile feedback is bet-
ter [65, 66]. Massimino [67] concluded that redundant
Visual Feedback (VF) slowed task performances, per-
haps an example of "sensory overload." None of these

experiments focused on the magnitude of force gener-
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ated by the user but on performance in terms of time
to completion. Debus and colleagues [68] conducted
studies showing that vibrotactile feedback significantly
lowered the mean applied force error by using a teleop-
erator system composed of 2 PHANTOM haptic devices
(SensAble Technologies, Woburn, Mass). In these stud-
ies, VF was not as effective as VTFB.

4.5 | MST in Surgical Skill Training
Curricula

Our study focuses on developing a performance mea-
surement that is objectively quantifiable for MST. This
measurement can be easily translated for performance
in other tasks involving fine motor abilities in surgeries
using robots. We believe that the progress in the robotic
surgery skills training may be monitored better with the
performance evaluation in our study. Furthermore, we
recommend the inclusion of the training method and
performance evaluation reported in our study into the
Robotic Surgery Training curricula.

The Robotic Surgery Training curricula are well ad-
dressed and reviewed in the literature [69, 70], how-
ever, with few limitations. Roger Smith et al. [69]
clearly explained the process of developing the educa-
tional content of a robotic curriculum, especially tech-
nical skills. They have defined the seven principles that
should be applied in selecting or designing a psychomo-
tor skills training device for robotic surgery. Chen et
al. [70] reported a comprehensive review of the robotic
surgery curriculum and training. They have discussed
various robotic surgery training methods such as web-
based training curricula, on-site robotic-assisted surgery
training programs, and surgical robotic training simula-
tors. In their review, they have mentioned that the psy-
chomotor skills are considered as one of the four sep-
arate modules of the Fundamentals of Robotic Surgery
(FRS) curriculum. The purpose of FRS training modules
is to develop the proficiency of the surgeon’s skills dur-
ing robotic surgery. Psychomotor skills are considered
important even in the on-site robotic-assisted surgery
training programs, and surgical robotic training simula-

tors, as reported in Chen et al. No literature has ad-

dressed the MST based skills that are critical for robotic

surgery.

Modern curricula for the robot specific surgical train-
ing through simulation are being developed and im-
proved to revolutionize robotic surgeries [71]. These
simulations are aimed at developing self-driven and
mentor-free skills using fully-immersive 3D virtual en-
vironments, which is often referred to as Virtual Real-
ity (VR) [72]. However, neither quantifiable psychomo-
tor skills nor haptic feedback is present in these train-
ing simulations. The results from our study implies that
incorporating both of these features may improve the

performance of MST in the actual robotic surgery.

5 | CONCLUSIONS AND FUTURE
WORKS

The objective of this study is to quantify the psychomo-
tor performance of microscopic selection task (MST) in
a fully immersive 3D virtual environment that can be
used in training with surgical robots. We have adapted
Fitts’s law, which has been used extensively in the lit-
erature on HCI to quantify psychomotor performance.
We conclude from our Throughput curve that there is
no optimum Movement Scale less than 1:1, and there
is a significant improvement in the Throughput of MST
with vibrotactile feedback (VTFB). From our experiment,
we infer that the implementation of VTFB in real and
training scenarios for surgical robots has a significant im-
pact on performance, as mentioned in our results. Fur-
thermore, the quantification method described here can
be implemented in psychomotor skills assessment for
robotic surgery, and training curricula. The experiment
can be tested in surgical robots such as da Vinci® ,
ZEUS® , and ROSA® in the future to quantify psy-
chomotor skills along with the incorporation of VTFB in
those robots. The goal to improve both the Sensitivity
and PPV along with speed for target manipulation that
forms an essential part of an adequate training module

in robotic surgery training curricula.

The current study can be extended in many ways: 1)

The haptic feedback considered here is a high-frequency



Madhan Kumar V. et al.

15

vibration. Also, we can incorporate proprioceptive feed-
back into the simulation. 2) It involves only one-handed
tasks; it can be extended to two-handed Fitts’s tasks
mimicking the surgical robotic console. 3) It considers
a fixed magnification for a virtual visual magnifier, and
this can be extended to variable magnification levels for
studying the performance of MST under different mag-
nification levels. 4) One of the inclusion criteria for sub-
jects in this study is that they are naive to the perfor-
mance of MST. Future work can involve surgical trainees
and experienced surgeons. 5) The surgical setup is de-
signed such that it mimics a generic tool for perform-
ing surgical training. Specific design options such as eye
holders for surgeons can be incorporated in a future
work. 6) Finally, the communication delay between the
real and virtual environments is not considered in the
current study. Communication delay is usually present
when real surgical robots use haptics. In our future work,
we can simulate the delay due to the tactile or proprio-
ceptive feedback and study the resulting psychomotor

performance.

The microscopic selection task described here, along
with the quantification by Fitts’s law, can be a psychomo-
tor performance assessment tool. By using the task and
analysis described here, mentor-free skills learning in
robotic surgery through a quantifiable VR simulation can

be achieved.

Our study did not involve expert surgeons since this
study is a necessary first step in the process of develop-
ing and validating a training module for the performance
of fine motor skills such as MST. MST is a minimum set
of skills essential in the performance of surgeries using
robots. Therefore, the next step would be to extend
the techniques developed in this paper to train surgeons
using robots in the performance of fine motor skills re-

quired in robotic surgeries.

This paper is the first part of a two-part study for
training robotic surgeons. The first part is the study in
which the use of VTFB is proven to improve the per-
formance of a novice trainee when they perform MSTs.
The second part is the implementation of this system
to mimic any surgical device, which is in the market,

and then test the system with surgeons for validation.

Hence our work can be considered as two stages: 1) in-
troducing the quantifiable performance metrics for the
MST robotic surgery training curricula and validating the
performance metrics with novice subjects, 2) extending
the study with surgeons, and evaluating their learning
curves in the future study.

Conflict of Interest

The authors report no conflict of interest.

References

[1

Patel V. Robotic-assisted laparoscopic dismembered
pyeloplasty. Urology 2005;66(1):45-49.

[2] Benway BM, Bhayani SB, Rogers CG, Dulabon LM,
Patel MN, Lipkin M, et al. Robot assisted par-
tial nephrectomy versus laparoscopic partial nephrec-
tomy for renal tumors: a multi-institutional analysis
of perioperative outcomes. The Journal of urology
2009;182(3):866-873.

[3

Gutt CN, Oniu T, Mehrabi A, Kashfi A, Schemmer
P, Biichler MW. Robot-assisted abdominal surgery.
British journal of surgery 2004;91(11):1390-1397.

[4

Kiaii B, Boyd WD, Rayman R, Dobkowski W, Ganap-
athy S, Jablonsky G, et al. Robot-assisted computer
enhanced closed-chest coronary surgery: preliminary
experience using a Harmonic Scalpel® and ZEUS™.
In: Heart Surgery Forum, vol. 3 FORUM MULTIMEDIA
PUBLISHING; 2000. p. 194-197.

[5

Gharagozloo F, Margolis M, Tempesta B.  Robot-
assisted thoracoscopic lobectomy for early-stage
lung cancer. The Annals of thoracic surgery
2008;85(6):1880-1886.

[6

Rizun PR, McBeth PB, Louw DF, Sutherland GR.
Robot-assisted neurosurgery. In: Seminars in laparo-
scopic surgery, vol. 11 Sage Publications Sage CA:
Thousand Oaks, CA; 2004. p. 99-106.

[7

Ballantyne GH, Moll F. The da Vinci telerobotic sur-
gical system: the virtual operative field and telepres-
ence surgery. Surgical Clinics 2003;83(6):1293-1304.

[8

Gonzalez-Martinez J, Vadera S, Mullin J, Enatsu R,
Alexopoulos AV, Patwardhan R, et al. Robot-assisted
stereotactic laser ablation in medically intractable
epilepsy: operative technique. Operative Neuro-
surgery 2014;10(2):167-173.



16

Madhan Kumar V. et al.

(9]

(11]

[13]

(14]

[15]

[16]

(18]

Lefranc M, Peltier J. Evaluation of the ROSA™ Spine
robot for minimally invasive surgical procedures. Ex-
pert review of medical devices 2016;13(10):899-906.

Alletti SG, Rossitto C, Cianci S, Perrone E, Pizzacalla S,
Monterossi G, et al. The Senhance™ surgical robotic
system (“Senhance”) for total hysterectomy in obese
patients: a pilot study. Journal of robotic surgery
2018;12(2):229-234.

Collins JW, Dell'Oglio P, Hung AJ, Brook NR. The
Importance of Technical and Non-technical Skills in
Robotic Surgery Training. European urology focus
2018;.

Cheng H, Clymer JW, Chen BPH, Sadeghirad B, Ferko
NC, Cameron CG, et al. Prolonged operative dura-
tion is associated with complications: a systematic re-
view and meta-analysis. journal of surgical research
2018;229:134-144.

Lee GI, Lee MR. Can a virtual reality surgical simu-
lation training provide a self-driven and mentor-free
skills learning? Investigation of the practical influ-
ence of the performance metrics from the virtual real-
ity robotic surgery simulator on the skill learning and
associated cognitive workloads. Surgical endoscopy
2018;32(1):62-72.

Mazur T, Mansour TR, Mugge L, Medhkour A.
Virtual reality-based simulators for cranial tumor
surgery: a systematic review. World neurosurgery
2018;110:414-422.

Goldenberg MG, Lee JY, Kwong JC, Grantcharov TP,
Costello A.  Implementing assessments of robot-
assisted technical skill in urological education: a sys-
tematic review and synthesis of the validity evidence.
BJU international 2018;122(3):501-519.

Satava RM, Stefanidis D, Levy JS, Smith R, Martin JR,
Monfared S, et al. Proving the effectiveness of the fun-
damentals of robotic surgery (FRS) skills curriculum: a
single-blinded, multispecialty, multi-institutional ran-
domized control trial. Annals of surgery 2019;.

Chapuis O, Dragicevic P. Effects of motor scale, visual
scale, and quantization on small target acquisition dif-
ficulty. ACM Transactions on Computer-Human Inter-
action (TOCHI) 2011;18(3):13.

Palep JH. Robotic assisted minimally invasive surgery.
Journal of Minimal Access Surgery 2009;5(1):1.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

Albani JM, Lee DI.
surgery simulation.
2007;21(3):285-287.

Virtual reality-assisted robotic
Journal of Endourology

Perrenot C, Perez M, Tran N, Jehl JP, Felblinger J,
Bresler L, et al. The virtual reality simulator dV-
Trainer®) is a valid assessment tool for robotic surgical
skills. Surgical endoscopy 2012;26(9):2587-2593.

Van der Meijden OA, Schijven MP. The value of haptic
feedback in conventional and robot-assisted minimal
invasive surgery and virtual reality training: a current
review. Surgical endoscopy 2009;23(6):1180-1190.

Prasad MR, Manivannan M, Manoharan G, Chan-
dramohan S. Objective assessment of laparoscopic
force and psychomotor skills in a novel virtual reality-
based haptic simulator. Journal of surgical education
2016;73(5):858-869.

Basdogan C, De S, Kim J, Muniyandi M, Kim H, Srini-
vasan MA. Haptics in minimally invasive surgical sim-
ulation and training. IEEE computer graphics and ap-
plications 2004;24(2):56-64.

Srinivasan MA. What is haptics?  Laboratory for
Human and Machine Haptics: The Touch Lab, Mas-
sachusetts Institute of Technology 1995;p. 1-11.

Abiri A, Juo YY, Tao A, Askari SJ, Pensa J, Bisley JW,
et al. Artificial palpation in robotic surgery using hap-
tic feedback. Surgical endoscopy 2019;33(4):1252-
1259.

Bethea BT, Okamura AM, Kitagawa M, Fitton TP, Cat-
taneo SM, Gott VL, et al. Application of haptic feed-
back to robotic surgery. Journal of Laparoendoscopic
& Advanced Surgical Techniques 2004;14(3):191-
195.

Pacchierotti C, Prattichizzo D, Kuchenbecker KJ. Cuta-
neous feedback of fingertip deformation and vibration
for palpation in robotic surgery. IEEE Transactions on
Biomedical Engineering 2015;63(2):278-287.

Billiar T, Andersen D, Hunter J, Brunicardi F, Dunn
D, Pollock RE, et al. Schwartz's principles of surgery.
McGraw-Hill Professional; 2009.

Ebrahimi E, Babu SV, Pagano CC, Jorg S. An Empiri-
cal Evaluation of Visuo-Haptic Feedback on Physical
Reaching Behaviors During 3D Interaction in Real and
Immersive Virtual Environments. ACM Trans Appl
Percept 2016 Jul;13(4):19:1-19:21. http://doi.acm.
org/10.1145/2947617.



Madhan Kumar V. et al.

17

[30]

(32]

[36]

(38]

[39]

[40]

[41]

Kontarinis DA, Howe RD. Tactile display of vibra-
tory information in teleoperation and virtual environ-
ments. Presence: Teleoperators & Virtual Environ-
ments 1995;4(4):387-402.

Koehn JK, Kuchenbecker KJ. Surgeons and non-
surgeons prefer haptic feedback of instrument vibra-
tions during robotic surgery. Surgical endoscopy
2015;29(10):2970-2983.

Okamura AM. Methods for haptic feedback in tele-
operated robot-assisted surgery. Industrial Robot: An
International Journal 2004;31(6):499-508.

Okamura AM. Haptic feedback in robot-assisted min-
imally invasive surgery. Current opinion in urology
2009;19(1):102.

Westebring-van der Putten EP, Goossens RH, Jaki-
mowicz JJ, Dankelman J. Haptics in minimally invasive
surgery-areview. Minimally Invasive Therapy & Allied
Technologies 2008;17(1):3-16.

Van der Meijden OA, Schijven MP. The value of haptic
feedback in conventional and robot-assisted minimal
invasive surgery and virtual reality training: a current
review. Surgical endoscopy 2009;23(6):1180-1190.

Wedmid A, Llukani E, Lee DI.
tives in robotic surgery.
2011;108(6b):1028-1036.

Future perspec-
BJU international

Wania CE, Atwood ME, McCain KW. How do design
and evaluation interrelate in HCI research? In: Pro-
ceedings of the 6th conference on Designing Interac-
tive systems ACM; 2006. p. 90-98.

Ha JS. A Human-machine Interface Evaluation
Method Based on Balancing Principles. Procedia Engi-
neering 2014;69:13-19.

Fitts PM. The information capacity of the human mo-
tor system in controlling the amplitude of movement.
Journal of Experimental Psychology 1954;47(6):381-
391.

Card SK, English WK, Burr BJ. Evaluation of mouse,
rate-controlled isometric joystick, step keys, and text
keys for text selection on a CRT. Ergonomics
1978;21(8):601-613.

MacKenzie 1S, Isokoski P. Fitts' throughput and the
speed-accuracy tradeoff. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems; 2008. p. 1633-1636.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Soukoreff RW, MacKenzie IS. Towards a standard for
pointing device evaluation, perspectives on 27 years
of Fitts' law research in HCI. International journal of
human-computer studies 2004;61(6):751-789.

Coutrix C, Masclet C. Shape-change for zoomable
tuis: Opportunities and limits of a resizable slider.
In: IFIP Conference on Human-Computer Interaction
Springer; 2015. p. 349-366.

Browning G, Teather RJ. Screen scaling: Effects of
screen scale on moving target selection. In: CHI'14
Extended Abstracts on Human Factors in Computing
Systems ACM; 2014. p. 2053-2058.

Chapuis O, Dragicevic P. Small targets: why are they
so difficult to acquire. Laboratoire de Recherche en
Informatique, Tech Rep 2008;.

Isaac JHR, Krishnadas A, Damodaran N, Manivannan
M. Effect of Control Movement Scale on Visual Hap-
tic Interactions. In: Prattichizzo D, Shinoda H, Tan HZ,
Ruffaldi E, Frisoli A, editors. Haptics: Science, Tech-
nology, and Applications Cham: Springer International
Publishing; 2018. p. 150-162.

Balakrishnan R. “Beating” Fitts’ law: virtual enhance-
ments for pointing facilitation. International Journal
of Human-Computer Studies 2004;61(6):857-874.

Teather RJ, Stuerzlinger W, Pavlovych A. Fishtank fitts.
Proceedings of the extended abstracts of the 32nd an-
nual ACM conference on Human factors in comput-
ing systems - CHI EA '14 2014;p. 519-522. http:
//dl.acm.org/citation.cfm?doid=2559206.2574810.

Pfeiffer M, Stuerzlinger W. 3D virtual hand pointing
with EMS and vibration feedback. In: 2015 IEEE Sym-
posium on 3D User Interfaces (3DUI); 2015. p. 117-
120.

Chun K, Verplank B, Barbagli F, Salisbury K. Evaluat-
ing haptics and 3D stereo displays using Fitts' law. In:
Proceedings. Second International Conference on Cre-
ating, Connecting and Collaborating through Comput-
ing; 2004. p. 53-58.

Coelho J, Verbeek F. Pointing Task Evaluation of Leap
Motion Controller in 3D Virtual Environment. Cre-
ating the Difference, Proceedings of the Chi Sparks
2014 Conference 2014;.

Zeng X, Hedge A, Guimbretiere F. Fitts’ Law in 3D
Space with Coordinated Hand Movements. Proceed-
ings of the Human Factors and Ergonomics Society



Madhan Kumar V. et al.

(53]

(54]

(55]

(591

[60]

[61]

[62]

Annual Meeting 2012;56(1):990-994. https://doi.
org/10.1177/1071181312561207.

Hansen JP, Rajanna V, MacKenzie IS, Baekgaard P. A
Fitts’ Law Study of Click and Dwell Interaction by
Gaze, Head and Mouse with a Head-mounted Dis-
play. In: Proceedings of the Workshop on Commu-
nication by Gaze Interaction COGAIN '18, New York,
NY, USA: ACM; 2018. p. 7:1—-7:5. http://doi.acm.
org/10.1145/3206343.3206344.

Qian YY, Teather RJ. The Eyes Don'T Have It: An
Empirical Comparison of Head-based and Eye-based
Selection in Virtual Reality. In: Proceedings of the
5th Symposium on Spatial User Interaction SUI 17,

New York, NY, USA: ACM; 2017. p. 91-98. http:
//doi.acm.org/10.1145/3131277.3132182.
Gourishetti R, Isaac JHR, Manivannan M. Passive

Probing Perception: Effect of Latency in Visual-Haptic
Feedback. In: Prattichizzo D, Shinoda H, Tan HZ, Ruf-
faldi E, Frisoli A, editors. Haptics: Science, Technology,
and Applications Cham: Springer International Pub-
lishing; 2018. p. 186-198.

Helgason D, Unity Game Engine; 2004.

unity.com/.

https://

Valve, SteamVR; 2003. https://www.steamvr.com/.

ISO. DIS 9241-9 Ergonomic requirements for office
work with visual display terminals (VDTs)-Part 9: Re-
quirements for non-keyboard input devices. Interna-
tional Standard, International Organization for Stan-
dardization 2000;.

Jude A, Guinness D, Poor GM. Reporting and Visualiz-
ing Fitts's Law. Proceedings of the 2016 CHI Confer-
ence Extended Abstracts on Human Factors in Com-
puting Systems - CHI EA'16 2016 May;p. 2519-2525.

Powers DM. Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and cor-
relation. Journal of Machine Learning Technologies
2011;.

Ozenne B, Subtil F, Maucort-Boulch D. The preci-
sion-recall curve overcame the optimism of the re-
ceiver operating characteristic curve in rare diseases.
Journal of Clinical Epidemiology 2015;68(8):855
- 859. http://www.sciencedirect.com/science/
article/pii/S0895435615001067.

Simon D, Boring Il JR. Sensitivity, specificity, and pre-
dictive value. In: Clinical Methods: The History, Phys-
ical, and Laboratory Examinations. 3rd edition Butter-
worths; 1990.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Schechter M. Sensitivity, Specificity, and Predictive
Value. In: Surgical Research Springer; 1998.p. 257-
269.

Ng AW, Chan AH. Finger response times to visual,
auditory and tactile modality stimuli. In: Proceedings
of the international multiconference of engineers and
computer scientists, vol. 2; 2012. p. 1449-1454.

Westwood J, et al. Tactile feedback exceeds visual
feedback to display tissue slippage in a laparoscopic
grasper. Med Meets Virtual Real 17 NextMed Des
For/the Well Being 2009;142:420.

Akamatsu M, MacKenzie IS, Hasbroucqg T. A com-
parison of tactile, auditory, and visual feedback in a
pointing task using a mouse-type device. Ergonomics
1995;38(4):816-827.

Massimino MJ. Improved force perception through
sensory substitution. Control Engineering Practice
1995;3(2):215-222.

Debus T, Becker T, Dupont P, Jang TJ, Howe RD. Mul-
tichannel vibrotactile display for sensory substitution
during teleoperation. In: Telemanipulator and Telep-
resence Technologies VI, vol. 4570 International So-
ciety for Optics and Photonics; 2002. p. 42-49.

Smith R, Patel V, Satava R. Fundamentals of robotic
surgery: a course of basic robotic surgery skills based
upon a 14-society consensus template of outcomes
measures and curriculum development. The Interna-
tional Journal of Medical Robotics and Computer As-
sisted Surgery 2014;10(3):379-384.

Chen R, Armijo PR, Krause C, Siu KC, Oleynikov
D. A comprehensive review of robotic surgery cur-
riculum and training for residents, fellows, and post-
graduate surgical education.  Surgical endoscopy
2020;34(1):361-367.

Kassite |, Bejan-Angoulvant T, Lardy H, Binet A. A
systematic review of the learning curve in robotic
surgery: Range and heterogeneity.  Surgical en-
doscopy 2019;33(2):353-365.

Lee GI, Lee MR. Can a virtual reality surgical simu-
lation training provide a self-driven and mentor-free
skills learning? Investigation of the practical influ-
ence of the performance metrics from the virtual real-
ity robotic surgery simulator on the skill learning and
associated cognitive workloads. Surgical endoscopy
2018;32(1):62-72.



