Manish RamCentre for Environment and Energy Development
Manish Ram
Doctor of Engineering
Research on socioeconomic and security aspects of the energy transition across India, looking for collaborators.
About
165
Publications
117,289
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,825
Citations
Introduction
Additional affiliations
July 2006 - June 2007
June 2009 - March 2015
October 2015 - September 2016
Publications
Publications (165)
The increasing global consciousness towards energy transition and the move towards renewable sources has heightened the importance of critical minerals. The significant presence of these critical minerals in Jharkhand not only positions the state as a key player in critical mineral exploration within India but also elevates its standing globally. J...
Multiple energy-related crises require a fast transition towards a sustainable energy system. The European Green Deal aims for zero CO 2 emission by 2050, while accelerating climate change impacts obligate a faster phase-out of fossil fuels. Energy transition studies for Europe at and near 100% renewable energy are used as a benchmark for two newly...
Air pollution from the combustion of fossil fuels has adverse health impacts and is linked to cardiovascular disease, strokes, acute respiratory disease and cancer, predominantly in urban centres around the world. Increasing use of renewables for power generation has been seen to bring about the benefits of cleaner air in regions and countries that...
Recent events like heatwaves and abnormal rainfall are a glimpse of the devastating effects of human induced climate change. No country is immune to its effects, but a developing country like India is particularly vulnerable. This research, for the individual states of India, explores the technical feasibility and economic viability of a renewable...
While the detrimental impacts of climate change are unraveling around the world, a geopolitical crisis at the heart of Europe has brought to the forefront another dimension to the complexities of the energy transition. Energy security and energy independence have preceded to shape future energy decisions, not only in Europe but across the world. Eu...
Defossilisation of the current fossil fuels dominated global energy system is one of the key goals in the upcoming decades to mitigate climate change. Sharp reduction in the costs of solar photovoltaics, wind power, and battery technologies enables a rapid transition of the power and some segments of the transport sectors to sustainable energy reso...
There are undeniable signs from all over the world demonstrating that climate change is already upon us. Numerous scientific studies have warned of dire consequences should humankind fail to keep average global temperatures from rising beyond 1.5°C. Drastic measures to eliminate greenhouse gas emissions from all economic activities across the world...
The transition away from fossil fuels towards renewable energy is critical in preventing perilous climate change, and cities around the world have a significant role in enabling this transition. Cities are innately centres of human, economic and intellectual capital, also contributing to the growing energy demand around the world. This research is...
This is a discussion and response to “Global 100% energy transition by 2050: A fiction in developing economies?” authored by Anthony Afful-Dadzie and published in Joule 5 (2021) 1634–1643. The preview has raised concerns around the feasibility of energy transitions towards 100% renewable energy and sustainable technologies in developing economies,...
Research on 100% renewable energy systems is a relatively recent phenomenon. It was initiated in the mid-1970s, catalyzed by skyrocketing oil prices. Since the mid-2000s, it has quickly evolved into a prominent research field encompassing an expansive and growing number of research groups and organizations across the world. The main conclusion of m...
Driven by climate mitigation goals countries around the world are prioritising low-cost renewables for economic growth and recovery from the aftermath of the global pandemic. It is quite clear that sustainable technology choices result in broader socioeconomic benefits, as is shown by countries that have been early movers in transitioning their ene...
This article explores the transition to renewable energy for all purposes in developing countries. Ethiopia is chosen as a case study and is an exemplary of developing countries with comparable climatic and socioeconomic conditions. The techno-economic analysis of the transition is performed with the LUT Energy System Transition model, while the so...
Climate change threats and the necessity to achieve global Sustainable Development Goals demand unprecedented economic and social shifts around the world, including a fundamental transformation of the global energy system. An energy transition is underway in most regions, predominantly in the power sector. This research highlights the technical fea...
This chapter presents a technically feasible and economically viable energy pathway for Europe, in which the energy sector (comprised of power, heat, transport, and desalination) reaches 100% renewable energy and zero greenhouse gas emissions by 2050. The research highlights the transition of the transport sector, which is currently dependent on fo...
Powerfuels – i. e. green hydrogen and derived gaseous and liquid energy carriers and feedstocks such as synthetic kerosene, methane or ammonia – will play an important role in a carbon-neutral energy system. They will be essential for defossilising sectors
that are hard to electrify such as aviation, maritime transport, and specific industrial proc...
This is a first of its kind regional analysis of cost optimal energy transition pathway towards 100% renewables across the power, heat, transport and desalination sectors of North India. The study was undertaken before the pandemic but has become even more relevant considering the global call for green recovery. The study provides a long-term strat...
An energy transition across North India with 100% renewables by 2050 in an integrated energy system covering the demand from sectors of power, heat, transport and industry. Presenting insights on role of solar PV, battery storage technology, P-to-X, synthetic fuels, GHG emissions and jobs.
This research study by LUT University and Climate Trends is a first of its kind regional analysis of cost optimal energy transition pathway towards 100% renewables across the power, heat, transport and desalination sectors of North India. The study was undertaken before the pandemic but has become even more relevant considering the global call for...
Energy security analysis is a strong tool for policy makers. It allows them to formulate policies that would enhance energy systems by targeting necessary actions. In this study, the impacts of transitioning from a fossil fuels to a renewables dominated energy system on energy security is analysed for Jordan. A Best Policy Scenario was developed fo...
SolarPower Europe and LUT University’s ground-breaking modelling demonstrates that it is possible for the EU to become fully climate neutral by 2040, complying with the ambitious 1.5°C Paris Agreement target, and without any tricks, like carbon sinks, but by implementing ambitious energy efficiency policies and going 100% renewables. In addition, t...
Pathways towards a defossilated sustainable power system for West Africa within the time horizon of 2015–2050 is researched, by applying linear optimisation modelling to determine the cost optimal generation mix to meet the demand based on assumed costs and technologies in 5-year intervals. Six scenarios were developed, which aimed at examining the...
Various assessments have shown abundant renewable energy potential for India, especially solar. For a fully sustainable power system, monsoon presents an obstacle with the resultant decrease in solar resource availability. In this study, India is subdivided into 10 regions and these regions are interconnected via power lines. A 100% RE transition p...
Transition to a cost effective and fossil carbon-free energy system is imminent for South Africa, so is the miti-gation of issues associated with the 'water-energy nexus' and their consequent impacts on the climate. The country's key fossil carbon mitigation option lies in the energy sector, especially in shifting away from the coal-dependent power...
Jani-Petri Martikainen has raised a few concerns after examining in detail the peer-reviewed published article Ram et al. (2018) and the technical report Ram et al. (2017) in his letter Martikainen (2019). However, Martikainen (2019) fails to contextualise the approach in estimating the levelised cost of electricity (LCOE) across different power ge...
Aside from reducing the energy sector’s negative impacts on the environment, renewable power generation technologies are creating new wealth and becoming important job creators for the 21st century. Employment creation over the duration of the global energy transition is an important aspect to explore, which could have policy ramifications around t...
Globally, PV prosumers account for a significant share of the total installed solar PV capacity, which is a growing trend with ever-increasing retail electricity prices. Further propelled by performance improvements of solar PV and innovations that allow for greater consumer choice, with additional benefits such as cost reductions and availability...
The state-of-the-art scientific modelling of the “Global Energy System based on 100% Renewable Energy – Power, Heat, Transport and Desalination Sectors” study simulates a transition to 100% renewable energy of the entire world, structured in nine major regions and 145 sub-regions on an hourly resolution of 5-year time periods from 2015 until 2050....
The study showcases that a global 100% renewable energy system can be achieved with zero GHG emissions before 2050 and more cost-effectively than the current fossil fuel and nuclear-based energy system. Solar photovoltaics (PV) and wind energy emerge as the new workhorses of the future global energy system. Solar PV emerges as the most prominent el...
The rapid decline in costs of solar PV and wind are ensuring an exit of coal from the power sector developments in India. With a massive RE target, India is on its way to meet it's NDC, but can go beyond and transit towards 100% RE.
A fast-growing economy, increasing population and more resource intensive lifestyles is fueling India's energy demands. This Director Note explores the case for meeting India's electricity needs from renewable energy.
Supplementary Information for the Technical Report Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 201
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017
Supplementary Information for the Technical Report ”Global Energy System based on 100% Renewable Energy – Power Sector”, published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017