Manfredo AtzoriHES-SO Valais-Wallis | HES-SO
Manfredo Atzori
PhD
About
145
Publications
67,977
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,748
Citations
Introduction
Senior researcher in data science with focus on multimodal data collection, analysis and processing. Experienced in deep learning, computer vision, machine learning, patter recognition, big data analytics, biomedical data analysis and computer assisted diagnostics. Scientific coordinator of the Horizon 2020 project ExaMode and of ProHand.
Responsible of the Ninapro database.
Publications
Publications (145)
Advancements in neural network approaches have enhanced the effectiveness of surface Electromyography (sEMG)-based hand gesture recognition when measuring muscle activity. However, current deep learning architectures struggle to achieve good generalization and robustness, often demanding significant computational resources. The goal of this paper w...
In ophthalmology, Optical Coherence Tomography (OCT) has become a daily used tool in the diagnostics and therapeutic planning of various diseases. Publicly available datasets play a crucial role in advancing research by providing access to diverse imaging data for algorithm development. The accessibility, data format, annotations, and metadata are...
The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The man...
The increasing availability of biomedical data is helping to design more robust deep learning (DL) algorithms to analyze biomedical samples. Currently, one of the main limitations to train DL algorithms to perform a specific task is the need for medical experts to label data. Automatic methods to label data exist, however automatic labels can be no...
Registration of longitudinal brain Magnetic Resonance Imaging (MRI) scans containing pathologies is challenging due to dramatic changes in tissue appearance. Although there has been considerable progress in developing general-purpose medical image registration techniques, they have not yet attained the requisite precision and reliability for this t...
The problem of artifacts in whole slide image acquisition, prevalent in both clinical workflows and research-oriented settings, necessitates human intervention and re-scanning. Overcoming this challenge requires developing quality control algorithms, that are hindered by the limited availability of relevant annotated data in histopathology. The man...
The analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that physicians can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on su...
Background segmentation is an important step in analysis of histopathological images. It allows one to remove irrelevant regions and focus on the tissue of interest. However, background segmentation is challenging due to the variability of stain colors and intensity levels across different images, modalities, and magnification levels. In this paper...
Computational pathology can significantly benefit from ontologies to standardize the employed nomenclature and help with knowledge extraction processes for high-quality annotated image datasets. The end goal is to reach a shared model for digital pathology to overcome data variability and integration problems. Indeed, data annotation in such a spec...
With digital clinical workflows in histopathology departments, the possibility to use machine-learning-based decision support is increasing. Still, there are many challenges despite often good results on retrospective data. Explainable AI can help to find bias in data and also integrated decision support with other available clinical data. The ExaM...
The alignment of tissue between histopathological whole-slide-images (WSI) is crucial for research and clinical applications. Advances in computing, deep learning, and availability of large WSI datasets have revolutionised WSI analysis. Therefore, the current state-of-the-art in WSI registration is unclear. To address this, we conducted the ACROBAT...
Analysis of veterinary radiographic imaging data is an essential step in the diagnosis of many thoracic lesions. Given the limited time that practitioners can devote to a single patient, it would be valuable to implement an automated system to help clinicians make faster but still accurate diagnoses. Currently, most of such systems are based on sup...
Muscle synergy analysis investigates the neurophysiological mechanisms that the central nervous system employs to coordinate muscles. Several models have been developed to decompose EMG signals into spatial and temporal synergies. However, using multiple approaches can complicate the interpretation of results. Spatial synergies represent invariant...
Computational pathology targets the automatic analysis of Whole Slide Images (WSI).
WSIs are high-resolution digitized histopathology images, stained with chemical reagents to highlight specific tissue structures and scanned via whole slide scanners.
The application of different parameters during WSI acquisition may lead to stain color heterogeneit...
Hand grasp patterns are the results of complex kinematic-muscular coordination and synergistic control might help reducing the dimensionality of the motor control space at the hand level. Kinematic-muscular synergies combining muscle and kinematic hand grasp data have not been investigated before. This paper provides a novel analysis of kinematic-m...
Smoothness is a commonly used measure of motion control. Physiological motion is characterized by high smoothness in the upper limb workspace. Moreover, there is evidence that smoothness-based models describe effectively skilled motion planning. Typical smoothness measures are based on wrist kinematics. Despite smoothness being often used as a meas...
The digitalization of clinical workflows and the increasing performance of deep learning algorithms are paving the way towards new methods for tackling cancer diagnosis. However, the availability of medical specialists to annotate digitized images and free-text diagnostic reports does not scale with the need for large datasets required to train rob...
Registration of brain scans with pathologies is difficult, yet important research area. The importance of this task motivated researchers to organize the BraTS-Reg challenge, jointly with IEEE ISBI 2022 and MICCAI 2022 conferences. The organizers introduced the task of aligning pre-operative to follow-up magnetic resonance images of glioma. The mai...
Exa-scale volumes of medical data have been produced for decades. In most cases, the diagnosis is reported in free text, encoding medical knowledge that is still largely unexploited. In order to allow decoding medical knowledge included in reports, we propose an unsupervised knowledge extraction system combining a rule-based expert system with pre-...
Muscle synergy analysis is commonly used for investigating the neurophysiological mechanisms that the central nervous system employs to control muscle activations. In the last two decades, several models have been developed to decompose EMG signals into spatial, temporal or spatiotemporal synergies. However, the presence of different approaches com...
Muscle synergies have been largely used in many application fields, including motor control studies, prosthesis control, movement classification, rehabilitation, and clinical studies. Due to the complexity of the motor control system, the full repertoire of the underlying synergies has been identified only for some classes of movements and scenario...
Computational pathology is a domain of increasing scientific and social interest. The automatic analysis of histopathology images stained with Hematoxylin and Eosin (H&E) can help clinicians diagnose and quantify diseases. Computer vision methods based on deep learning can perform on par or better than pathologists in specific tasks. Nevertheless,...
Malignant lesions in breast tissue specimen whole slide images (WSIs), may lead to a dangerous diagnosis, such as cancer. However, WSIs analysis is time-consuming and expensive, requiring the work of expert pathologists. This paper aims to present a method for the 2022 BRIGHT Challenge, that involves the analysis of breast WSIs. The organizers prov...
The complexity and dexterity of the human hand make the development of natural and robust control of hand prostheses challenging. Although a large number of control approaches were developed and investigated in the last decades, limited robustness in real-life conditions often prevented their application in clinical settings and in commercial produ...
Computational pathology is a domain that aims to develop algorithms to automatically analyze large digitized histopathology images, called whole slide images (WSI). WSIs are produced scanning thin tissue samples that are stained to make specific structures visible. They show stain colour heterogeneity due to different preparation and scanning setti...
One major challenge limiting the use of dexterous robotic hand prostheses controlled via electromyography and pattern recognition relates to the important efforts required to train complex models from scratch. To overcome this problem, several studies in recent years proposed to use transfer learning, combining pre-trained models (obtained from pri...
Whole slide images (WSIs) are often provided with global annotations in the form of pathology reports. Local annotations are less frequently available, as obtaining them is time consuming. Global annotations do not include information about the regions of interest or the magnification levels used for the diagnosis. This fact can limit the training...
Computational pathology is a domain that aims to develop algorithms to automatically analyze large digitized histopathology images, called whole slide images (WSI). WSIs are produced scanning thin tissue samples that are stained to make specific structures visible. They show stain colour heterogeneity due to different preparation and scanning setti...
Algorithms proposed in computational pathology can allow to automatically analyze digitized tissue samples of histopathological images to help diagnosing diseases. Tissue samples are scanned at a high-resolution and usually saved as images with several magnification levels, namely whole slide images (WSIs). Convolutional neural networks (CNNs) repr...
Convolutional neural networks (CNNs) are state-of-the-art computer vision techniques for various tasks, particularly for image classification. However, there are domains where the training of classification models that generalize on several datasets is still an open challenge because of the highly heterogeneous data and the lack of large datasets w...
Background
One challenge to train deep convolutional neural network (CNNs) models with whole slide images (WSIs) is providing the required large number of costly, manually annotated image regions. Strategies to alleviate the scarcity of annotated data include: using transfer learning, data augmentation and training the models with less expensive im...
Training classification models in the medical domain is often difficult due to data heterogeneity (related to acquisition procedures) and due to the difficulty of getting sufficient amounts of annotations from specialized experts. It is particularly true in digital pathology, where models do not generalize easily. This paper presents a novel approa...
Free-text reporting has been the main approach in clinical pathology practice for decades. Pathology reports are an essential information source to guide the treatment of cancer patients and for cancer registries, which process high volumes of free-text reports annually. Information coding and extraction are usually performed manually and it is an...
The interpretation of thoracic radiographs is a challenging and error-prone task for veterinarians. Despite recent advancements in machine learning and computer vision, the development of computer-aided diagnostic systems for radiographs remains a challenging and unsolved problem, particularly in the context of veterinary medicine. In this study, a...
Medical imaging research has long suffered problems getting access to large collections of images due to privacy constraints and to high costs that annotating images by physicians causes. With public scientific challenges and funding agencies fostering data sharing, repositories, particularly on cancer research in the US, are becoming available. St...
Hand amputations can dramatically affect the capabilities of a person. Machine learning is often applied to Surface Electromyography (sEMG) to control dexterous prosthetic hands. However, it can be affected by low robustness in real life conditions, mainly due to data variability depending on various factors (such as the position of the limb, of th...
Deep Convolutional Neural Networks (CNN) are at the backbone of the state–of–the art methods to automatically analyze Whole Slide Images (WSIs) of digital tissue slides. One challenge to train fully-supervised CNN models with WSIs is providing the required amount of costly, manually annotated data. This paper presents a semi-weakly supervised model...
Deep Convolutional Neural Networks (CNN) are at the backbone of the state-of-the art methods to automatically analyze Whole Slide Images (WSIs) of digital tissue slides. One challenge to train fully-supervised CNN models with WSIs is providing the required amount of costly, manually annotated data. This paper presents a semi-weakly supervised model...
Background:
Muscle synergy analysis is an approach to understand the neurophysiological mechanisms behind the hypothesized ability of the Central Nervous System (CNS) to reduce the dimensionality of muscle control. The muscle synergy approach is also used to evaluate motor recovery and the evolution of the patients' motor performance both in singl...
Using medical images recorded in clinical practice has the potential to be a game-changer in the application of machine learning for medical decision support. Thousands of medical images are produced in daily clinical activity. The diagnosis of medical doctors on these images represents a source of knowledge to train machine learning algorithms for...
A hand prosthesis that can be controlled robustly and naturally in daily life tasks is still a challenge. Advanced control methods based on surface electromyography (sEMG) are poorly translated into clinical use, mainly due to insufficient robustness in unconstrained environments. A promising approach to overcome this limitation relies on the inclu...
Despite recent advances in prosthetics, many upper limb amputees still use prostheses with some reluctance. They often do not feel able to incorporate the artificial hand into their bodily self. Furthermore, prosthesis fitting is not usually tailored to accommodate the characteristics of an individual’s phantom limb sensations. These are experience...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
A hand amputation is a highly disabling event, having severe physical and psychological repercussions on a person’s life. Despite extensive efforts devoted to restoring the missing functionality via dexterous myoelectric hand prostheses, natural and robust control usable in everyday life is still challenging. Novel techniques have been proposed to...
The overall lower survival rate of patients with rare cancers can be explained, among other factors, by the limitations resulting from the scarce available information about them. Large biomedical data repositories, such as PubMed Central Open Access (PMC-OA), have been made freely available to the scientific community and could be exploited to adv...
Prostate cancer (PCa) is one of the most frequent cancers in men. Its grading is required before initiating its treatment. The Gleason Score (GS) aims at describing and measuring the regularity in gland patterns observed by a pathologist on the microscopic or digital images of prostate biopsies and prostatectomies. Deep Learning-based (DL) models a...
Hematoxylin and Eosin (H&E) are one of the main tissue stains used in histopathology to discriminate between nuclei and extracellular material while performing a visual analysis of the tissue. However, histopathology slides are often characterized by stain color heterogeneity, due to different tissue preparation settings at different pathology inst...
Modelling hand kinematics is a challenging problem, crucial for several domains including robotics, 3D modelling, rehabilitation medicine and neuroscience. Currently available datasets are few and limited in the number of subjects and movements. The objective of this work is to advance the modelling of hand kinematics by releasing and validating a...
Medical imaging research has long suffered problems getting access to large collections of images due to privacy constraints and to high costs that annotating images by physicians causes. With public scientific challenges and funding agencies fostering data sharing, repositories, particularly on cancer research in the US, are becoming available. St...
Visual attention is often predictive for future actions in humans. In manipulation tasks, the eyes tend to fixate an object of interest even before the reach-to-grasp is initiated. Some recent studies have proposed to exploit this anticipatory gaze behavior to improve the control of dexterous upper limb prostheses. This requires a detailed understa...