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Abstract
Fifth generation (5G) and beyond 5G networks support high-throughput ultra-high definition (UHD) video applications. This
paper examines the use of dynamic adaptive streaming over HTTP (DASH) to deliver UHD videos from servers to 5G-capable
devices. Due to the dynamic network conditions of wireless networks, it is particularly challenging to provide a high quality
of experience (QoE) for UHD video delivery. Consequently, adaptive bit rate (ABR) algorithms are developed to adapt the
video bit rate to the network conditions. To improve QoE, several ABR algorithms are developed, the majority of which are
based on predetermined rules. Therefore, they do not apply to a broad variety of network conditions. Recent research has
shown that ABR algorithms powered by deep reinforcement learning (DRL) based vanilla asynchronous advantage actor-critic
(A3C) methods are more effective at generalizing to different network conditions. However, they have some limitations, such
as a lag between behavior and target policies, sample inefficiency, and sensitivity to the environment’s randomness. In this
paper, we propose the design and implementation of two DRL-empowered ABR algorithms: (i) on-policy proximal policy
optimization adaptive bit rate (PPO-ABR), and (ii) off-policy soft-actor critic adaptive bit rate (SAC-ABR). We evaluate the
proposed algorithms using 5G traces from the Lumos 5G dataset and show that by utilizing specific properties of on-policy
and off-policy methods, our proposed methods perform much better than vanilla A3C for different variations of QoE metrics.

Keywords Deep reinforcement learning · Actor-critic methods · Quality of experience (QoE) · Adaptive bit rates (ABR) ·
Video streaming

1 Introduction

5G wireless networks have several key characteristics such
as high data rates, low latency, massive device connectivity,
high reliability, and so on. These characteristics collectively
make 5G a transformative technology that promises faster
and more reliable wireless connectivity, supporting a wide
range of applications across industries and improving over-
all user experiences. Due to the widespread use of the 5G
wireless network, the volume of multimedia traffic, includ-
ing video streaming, has increased significantly. As per the
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Ericsson Mobility Report [1], we now delve into a detailed
examination of two widely used mobile applications: video
streaming and web browsing. The collective usage of these
applications is projected to account for over 80% of the
total mobile traffic share by the year 2025. In addition, the
demand for video traffic has increased with the introduction
of ultra-high definition (UHD) or 4K/8K video streaming.
Recently, it has been shown that 5G Standalone (SA) ser-
vice, via dynamic adaptive streaming over HTTP (DASH)
[2], can deliver up to 95% UHD video segments within the
deadline, whereas LTE network failed to deliver more than
20% of UHD video segments within the deadline [3].

To ensure seamless video streaming, DASH uses an adap-
tive bitrate (ABR) module to adjust the video bitrate based
on network conditions. Recently, Pensieve [4] has been pro-
posed as a data-driven deep reinforcement learning (DRL)
[5] approach to improve the ABR algorithms. It uses vanilla
asynchronous advantage actor-critic (A3C) [6] with several
workers and one central agent. Eachworker contains an actor
and a critic where the actor generates a policy, i.e., a map-
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ping from the state to the action, and the critic identifies
the effectiveness of the policy generated by the actor. Sev-
eral such workers are trained in parallel to identify the best
action given the current state of the environment. However,
vanilla A3C suffers from several drawbacks: (i) there is a lag
between each actor’s behavior policy and the target policy of
the central agent. As a result, the behavior and target poli-
cies become out of synchronization, resulting in suboptimal
updates, (ii) there is no control over the policy parameters,
and hence it leads to instability in policy updates, (iii) it relies
on collecting new samples for nearly every update to the pol-
icy, making them sample inefficient, and (iv) it is sensitive to
the environment’s randomness because entropy maximiza-
tion is not directly incorporated into the maximum expected
cumulative reward. Due to these constraints, the integration
of vanilla A3C for ABR generation may result in impre-
cise throughput prediction when there are fluctuations in the
network, re-buffering at the client’s device, and inaccurate
bitrate selection impacting the overall QoE for the users.

This paper addresses the aforementioned issues bypropos-
ing the design and implementation of two DRL-empowered
ABR algorithms: (i) on-policy proximal policy optimization
adaptive bit rate (PPO-ABR), and (ii) off-policy soft-actor
critic adaptive bit rate (SAC-ABR) algorithms. The afore-
mentioned issues (i) and (ii) are addressed using an on-policy
PPO-ABR for adaptive bitrate streaming and the issues (iii)
and (iv) are addressed using an off-policy SAC-ABR for
adaptive bitrate streaming. The PPO-ABR improves video
QoE by maximizing sample efficiency using a clipped prob-
ability ratio between the new and the old policy parameters
on multiple epochs of minibatch updates instead of a sin-
gle epoch, and the SAC-ABR aims to achieve a better video
QoE by maximizing entropy while maximizing the expected
rewards and reusing past experiences using a replay buffer
pool. Thiswork is an extension of our recently published con-
ference papers: [7] and [8]. In these papers, we present the
initial sketch of the two proposed algorithms. In this paper,
we present the detailed design and their evaluation over 5G
traces fromLumos 5Gdataset [9] focusing on theUHDvideo
delivery. Specifically, themain contributions of this paper are
as follows:

• We propose two DRL-empowered ABR algorithms: an
on-policy PPO-ABR and an off-policy SAC-ABR. The
experimental results show that our proposed algorithms
can achieve a higher QoE over other state-of-the-art
ABR algorithms. Our results show that PPO-ABR and
SAC-ABR significantly improve QoE and provide up to
47.82% and 155.69% higher QoE, respectively, as com-
pared to vanilla-A3C based Pensieve.

• To the best of our knowledge, this is the first work to
propose both on-policy and off-policy DRL methods for
generating ABR. By utilizing specific properties of on-

policy and off-policy methods, our proposed algorithms
overcome the challenges faced by vanilla A3C based
ABR algorithms.

• We evaluated the proposed approaches using 5G traces
from Lumos 5G datasets [10]. The dataset covers 5G
throughput traces with a data rate of up to 1000 Mbps
and hence supports the transmission of UHD video. We
have used a 4K video for the evaluation and consider
several QoE variants. Our results show the benefits of the
proposed approaches over state-of-the-art ABR methods
with several QoE variants.

The rest of the paper is organized as follows: Section 2
presents the relevant background on reinforcement learning,
on-policy, and off-policy methods. Section 3 presents the
system model and the proposed algorithms. We present the
experimental setup and results in Section 4. Finally, we con-
clude our work in Section 5.

2 Background

This section presents the background on reinforcement learn-
ing and on-policy and off-policy RL algorithms.

2.1 Reinforcement Learning

RL is the process of dynamic learning with little or no prior
information about the environment [5]. In order to maximize
a long-term reward in the future, the agent makes judgments
by learning frommistakes. Using a Markov decision process
(MDP), the interactions between the agent and the environ-
ment are described where at time step t = 0, 1, 2, 3, ..., the
agent is in a state st , performs an action at ∈ A, and then
observes the reward rt = R(st , at ). The agent’s objective
is to identify a policy π(s, a) that maximizes the expected
return determined by V ∗(s). It is given by,

V ∗(s) = max{π∈�} V
π
φ (s) (1)

where� is a set of all possible policies and V π
φ (s) is the value

function with adjustable policy parameter (φ). This function
is defined as the average discounted sum of future rewards.
It is given by,

V π
φ (s) = E

[ ∞∑
k=0

γ krt+k |st = s, πφ

]
(2)

where γ ∈ [0, 1) is a discount factor. Similarly, the action-
value function Qπ

φ (s, a) is defined as follows:

Qπ
φ (s, a) = E

[ ∞∑
k=0

γ krt+k |st = s, at = a, πφ

]
(3)
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where the optimal action-value function is given by,

Q∗
φ(s, a) = max{π∈�} Q

π
φ (s, a) (4)

The optimal policy π∗
φ(s) is directly obtained from Q∗

φ(s, a),
where,

π∗
φ(s) = argmax

a∈A
Q∗

φ(s, a) (5)

In this paper,we focus onpolicygradientmethods [11] that
are used to find an optimal policy by solvingEq. 5. The policy
gradient methods are divided into two categories: on-policy
and off-policy methods. On-policy DRLmethods are used to
evaluate and improve the same policy that is being used to
select the actions, whereas off-policy DRLmethods are used
to evaluate and improve a policy different from the generated
policy that is used for action selection. In the following two
sections, we present the background on the on-policy and
off-policy RL methods.

2.2 On-policy DRLmethods

The basic on-policy method is a vanilla policy gradient
method [12] where policy parameters are updated after the
calculation of the total reward at the endof the episode instead
of single-step. The policy gradient is given by:

∇φk =
T∑
t=0

∇φ log πφ(at , st )|φk Aφ(s, a) (6)

where Aφ(s, a) = Qπ
φ (s, a) − V π

φ (s) is the advantage func-
tion, ∇φ is the policy optimization using a gradient operator,
T is the number of steps in the episode and φk is the current
policy parameters. However, the vanilla policy gradient suf-
fers from high variance and high training time due to value
estimates being calculated at the end of the episodes instead
of every time step. To address these issues, actor-critic meth-
ods [12] are proposed. These methods consist of two parts:
an actor represented by a policy π and a critic represented
by an estimate of the action-value function. Typically, neural
network function approximators are used to represent both
of them. The critic, with parameters θ , estimates the current
policy’s value function. The main goal of this method is to
reduce the variance using single-step state-value estimates.
The single-step state-value estimates are derived using a tem-
poral difference (δ), and it is given by:

δ = V π
φ (st ) + γ V π

φ (st+1, φ) − V π
φ (st , φ) (7)

The policy and critic updateswith respect to its parameters
φ and θ , respectively, are defined in terms of the gradient
operator ∇ as follows:

�φ = φ + αpδ∇πφ(st+1, at+1, φ) (8)

�θ = θ + αcδ∇V π
φ (st , θ) (9)

where αp and αc are the actor and critic learning rates,
respectively. Furthermore, as an improvement, vanilla-A3C
[6] is proposed that uses several copies of the same agent
with asynchronous updates. It is more efficient than the
actor-critic methods because samples for data can be par-
allelized using several copies of the same agent resulting in
an even smaller training time. In the vanilla-A3C algorithm,
the current policy parameters (φnew) are updated based on
previously collected experience with old policy parameters
(φ) after every κ step, i.e., after every κ state-action pairs.
The equation below represents the value function update for
vanilla-A3C

maximizeφ V π
φnew

(s) = κ∇V π
φ (s)+κ

∑
s

ρπφ (s)
∑
a

πφnew (a|s)Aφ(s, a)

(10)

where ρπ(s) is the distribution of state-action pairs, πφ

is the old policy and πφnew is the current policy. Note that∑
a πφnew(a|s)Aφ(s, a) ≥0 guarantees to increase the value

function, however,
∑

a πφnew(a|s)Aφ(s, a) < 0 can result
in a decrease in the value function resulting in increasing
divergence between the old policy and the new policy.

To alleviate this issue, the on-policy trust region policy
optimization (TRPO) [13] proposes Kullback-Leibler (KL)
divergence [14] constraint to update the value function. The
Eq. 10 is rewritten with KL divergence constraint as follows:

maximizeφ V π
φnew

(s) = κ∇V π
φ (s) + κEs∼ρπφ

,a∼πφ

[
r(φ) Aφ(s, a)

]

subject to DKL (πφnew ||πφ) ≤ λ (11)

where r(φ) = πφnew (s,a)

πφ(s,a)
is the importance sampling

ratio, DKL(πφnew ||πφ) = ∑
a πφnew(s, a) log

(
πφnew (s,a)

πφ(s,a)

)

and DKL(πφnew ||πφ) ≤ λ is used to constrain the divergence
between the old and new policies with λ as a KL-divergence
limit, λ ∈ (0, 1]. We can rewrite Eq. 11 to maximize only the
second part, also known as the surrogate advantage objective,
as follows:

maximizeφ κEs∼ρπφ
,a∼πφ

[
r(φ) Aφ(s, a)

]

subject to DKL(πφnew ||πφ) ≤ λ

(12)
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Although TRPO provides constraints on the divergence
between the old and the new policies, there is no control on
the policy parameters. Hence, it would lead to instability in
policy updates. To address this issue, the on-policy proximal
policy optimization (PPO) algorithm [15] is proposed that
uses a clipped probability ratio to constrain the divergence
between the old and the newpolicy parameters. The objective
function in PPO is derived fromEq. 12, and themaximization
problem is given as:

maximizeφL
clip(φnew)=κEt

[
min

(
LCP I (φ), clip(r(φ) ,1−ε, 1+ε)Aφ(s, a)

)]

subject to DKL (πφnew ||πφ) ≤ λ (13)

where ε is the hyperparameter for clipping and LCP I (φ) =
κEt

[
r(φ) Aφ(s, a)

]
where CPI refers to a conservative pol-

icy iteration. From Eq. 13, the first term represents the TRPO
unclipped surrogate objective and the second term repre-
sents a modification of the TRPO surrogate objective using
a clipped probability ratio ε, which removes the incentive
for moving r(φ) outside of the interval [1 − ε, 1 + ε]. The
PPO maximization considers the minimum of the clipped
and unclipped objectives resulting in a smaller divergence
between the new and the old policy parameters.

2.3 Off-policy RLmethods

In this section, we describe state-of-the-art off-policy RL
methods including DDPG [16], and SAC [17]. These meth-
ods consist of two policies: target and behavior policies [5] to
generate actions. The target policy is used to select the partic-
ular action to maximize the action-value estimate, whereas
the behavior policy is used to sample all possible actions.
DDPG is an off-policy actor-critic method with the follow-
ing actor update:

π∗
φ(s) = maximizeφ Eb∼s,a,r ,s′

[
Qπ

φ (s, πdφ (a))

]
(14)

where πdφ is the target policy, and b is the behavior policy.
The critic update is given by,

Qθ (s, a)=Qθold (s, a)+α

[
r+max

a′ γ Qθ (s
′, a′)−Qθold (s, a)

]

(15)

where Qθ (s, a) is the updated action-value, Qθold (s, a) is
the old action-value, r + maxa′ γ Qθ (s′, a′) is the target

action-value, and

[
r +maxa′ γ Qθ (s′, a′) − Qθold (s, a)

]
is

the temporal difference error. However, DDPG fails because
of the overestimation of the action-value due to the use
of the maximization function. To alleviate the issues with

DDPG, SAC [17] uses double Q-trick [18] with entropy
maximization. The double Q-trick takes a minimum of two
action-values to alleviate the overestimation of the action-
value function, and the entropy maximization encourages
the exploration to maximize the expected return. The critic
network uses soft policy evaluation to compute the soft
action-value of a policy as follows:

τπ Qθ (st , at ) = r(st , at ) + γ Est+1∼p[Vθ (st+1)] (16)

where τ the Bellman backup operator and soft state-value
function Vθ (st ) is given by,

Vθ (st ) = Eat∼π

[
Qθ (st , at ) + ηH(πφ(·|st ))

]
(17)

where η balances the exploration-exploitation trade-off and
H() is the entropy function that encourages the exploration
of a given policy. Using the two soft action-value functions,
the target update y(r , s

′
) and the loss function L(θ) are given

by,

y(r , s
′
) = r + γ min{i=1,2} Qθi,targ(s

′
, a

′
(s

′
)) + ηH(πφ(·|st ))

(18)

L(θ) = E

[
(Qθ (st , at |θ) − y(r , s

′
))2

]
(19)

and the parameter θ is updated as follows:

θ ← θ − αc∇θ L(θ) (20)

where αc is the critic learning rate.
The equation below represents the gradient of L(θ), which

is given by,

∇θ L(θ) = ∇θ Qθ (st , at )[Qθ (st , at ) − y(r , s
′
))] (21)

Furthermore, the actor uses soft policy iteration to achieve
the optimal policy π∗ by maximizing the expected rewards
along with entropy as follows:

π∗
φ = argmax

φ

T∑
t

E(s,a)∼ρπ

[
r(s, ãπ

φ ) + ηH(πφ(ãπ
φ |s))

]

(22)

Additionally, SAC also uses the reparametrization trick
[19] for normalization. It allows us to rewrite the expec-
tation over actions into an expectation over noise using a
tangent hyperbolic of a Gaussian distribution, where ãπ

φ =
tanh(μφ + εσφ) and ε ∼ N (0, 1) is the input noise vec-
tor. The tanh function ensures that actions are bounded to a
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finite range. Based on the policy improvement approach of
the actor’s network, the loss function L(φ) is defined as:

L(φ) = argmax
φ

E

[
min{i=1,2} Q

π
φi

(s, ãπ
φ ) + ηH(πφ(ãπ

φ |s))
]

(23)

where the loss function L(φ) also addresses the overestima-
tion by using two soft action-value functions and encourages
the exploration using entropy maximization. Using the gra-
dient ascent method, the actor parameter (φ) is updated as
follows:

φ ← φ − αp∇φL(φ) (24)

where αp is the learning rate of the actor-network and
∇φL(φ) is the gradient of L(φ), given by:

∇φL(φ) = ∇φ

∑
s,a,r ,s′

[
min{i=1,2} Q

π
φi

(s, ãπ
φ )+ηH(πφ(ãπ

φ |s))
]

(25)

In this section, we have presented various on-policy and
off-policy RL methods with advantages and disadvantages.
Specifically, our proposed algorithms are developed over on-
policyPPOandoff-policySACmethods. It is shown that PPO
provides high sample efficiency by reducing a divergence
between new and old policy parameters over vanilla-A3C
and SAC seeks to optimize the trade-off between exploration
and exploitation by increasing entropy while also increasing
expected rewards than the vanilla-A3C method.

3 Systemmodel and proposed approaches

Figure 1 presents the system model for multimedia stream-
ing using the DASH framework. It involves a client-server
architecture where video chunks (segments) are stored on the
video server and transferred to the client over a 5G network.
The client establishes a connection with the video server

using an HTTP request. The video server stores the video
into multiple chunks, which are denoted as [c1, c2...cF ], and
each chunk is associated with different bitrate quality lev-
els, which are denoted as [q1, q2, ...qF ]. On the client side,
an ABR controller selects the appropriate bitrate for each
video chunk. The ABR controller will make the action about
the particular chunk being played at the specified quality
of the bitrate based on several inputs such as estimates of
throughputs, video player buffer occupancy, network statis-
tics, number of chunks (ct ), chunk size (nt ), last chunk bitrate
(bt−1), size of the buffer (lt ), past chunk throughput (xt−1),
and past chunk download time (dt−1). After the selection of
the bitrate of the particular chunk, the ABR controller passes
the chunk information to the throughput estimator and buffer
controller for playing the next chunk bitrate.

3.1 On-policy PPO-ABR: architecture and algorithm
design

The proposed PPO-ABR is an on-policy DRLmethod where
multiple agents are trained in parallel as shown in Fig. 2. The
initial sketch of the PPO-Algorithm is presented in [8]. The
inputs and output to PPO-ABR are as follows.

• Input: The input to PPO-ABR is current state st =
(xt−1, dt−1, nt , bt−1, ct , lt ).

• Output: The output from PPO-ABR is the selection of
the chunk’s bitrate from action at = bt .

The components of PPO-ABR are explained as follows.

3.1.1 Environment

Each worker interacts with its own environment to produce
the following input and output.

• Input: The input for the environment is the current state
(st ) and action (at ).

• Output: The output of the environment is the next state
(st+1) and a reward (rt ).

Fig. 1 System Model
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Fig. 2 Proposed Architecture for PPO-ABR

3.1.2 Workers

Each worker has the actor and critic neural networks. The
actor calculates the gradients with policy parameters (φ)
using Eq. 8, and the critic calculates the gradients with critic
parameters (θ ) using Eq. 9. After gathering mini-batch sam-
ples from each worker, the samples are then transmitted to
the central agent.

3.1.3 IS ratio

In PPO-ABR, IS ratio estimates the chunk’s bitrate by the
expected value function using the probability distribution
between two policies using Eq. 11.

• Input: The input for the IS ratio is the probability values
of the new policy (πφnew ) and old policy (πφ ).

• Output: The output for IS ratio is a single scalar value
based on the probability ratio between πφnew , πφ .

3.1.4 Advantage function

The advantage function estimates the advantage of taking
a specific action in a given state compared to the expected
value of being in that state following the current policy. If the
advantage function value is greater than zero, IS ratio clips
at 1+ ε otherwise IS ratio clips at 1− ε as shown by Eq. 11.

• Input: The inputs to the advantage function are the Q-
function and the value-function, which are evaluated by
the critic network.

• Output: The output of the advantage function is a scalar
value, representing the advantage of taking a specific
action at in a given state st under the current policy.

3.1.5 PPO clip

Additionally, PPO clip constrains the divergence between the
old and the new policy using Eq. 13.
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• Input: The PPO clip takes three scalar values as inputs:
the IS ratio and the positive and negative scalar values of
the advantage function.

• Output: The output for the PPO clip is a scalar value,
which is used to adjust the policy parameters.

3.1.6 Central agent

The central agent collects the experiences from all the work-
ers, and the central agent performs asynchronous updates of
the action parameters (φ) and the critic parameters (θ ). The
updated parameters are then sent to the workers. The out-
put of the ABR controller is the bitrate to select for the next
chunk, i.e., at = bt .

3.2 Off-policy SAC-ABR: architecture and algorithm
design

The proposed SAC-ABR is an off-policyDRLmethodwhere
multiple agents are trained in parallel as shown in Fig. 3. The

initial sketch of the PPO-Algorithm is presented in [7]. The
input and output of the SAC-ABR are as follows.

• Input: The input to SAC-ABR is current state st =
(xt−1, dt−1, nt , bt−1, ct , lt ).

• Output: The output from SAC-ABR is the selection of
the chunk’s bitrate from action at = bt .

The mapping of the output to the input is explained with
the help of the following components.

3.2.1 Environment

Each worker has an environment to act in a particular state.

• Input: The input for the environment is the current state
(st ) and action (at ).

• Output: The output of the environment is the next state
(st+1) and a reward (rt ).

Fig. 3 Proposed Architecture for SAC-ABR
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3.2.2 Workers

The SAC-ABR uses multiple workers for parallel training,
as shown in Fig. 3. Each worker interacts with its own envi-
ronment. Each worker consists of the actor and critic neural
networks. The actor calculates the gradients based on pol-
icy loss using Eq. 23, and the critic calculates the gradients
are updated based on value loss using Eq. 19. Finally, each
worker sends the current information, i.e., (st , at , rt , st+1),
to experience replay buffer pool (M).

3.2.3 Experience replay buffer pool

The functionality of the experience replay buffer pool is used
to collect and store the experiences (st , at , rt , st+1) from
every worker. The experience replay buffer pool helps to
improve sample efficiency, as the worker can learn from past
experienceswithout requiring new interactionswith the envi-
ronment for each update. After collecting experiences, the
replay buffer pool randomly sends a batch of experiences to
the central agent.

3.2.4 Central agent

The central agent collects the set of experiences fromworkers
and makes asynchronous updates for the actor’s parameters
(φ) and critic’s parameters (θ ) using Eqs. 20 and 24, respec-
tively. The updated parameters are then passed to theworkers.
While sending the parameters to the workers, the central
agent use automatic entropy tuning using Eq. 17 to adjust
the entropy regularization coefficient automatically.

4 Experimental details and Results

This section describes the experimental environment, includ-
ing the 5G traces used in the experiments, the training
methodology, the performance evaluation metrics, and the
results.

4.1 5G Traces

We utilized mmWave 5G traces from the Lumos 5G dataset
[10]. It consists of 173 5G throughput traces that were col-
lected at 1-second intervals. The range of throughput between
0 and 1800Mbps is adequate forUHDvideo delivery over 5G
networks. Each trace file includes a timestamp (in seconds)
and throughput (inmegabits per second).We utilized two dif-
ferent classes of 5G traces: (i) 5G-Drive, which encompasses
driving-related mobility patterns. There are 92 such traces
and (ii) 5G-Walk, which addresses walking-related mobility
patterns. There are 81 such traces.

4.2 Trainingmethodology

We compared the proposed SAC-ABR and PPO-ABR with
the following state-of-the-art DRL-based ABR algorithms.

• Pensieve [4]: DRL-based vanilla-A3C method to gener-
ate ABR.

• AL-FFEA3C [20]: DRL-based follow-then-foragemeth-
od to generate ABR.

• AL-AvgA3C [20]: DRL-based averaged-A3C method to
generate ABR.

• ALISA [21]: DRL-based importance-weighted actor-
learner method to generate ABR.

Eachmodel has been trained for 100,000 iterations, with a
discount factor of γ = 0.99 and learning rates of 0.0001 and
0.001 for actor and critic, respectively. In order to maximize
the entropy, we used an entropy regularization from 1 to 0.01
for a better exploration-exploitation tradeoff, i.e., initially, an
entropy value of one is used for a few iterations, and then it
is gradually decreased to 0.01. It takes approximately eight
hours to complete the training for each model. Experiments
utilise 4K video with a frame rate of 80 frames per second
and a resolution of 4096 x 2160 pixels. The aggregate size
of the video is 500MB and it consists of 158 chunks. For all
our experiments, nact = 16 agents are used. The remaining
hyperparameters are identical to those used in [8].

4.3 Performancemetrics

We evaluate the efficacy of all ABR algorithms using QoE
as a performance metric. The QoE is formulated as [4, 7, 8,
20, 21], and [22]:

QoE =
N∑

n=1

q(bn)−μ

N∑
n=1

Tn−
N−1∑
n=1

|q(bn+1) − q(bn)| (26)

where, the three components of QoE are (i) the total bit rates
for all chunks, (ii) the penalty for re-buffering, and (iii) the
penalty to prevent stuttering and improving smoothness. We
consider three different variants of QoE:

• QoELI N : This is a generic QoE metric with the rebuffer
penalty as μ = 160 and q(bn) = bn .

• QoEHD: This metric is designed specifically to evaluate
QoE for HD videos with the rebuffer penalty as μ = 192
and q(bn) = HDrt (bn), where HDrt is assigned with
the reward values of {1, 2, 3, 12, 15, 20} when bn is {20,
40, 60, 80, 110, 160} Mbps, respectively.

• QoEV R : This metric is designed specifically to evalu-
ate QoE for virtual reality (VR) videos with the rebuffer
penalty as μ = 400 and q(bn) = V Rrt (bn), where V Rrt
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(a) 5G-Drive traces (b) 5G-Walk traces

Fig. 4 Average value of QoELI N for 5G-Drive and 5G-Walk traces attained by various ABR algorithms

is assigned with reward values of {5, 10, 15, 20, 25, 50}
when bn is {20, 40, 60, 80, 110, 160}Mbps, respectively.

4.4 Results

This section highlights the results of the proposed PPO-ABR
and SAC-ABR algorithms and compares their performance
with other state-of-the-art ABRmethods.We present training
results in Figs. 4a, 4b, 5a, 5b, 6a, and 6b and testing results
in Figs. 7, 8, 9, 10a, 10b, 11a, 11b, and 11c.

4.4.1 Results with different QoEmetrics

Table 1 presents the average QoE achieved by various ABR
algorithms for different variants of QoE metrics (QoELI N ,
QoEHD , and QoEV R) across both 5G-Drive and 5G-Walk
traces. The bold values in the table represent the maxi-
mum average QoE achieved by the ABR algorithm for the
specific QoE metric (column-wise). Our findings indicate
that PPO-ABR and SAC-ABR consistently outperform other
state-of-the-art ABR algorithms in terms of QoE across most
scenarios. To elaborate, PPO-ABR exhibits a noteworthy

superiority, achieving a 47.82% and 27.12% higher aver-
age QoE (QoELI N ) compared to Pensieve for 5G-Drive
and 5G-Walk traces. Similarly, SAC-ABR demonstrates its
effectiveness with a 7.70% and 155.69% higher average
QoE (QoELI N ) than Pensieve for 5G-Drive and 5G-Walk
traces, respectively. Both PPO-ABR and SAC-ABR demon-
strate better performance for other QoE metrics as well, i.e.,
QoEHD and QoEV R .

Similar advantages are observed when comparing PPO-
ABR and SAC-ABR to AL-AvgA3C, AL-FFE3C, and
ALISA. We also observe that SAC-ABR consistently per-
forms better than PPO-ABR for most of the cases, which is
due to the inherent advantage of using an off-policy method
over an on-policy method such that both target and behavior
policies are utilized for the action prediction.

Figure 4a presents the average reward values attained by
various ABR algorithms during each training epoch using
the QoELI N metric on 5G-Drive traces. As the number
of training epochs increases, our findings demonstrate that
each algorithm exhibits distinct behaviours. Notably, the
PPO-ABR achieves a high reward value early on in its train-
ing, demonstrating extraordinary performance from the start.
PPO-ABR consistently outperforms other DRL-based ABR

(a) 5G-Drive traces (b) 5G-Walk traces

Fig. 5 Average value of QoEHD for 5G-Drive and 5G-Walk traces attained by various ABR algorithms
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(a) 5G-Drive traces (b) 5G-Walk traces

Fig. 6 Average value of QoEV R for 5G-Drive and 5G-Walk traces attained by various ABR algorithms

Fig. 7 Comparing PPO-ABR and SAC-ABR with existing DRL-based ABR algorithms by analyzing their performance on the individual compo-
nents on the 5G traces using a QoELI N metric

Fig. 8 Comparing PPO-ABR and SAC-ABR with existing DRL-based ABR algorithms by analyzing their performance on the individual compo-
nents on the 5G traces using a QoEHD metric
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Fig. 9 Comparing PPO-ABR and SAC-ABR with existing DRL-based ABR algorithms by analyzing their performance on the individual compo-
nents on the 5G traces using a QoEV R metric

(a) Bitrate (b) Smoothness penalty

Fig. 10 Comparing PPO-ABR and SAC-ABR with existing DRL-based ABR algorithms by analyzing their performance based on chunk count
(158), chunk duration (1 sec), chunk-wise bitrate (20 Mbps to 160 Mbps), and chunk-wise smoothness penalties (0 to 100)

(a) Chunk Duration: 1 sec (b) Chunk Duration: 2 sec (c) Chunk Duration: 4 sec

Fig. 11 Comparing PPO-ABR and SAC-ABR with existing DRL-based ABR algorithms by analyzing their performance on the bitrate and video
stall for video’s chunk length with 1, 2 and 4 sec
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Table 1 Comparison of
QoElin , QoEHD , and QoEV R
metrics for different DRL based
ABR algorithms over 5G-Drive
and 5G-Walk traces

DRL-based ABR methods 5G-DRIVE Traces 5G-WALK Traces
QoElin QoEHD QoEV R QoElin QoEHD QoEV R

PENSIEVE 99.27 17.15 48.06 118.87 16.87 20.87

PPO-ABR 146.75 14.15 46.24 151.11 15.77 21.82

SAC-ABR 106.92 18.82 48.23 303.95 18.85 47.52

AL-AvgA3C 88.17 19.05 30.49 106.44 16.63 20.55

ALISA 78.13 17.12 40.89 155.62 17.32 23.05

AL-FFEA3C 85.82 16.77 31.15 155.19 17.53 38.89

methods as training progresses, ultimately achieving the
highest reward value. In addition, the SAC-ABR exhibits its
strengths in a distinct context. In the case of 5G-Walk traces,
as presented in Fig. 4b, the SAC-ABR achieves the high-
est average reward value in comparison to other DRL-based
ABR algorithms. These findings emphasize the adaptabil-
ity and efficacy of each ABR algorithm in various scenarios,
highlighting the importance of selecting themost appropriate
approach based on the unique characteristics of the network
traces and the desired QoE outcomes. Figures 5a, and 5b
presents the average reward value achieved by various ABR
algorithms at each training epoch using QoEHD metric over
5G-Drive and 5G-Walk traces, respectively. For these traces,
the SAC-ABR outperformed compared to other competing
algorithms. We also present that SAC-ABR achieves bet-
ter performance compared to other ABR algorithms with
QoEV R metric for both 5G-Drive and 5G-Walk traces, as
shown in Fig. 6a and 6b, respectively.

4.4.2 In depth analysis of different components of QoE
metrics

To thoroughly comprehend and demonstrate the benefits of
the proposed approaches, we execute an in-depth analysis of
theQoEmetrics’ individual components. This comparison of
ABR algorithms is based on 5G trace data, and their efficacy
is evaluatedusing three crucialmetrics: averagebitrate utility,
average rebuffering penalty, and average smoothness penalty.
The outcomes of our analysis are illustrated in Figs. 7, 8, and
9. Compared to other ABR algorithms, SAC-ABR and PPO-
ABR attain higher bitrates, reduce rebuffering occurrences,
and maintain smoother video playback. These figures pro-
vide valuable insight into the overall superiority of these
algorithms when operating in 5G network conditions, ulti-
mately resulting in an improved QoE for consumers during
the delivery of ultra-HD video.

4.4.3 QoE analysis per Chunk

In order to comprehend the characteristics of transitions in
video as it shifts between different bitrates, we have pro-

vided a study of the QoEmetric in terms of two components:
bitrate and smoothness penalty. It is evident that the majority
of ABR algorithms prioritise stability, aiming to minimise
the amount of bitrate transitions, as shown in Fig. 10a. Both
of our proposed algorithms, PPO-ABR and SAC-ABR, have
switched bitrates only 4-5 times during transmitting 158
chunks. Consequently, they achieve a lower penalty in terms
of smoothness compared to other ABR methods, as shown
in 10b.

4.4.4 Impact of chunk duration on QoE

To demonstrate the scalability of the proposed algorithm
across varying chunk duration, we followed themethodology
proposed in [23], [24], and [25] for adjusting the quality of
the video based on factors such as the chunk duration, chunk
counts, number of video quality switches, and video stalls
(rebuffering time). For our experiments, we considered three
different 4K videos [9] with chunk durations of 1 second, 2
seconds, and 4 seconds. The first video has 158 chunks with
each chunk of 1 second duration, the second video has 80
chunks with each chunk of 2 seconds duration, and the third
video has 40 chunks with each chunk of 4 seconds duration.

Figures 11a, 11b, and 11c present the performance ofABR
algorithms for chunk duration 1, 2, and 4 seconds, respec-
tively. We observe that PPO-ABR and SAC-ABR provide
better performance than other ABR algorithms irrespective
of the chunk duration. Nevertheless, the normalized bitrate
declines as the chunk duration increases in order to min-
imise the likelihood of transitioning to various bit rates,
hence minimising video rebuffering and enhancing playback
smoothness.

5 Conclusions and future work

In this paper, we have effectively demonstrated how employ-
ing on-policy and off-policy basedmulti-agentDRLmethods
can significantly enhance the performance of ABR algo-
rithms. Our proposed methods, namely PPO-ABR and SAC-
ABR, effectively resolve the limitations of limited sample
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size, exploration difficulties, policy inefficiency, and sus-
ceptibility to random seed and hyperparameter variations.
Extensive experiments have demonstrated that PPO-ABR
and SAC-ABR consistently outperform the existing Pensieve
by as much as 47.82% and 155.69% percent, respectively.
These evaluations are conducted under 5G throughput traces,
indicating that our approaches are applicable and effective in
modern network conditions. As part of our future efforts, we
plan to examine the efficacy of PPO-ABR and SAC-ABR in
edge-driven video delivery services to broaden the scope of
our research. This study will investigate the potential bene-
fits and optimisations that these methods can provide in the
context of edge computing and its effect on the quality of
experience for video streaming.
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